1
|
Poquérusse J, Brown CL, Gaillard C, Doughty C, Dalén L, Gallagher AJ, Wooller M, Zimov N, Church GM, Lamm B, Hysolli E. Assessing contemporary Arctic habitat availability for a woolly mammoth proxy. Sci Rep 2024; 14:9804. [PMID: 38684726 PMCID: PMC11058768 DOI: 10.1038/s41598-024-60442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Interest continues to grow in Arctic megafaunal ecological engineering, but, since the mass extinction of megafauna ~ 12-15 ka, key physiographic variables and available forage continue to change. Here we sought to assess the extent to which contemporary Arctic ecosystems are conducive to the rewilding of megaherbivores, using a woolly mammoth (M. primigenius) proxy as a model species. We first perform a literature review on woolly mammoth dietary habits. We then leverage Oak Ridge National Laboratories Distributive Active Archive Center Global Aboveground and Belowground Biomass Carbon Density Maps to generate aboveground biomass carbon density estimates in plant functional types consumed by the woolly mammoth at 300 m resolution on Alaska's North Slope. We supplement these analyses with a NASA Arctic Boreal Vulnerability Experiment dataset to downgrade overall biomass estimates to digestible levels. We further downgrade available forage by using a conversion factor representing the relationship between total biomass and net primary productivity (NPP) for arctic vegetation types. Integrating these estimates with the forage needs of woolly mammoths, we conservatively estimate Alaska's North Slope could support densities of 0.0-0.38 woolly mammoth km-2 (mean 0.13) across a variety of habitats. These results may inform innovative rewilding strategies.
Collapse
Affiliation(s)
| | | | - Camille Gaillard
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Chris Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Love Dalén
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Matthew Wooller
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Nikita Zimov
- North-East Science Station, Pacific Institute of Geography, Russian Academy of Sciences, Chersky, Russia
| | - George M Church
- Colossal Biosciences Inc, Austin, TX, 78701, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Ben Lamm
- Colossal Biosciences Inc, Austin, TX, 78701, USA.
| | | |
Collapse
|
2
|
Cowl VB, Comizzoli P, Appeltant R, Bolton RL, Browne RK, Holt WV, Penfold LM, Swegen A, Walker SL, Williams SA. Cloning for the Twenty-First Century and Its Place in Endangered Species Conservation. Annu Rev Anim Biosci 2024; 12:91-112. [PMID: 37988633 DOI: 10.1146/annurev-animal-071423-093523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Cloning as it relates to the animal kingdom generally refers to the production of genetically identical individuals. Because cloning is increasingly the subject of renewed attention as a tool for rescuing endangered or extinct species, it seems timely to dissect the role of the numerous reproductive techniques encompassed by this term in animal species conservation. Although cloning is typically associated with somatic cell nuclear transfer, the recent advent of additional techniques that allow genome replication without genetic recombination demands that the use of induced pluripotent stem cells to generate gametes or embryos, as well as older methods such as embryo splitting, all be included in this discussion. Additionally, the phenomenon of natural cloning (e.g., a subset of fish, birds, invertebrates, and reptilian species that reproduce via parthenogenesis) must also be pointed out. Beyond the biology of these techniques are practical considerations and the ethics of using cloning and associated procedures in endangered or extinct species. All of these must be examined in concert to determine whether cloning has a place in species conservation. Therefore, we synthesize progress in cloning and associated techniques and dissect the practical and ethical aspects of these methods as they pertain to endangered species conservation.
Collapse
Affiliation(s)
- Veronica B Cowl
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- European Association of Zoos and Aquaria, Amsterdam, The Netherlands
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA;
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium;
| | | | - Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize;
| | - William V Holt
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom;
| | - Linda M Penfold
- South East Zoo Alliance for Reproduction & Conservation, Yulee, Florida, USA;
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia;
| | - Susan L Walker
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
| | - Suzannah A Williams
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
3
|
Nguyen TD, Li H, Zhuang Y, Chen B, Kinoshita K, Jamal MA, Xu K, Guo J, Jiao D, Tanabe K, Wei Y, Li Z, Cheng W, Qing Y, Zhao HY, Wei HJ. In vitro and in vivo development of interspecies Asian elephant embryos reconstructed with pig enucleated oocytes. Anim Biotechnol 2023; 34:1909-1918. [PMID: 35404767 DOI: 10.1080/10495398.2022.2058005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) has an immense potential to rescue endangered animals and extinct species like mammoths. In this study, we successfully established an Asian elephant's fibroblast cell lines from ear tissues, performed iSCNT with porcine oocytes and evaluated the in vitro and in vivo development of reconstructed embryos. A total of 7780 elephant-pig iSCNT embryos were successfully reconstructed and showed in vitro development with cleavage rate, 4-cell, 8-cell and blastocyst rate of 73.01, 30.48, 5.64, and 4.73%, respectively. The total number of elephant-pig blastocyte cells and diameter of hatched blastocyte was 38.67 and 252.75 μm, respectively. Next, we designed species-specific markers targeting EDNRB, AGRP and TYR genes to verify the genome of reconstructed embryos with donor nucleus/species. The results indicated that 53.2, 60.8, and 60.8% of reconstructed embryos (n = 235) contained elephant genome at 1-cell, 2-cell and 4-cell stages, respectively. However, the percentages decreased to 32.3 and 32.7% at 8-cell and blastocyst stages, respectively. Furthermore, we also evaluated the in vivo development of elephant-pig iSCNT cloned embryos and transferred 2260 reconstructed embryos into two surrogate gilts that successfully became pregnant and a total of 11 (1 and 10) fetuses were surgically recovered after 17 and 19 days of gestation, respectively. The crown-rump length and width of elephant-pig cloned fetuses were smaller than the control group. Unfortunately, none of these fetuses contained elephant genomes, which suggested that elephant embryos failed to develop in vivo. In conclusion, we successfully obtained elephant-pig reconstructed embryos for the first time and these embryos are able to develop to blastocyst, but the in vivo developmental failure needs further investigated.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yiquan Zhuang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bowei Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Keiji Kinoshita
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kumiko Tanabe
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
| | - Yunfang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhuo Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenming Cheng
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- Xenotransplantation Engineering Research Center in Yunnan Province, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
De León LF, Silva B, Avilés-Rodríguez KJ, Buitrago-Rosas D. Harnessing the omics revolution to address the global biodiversity crisis. Curr Opin Biotechnol 2023; 80:102901. [PMID: 36773576 DOI: 10.1016/j.copbio.2023.102901] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Human disturbances are altering global biodiversity in unprecedented ways. We identify three fundamental challenges underpinning our understanding of global biodiversity (namely discovery, loss, and preservation), and discuss how the omics revolution (e.g. genomics, transcriptomics, proteomics, metabolomics, and meta-omics) can help address these challenges. We also discuss how omics tools can illuminate the major drivers of biodiversity loss, including invasive species, pollution, urbanization, overexploitation, and climate change, with a special focus on highly diverse tropical environments. Although omics tools are transforming the traditional toolkit of biodiversity research, their application to addressing the current biodiversity crisis remains limited and may not suffice to offset current rates of biodiversity loss. Despite technical and logistical challenges, omics tools need to be fully integrated into global biodiversity research, and better strategies are needed to improve their translation into biodiversity policy and practice. It is also important to recognize that although the omics revolution can be considered the biologist's dream, socioeconomic disparity limits their application in biodiversity research.
Collapse
Affiliation(s)
- Luis F De León
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| | - Bruna Silva
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kevin J Avilés-Rodríguez
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; Department of Biology, Fordham University, Bronx, NY, USA
| | | |
Collapse
|
5
|
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, Bombarely A, Crottini A, Gallo GR, Godoy JA, Jentoft S, Malukiewicz J, Mouton A, Oomen RA, Paez S, Palsbøll PJ, Pampoulie C, Ruiz-López MJ, Secomandi S, Svardal H, Theofanopoulou C, de Vries J, Waldvogel AM, Zhang G, Jarvis ED, Bálint M, Ciofi C, Waterhouse RM, Mazzoni CJ, Höglund J. How genomics can help biodiversity conservation. Trends Genet 2023:S0168-9525(23)00020-3. [PMID: 36801111 DOI: 10.1016/j.tig.2023.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
Collapse
Affiliation(s)
- Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Carlos Fernandes
- CE3C - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal
| | - Giulio Formenti
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Iliana Bista
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, The Netherlands; Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Paul R Berg
- NIVA - Norwegian Institute for Water Research, Økernveien, 94, 0579 Oslo, Norway; Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Christoph Bleidorn
- University of Göttingen, Department of Animal Evolution and Biodiversity, Untere Karspüle, 2, 37073, Göttingen, Germany
| | | | - Angelica Crottini
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Rua Padre Armando Quintas, 7, 4485-661, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | - José A Godoy
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Joanna Malukiewicz
- Primate Genetics Laborator, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Alice Mouton
- InBios - Conservation Genetics Lab, University of Liege, Chemin de la Vallée 4, 4000, Liege, Belgium
| | - Rebekah A Oomen
- Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Sadye Paez
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Per J Palsbøll
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh, 9747, AG, Groningen, The Netherlands; Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657, USA
| | - Christophe Pampoulie
- Marine and Freshwater Research Institute, Fornubúðir, 5,220, Hanafjörður, Iceland
| | - María J Ruiz-López
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Hannes Svardal
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Constantina Theofanopoulou
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA; Hunter College, City University of New York, NY, USA
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Ann-Marie Waldvogel
- Institute of Zoology, University of Cologne, Zülpicherstrasse 47b, D-50674, Cologne, Germany
| | - Guojie Zhang
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Erich D Jarvis
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Claudio Ciofi
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino, (FI) 50019, Italy
| | - Robert M Waterhouse
- University of Lausanne, Department of Ecology and Evolution, Le Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Camila J Mazzoni
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str 17, 10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Koenigin-Luise-Str 6-8, 14195 Berlin, Germany
| | - Jacob Höglund
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75246, Uppsala, Sweden.
| | | |
Collapse
|
6
|
Munstermann MJ, Heim NA, McCauley DJ, Payne JL, Upham NS, Wang SC, Knope ML. A global ecological signal of extinction risk in terrestrial vertebrates. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13852. [PMID: 34668599 PMCID: PMC9299904 DOI: 10.1111/cobi.13852] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 05/13/2023]
Abstract
To determine the distribution and causes of extinction threat across functional groups of terrestrial vertebrates, we assembled an ecological trait data set for 18,016 species of terrestrial vertebrates and utilized phylogenetic comparative methods to test which categories of habitat association, mode of locomotion, and feeding mode best predicted extinction risk. We also examined the individual categories of the International Union for Conservation of Nature Red List extinction drivers (e.g., agriculture and logging) threatening each species and determined the greatest threats for each of the four terrestrial vertebrate groups. We then quantified the sum of extinction drivers threatening each species to provide a multistressor perspective on threat. Cave dwelling amphibians (p < 0.01), arboreal quadrupedal mammals (all of which are primates) (p < 0.01), aerial and scavenging birds (p < 0.01), and pedal (i.e., walking) squamates (p < 0.01) were all disproportionately threatened with extinction in comparison with the other assessed ecological traits. Across all threatened vertebrate species in the study, the most common risk factors were agriculture, threatening 4491 species, followed by logging, threatening 3187 species, and then invasive species and disease, threatening 2053 species. Species at higher risk of extinction were simultaneously at risk from a greater number of threat types. If left unabated, the disproportionate loss of species with certain functional traits and increasing anthropogenic pressures are likely to disrupt ecosystem functions globally. A shift in focus from species- to trait-centric conservation practices will allow for protection of at-risk functional diversity from regional to global scales.
Collapse
Affiliation(s)
- Maya J. Munstermann
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| | - Noel A. Heim
- Department of Earth & Ocean SciencesTufts UniversityMedfordMassachusettsUSA
| | - Douglas J. McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Jonathan L. Payne
- Department of Geological SciencesStanford UniversityStanfordCaliforniaUSA
| | - Nathan S. Upham
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Steve C. Wang
- Department of Mathematics and StatisticsSwarthmore CollegeSwarthmorePennsylvaniaUSA
| | - Matthew L. Knope
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| |
Collapse
|
7
|
Bastos‐Pereira R, Chagas TRF, Carvalho DR, Rabello AM, Beiroz W, Tavares KP, Lima KCB, Rabelo LM, Valenzuela S, Correa CMA, Pompeu PS, Ribas CR. Are the functional diversity terms functional? The hindrances of functional diversity understanding in the Brazilian scientific community. Ecol Res 2022. [DOI: 10.1111/1440-1703.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Ananza Mara Rabello
- Universidade Federal de Lavras Campus Universitário Lavras Minas Gerais Brazil
- Universidade Federal do Sul e Sudeste do Pará, Instituto de Estudos do Xingu, Avenida Norte Sul São Félix do Xingu Pará Brazil
| | - Wallace Beiroz
- Universidade Federal de Lavras Campus Universitário Lavras Minas Gerais Brazil
- Universidade Federal do Sul e Sudeste do Pará, Instituto de Estudos do Xingu, Avenida Norte Sul São Félix do Xingu Pará Brazil
| | - Karla Palmieri Tavares
- Universidade Federal de Lavras Campus Universitário Lavras Minas Gerais Brazil
- Instituto Federal do Sul de Minas Gerais—Campus Machado, Rodovia Machado—Paraguaçu Machado Minas Gerais Brazil
| | | | - Lucas Mendes Rabelo
- Universidade Federal de Lavras Campus Universitário Lavras Minas Gerais Brazil
| | - Silvia Valenzuela
- Universidade Federal de Lavras Campus Universitário Lavras Minas Gerais Brazil
- Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos Lima Peru
| | - César M. A. Correa
- Universidade Federal de Lavras Campus Universitário Lavras Minas Gerais Brazil
- Departamento de Biologia e Zoologia, Bairro Boa Esperança Universidade Federal de Mato Grosso Mato Grosso Mato Grosso Brazil
| | - Paulo Santos Pompeu
- Universidade Federal de Lavras Campus Universitário Lavras Minas Gerais Brazil
| | - Carla Rodrigues Ribas
- Universidade Federal de Lavras Campus Universitário Lavras Minas Gerais Brazil
- Lancaster Environment Centre Lancaster University Lancaster UK
| |
Collapse
|
8
|
Coradini ALV, Hull CB, Ehrenreich IM. Building genomes to understand biology. Nat Commun 2020; 11:6177. [PMID: 33268788 PMCID: PMC7710724 DOI: 10.1038/s41467-020-19753-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic manipulation is one of the central strategies that biologists use to investigate the molecular underpinnings of life and its diversity. Thus, advances in genetic manipulation usually lead to a deeper understanding of biological systems. During the last decade, the construction of chromosomes, known as synthetic genomics, has emerged as a novel approach to genetic manipulation. By facilitating complex modifications to chromosome content and structure, synthetic genomics opens new opportunities for studying biology through genetic manipulation. Here, we discuss different classes of genetic manipulation that are enabled by synthetic genomics, as well as biological problems they each can help solve.
Collapse
Affiliation(s)
- Alessandro L V Coradini
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Cara B Hull
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA.
| |
Collapse
|
9
|
Creating proxies of extinct species: the bioethics of de-extinction. Emerg Top Life Sci 2020; 3:731-735. [PMID: 32915217 DOI: 10.1042/etls20190109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022]
Abstract
In April 2013 the National Geographic magazine carried the cover title 'Reviving extinct species, we can, but should we?' suggesting that the technical challenges had been met, but some ethical concerns remained unresolved. Seven years later it is clear that this is not the case. Here we consider the technical scope, the uncertainties, and some of the bioethical issues raised by the future prospect of de-extinction. Biodiversity and welfare will not always align, and when a clash is unavoidable, a trade-off will be necessary, seeking the greatest overall value. De-extinction challenges our current conservation mind-set that seeks to preserve the species and population diversity that currently exists. But if we want to sustain and enhance a biodiverse natural world we might have to be forward looking and embrace the notion of bio-novelty by focussing more on ecosystem stability and resilience, rather than backward looking and seeking to try and recreate lost worlds.
Collapse
|
10
|
Prescott SL, Bland JS. Spaceship Earth Revisited: The Co-Benefits of Overcoming Biological Extinction of Experience at the Level of Person, Place and Planet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041407. [PMID: 32098222 PMCID: PMC7068540 DOI: 10.3390/ijerph17041407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Extensive research underscores that we interpret the world through metaphors; moreover, common metaphors are a useful means to enhance the pursuit of personal and collective goals. In the context of planetary health—defined as the interdependent vitality of all natural and anthropogenic ecosystems (social, political and otherwise)—one enduring metaphor can be found in the concept of “Spaceship Earth”. Although not without criticism, the term “Spaceship Earth” has been useful to highlight both resource limitations and the beauty and fragility of delicate ecosystems that sustain life. Rene Dubos, who helped popularize the term, underscored the need for an exposome perspective, one that examines the total accumulated environmental exposures (both detrimental and beneficial) that predict the biological responses of the “total organism to the total environment” over time. In other words, how large-scale environmental changes affect us all personally, albeit in individualized ways. This commentary focuses the ways in which microbes, as an essential part of all ecosystems, provide a vital link between personal and planetary systems, and mediate the biopsychosocial aspects of our individualized experience—and thus health—over our life course journey. A more fine-grained understanding of these dynamics and our power to change them, personally and collectively, lies at the core of restoring “ecosystems balance” for person, place and planet. In particular, restoring human connectedness to the natural world, sense of community and shared purpose must occur in tandem with technological solutions, and will enhance individual empowerment for personal well-being, as well as our collective potential to overcome our grand challenges. Such knowledge can help shape the use of metaphor and re-imagine solutions and novel ways for restoration or rewilding of ecosystems, and the values, behaviors and attitudes to light the path toward exiting the Anthropocene.
Collapse
Affiliation(s)
- Susan L. Prescott
- The ORIGINS Project, Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ 10704, USA;
- Correspondence:
| | - Jeffrey S. Bland
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ 10704, USA;
- Personalized Lifestyle Medicine Institute, Tacoma, WA 98443, USA
| |
Collapse
|
11
|
Abstract
De-extinction projects for species such as the woolly mammoth and passenger pigeon have greatly stimulated public and scientific interest, producing a large body of literature and much debate. To date, there has been little consistency in descriptions of de-extinction technologies and purposes. In 2016, a special committee of the International Union for the Conservation of Nature (IUCN) published a set of guidelines for de-extinction practice, establishing the first detailed description of de-extinction; yet incoherencies in published literature persist. There are even several problems with the IUCN definition. Here I present a comprehensive definition of de-extinction practice and rationale that expounds and reconciles the biological and ecological inconsistencies in the IUCN definition. This new definition brings together the practices of reintroduction and ecological replacement with de-extinction efforts that employ breeding strategies to recover unique extinct phenotypes into a single “de-extinction” discipline. An accurate understanding of de-extinction and biotechnology segregates the restoration of certain species into a new classification of endangerment, removing them from the purview of de-extinction and into the arena of species’ recovery. I term these species as “evolutionarily torpid species”; a term to apply to species falsely considered extinct, which in fact persist in the form of cryopreserved tissues and cultured cells. For the first time in published literature, all currently active de-extinction breeding programs are reviewed and their progress presented. Lastly, I review and scrutinize various topics pertaining to de-extinction in light of the growing body of peer-reviewed literature published since de-extinction breeding programs gained public attention in 2013.
Collapse
|
12
|
Nagaoka L, Rick T, Wolverton S. The overkill model and its impact on environmental research. Ecol Evol 2018; 8:9683-9696. [PMID: 30386567 PMCID: PMC6202698 DOI: 10.1002/ece3.4393] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023] Open
Abstract
Research on human-environment interactions that informs ecological practices and guides conservation and restoration has become increasingly interdisciplinary over the last few decades. Fueled in part by the debate over defining a start date for the Anthropocene, historical disciplines like archeology, paleontology, geology, and history are playing an important role in understanding long-term anthropogenic impacts on the planet. Pleistocene overkill, the notion that humans overhunted megafauna near the end of the Pleistocene in the Americas, Australia, and beyond, is used as prime example of the impact that humans can have on the planet. However, the importance of the overkill model for explaining human-environment interactions and anthropogenic impacts appears to differ across disciplines. There is still considerable debate, particularly within archeology, about the extent to which people may have been the cause of these extinctions. To evaluate how different disciplines interpret and use the overkill model, we conducted a citation analysis of selected works of the main proponent of the overkill model, Paul Martin. We examined the ideas and arguments for which Martin's overkill publications were cited and how they differed between archeologists and ecologists. Archeologists cite overkill as one in a combination of causal mechanisms for the extinctions. In contrast, ecologists are more likely to accept that humans caused the extinctions. Aspects of the overkill argument are also treated as established ecological processes. For some ecologists, overkill provides an analog for modern-day human impacts and supports the argument that humans have "always" been somewhat selfish overconsumers. The Pleistocene rewilding and de-extinction movements are built upon these perspectives. The use of overkill in ecological publications suggests that despite increasing interdisciplinarity, communication with disciplines outside of ecology is not always reciprocal or even.
Collapse
Affiliation(s)
- Lisa Nagaoka
- Department of Geography and the EnvironmentUniversity of North TexasDentonTexas
| | - Torben Rick
- Department of AnthropologySmithsonian InstitutionNational Museum of Natural HistoryWashingtonDistrict of Columbia
| | - Steve Wolverton
- Department of Geography and the EnvironmentUniversity of North TexasDentonTexas
| |
Collapse
|
13
|
Diverse effects of the common hippopotamus on plant communities and soil chemistry. Oecologia 2018; 188:821-835. [DOI: 10.1007/s00442-018-4243-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
|
14
|
Campagna C, Guevara D, Le Boeuf B. De-scenting Extinction: The Promise of De-extinction May Hasten Continuing Extinctions. Hastings Cent Rep 2017; 47 Suppl 2:S48-S53. [PMID: 28746756 DOI: 10.1002/hast.752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among the most egregious and discouraging problems of conservation is the rapidly escalating human-caused species extinction rate. "De-extinction" refers to the application of certain cutting-edge techniques for the supposed recovery of lost species and gives the impression that scientists, enlightened and empowered by the miracles of technology, are coming to the rescue. "De-extinction" is the latest example of a long play of language that has given conservation efforts a tragically false sense of accomplishment and has worsened the conservation crisis. De-extinction is the tip of an intellectual iceberg that sits atop of a host of profoundly questionable value systems, expectations, attitudes, and priorities that elude and bewitch critical reflection. It gives the impression that extinction is reversible and, thus, diminishes the gravity of the human annihilation of species. Here, we examine how the language of de-extinction influences attitudes, shapes thoughts and imagination, and creates ethical blindness. The language developing around "de-extinction" reveals what is in fact a profound intellectual crisis at the foundation of conservation. The underlying challenge is to find the language that will articulate and inspire the radical and indispensable change needed to come to grips with the value of nature.
Collapse
|
15
|
Abstract
Critics often take conservationists to task for delivering a constant barrage of bad news without offering a compelling vision of the future. Could recent advances in synthetic biology-an optimistic, forward-looking field with a can-do attitude-let conservationists develop a new vision and generate some better news? Synthetic biology and related gene-editing applications could be used to address threats to species. Genetic interventions might also be used in plants to better protect biodiversity in U.S. rangelands and forests. One possibility has stood out in its ability to capture media attention and the public imagination-recreating extinct species. And perhaps a de-extinction story could counter the seemingly relentless negativity in biodiversity talk. De-extinction proponent Stewart Brand writes that resurrecting species could shift the "conservation story … from negative to positive, from constant whining and guilt-tripping to high fives and new excitement." So, why do many people in conservation oppose the de-extinction narrative? This essay is an inquiry into whether there are intrinsic social reactions to these types of conservation solutions that might offset their potential benefits. If genetic tools are to be applied to address conservation issues in a realistic and responsible way, their broader social-cultural implications deserve far more attention than they have so far received.
Collapse
|
16
|
Affiliation(s)
- Philip J. Seddon
- Department of Zoology University of Otago PO Box 56 Dunedin9015 New Zealand
| |
Collapse
|
17
|
Steeves TE, Johnson JA, Hale ML. Maximising evolutionary potential in functional proxies for extinct species: a conservation genetic perspective on de‐extinction. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12843] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tammy E. Steeves
- School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch8140 New Zealand
| | - Jeff A. Johnson
- Department of Biological Sciences and Institute of Applied Science University of North Texas 1155 Union Circle Denton TX76203 USA
| | - Marie L. Hale
- School of Biological Sciences University of Canterbury Private Bag 4800 Christchurch8140 New Zealand
| |
Collapse
|
18
|
Bennett JR, Maloney RF, Steeves TE, Brazill-Boast J, Possingham HP, Seddon PJ. Spending limited resources on de-extinction could lead to net biodiversity loss. Nat Ecol Evol 2017; 1:53. [DOI: 10.1038/s41559-016-0053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/13/2016] [Indexed: 01/30/2023]
|