1
|
Chhina AK, Abhari N, Mooers A, Lewthwaite JMM. Linking the spatial and genomic structure of adaptive potential for conservation management: a review. Genome 2024; 67:403-423. [PMID: 39083766 DOI: 10.1139/gen-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e., its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e., its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.
Collapse
Affiliation(s)
- Avneet K Chhina
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Niloufar Abhari
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Arne Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jayme M M Lewthwaite
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Mayekar HV, Rajpurohit S. No single rescue recipe: genome complexities modulate insect response to climate change. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101220. [PMID: 38848812 DOI: 10.1016/j.cois.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Declines in insect populations have gained formidable attention. Given their crucial role in the ecosystem, the causes of declining insect populations must be investigated. However, the insect clade has been associated with low extinction and high diversification rates. It is unlikely that insects underwent mass extinctions in the past. However, the pace of current climate change could make insect populations vulnerable to extinction. We propose genome size (GS) and transposable elements (TEs) to be rough estimates to assess extinction risk. Larger GS and/or proliferating TEs have been associated with adaptation in rapid climate change scenarios. We speculate that unstable, stressful environmental conditions are strongly associated with GS and TE expansion, which could be further correlated with adaptations. Alternately, stressful conditions trigger TE bursts that are not purged in smaller populations. GS and TE loads could be indicators of small effective populations in the wild, likely experiencing bottlenecks or drastic climatic perturbations, which calls for an urgent assessment of extinction risk.
Collapse
Affiliation(s)
- Harshad Vijay Mayekar
- Biological and Life Sciences, School of Arts of Sciences, Ahmedabad University, Ahmedabad 380009, India.
| | - Subhash Rajpurohit
- Biological and Life Sciences, School of Arts of Sciences, Ahmedabad University, Ahmedabad 380009, India.
| |
Collapse
|
3
|
Cowl VB, Comizzoli P, Appeltant R, Bolton RL, Browne RK, Holt WV, Penfold LM, Swegen A, Walker SL, Williams SA. Cloning for the Twenty-First Century and Its Place in Endangered Species Conservation. Annu Rev Anim Biosci 2024; 12:91-112. [PMID: 37988633 DOI: 10.1146/annurev-animal-071423-093523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Cloning as it relates to the animal kingdom generally refers to the production of genetically identical individuals. Because cloning is increasingly the subject of renewed attention as a tool for rescuing endangered or extinct species, it seems timely to dissect the role of the numerous reproductive techniques encompassed by this term in animal species conservation. Although cloning is typically associated with somatic cell nuclear transfer, the recent advent of additional techniques that allow genome replication without genetic recombination demands that the use of induced pluripotent stem cells to generate gametes or embryos, as well as older methods such as embryo splitting, all be included in this discussion. Additionally, the phenomenon of natural cloning (e.g., a subset of fish, birds, invertebrates, and reptilian species that reproduce via parthenogenesis) must also be pointed out. Beyond the biology of these techniques are practical considerations and the ethics of using cloning and associated procedures in endangered or extinct species. All of these must be examined in concert to determine whether cloning has a place in species conservation. Therefore, we synthesize progress in cloning and associated techniques and dissect the practical and ethical aspects of these methods as they pertain to endangered species conservation.
Collapse
Affiliation(s)
- Veronica B Cowl
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- European Association of Zoos and Aquaria, Amsterdam, The Netherlands
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA;
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium;
| | | | - Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize;
| | - William V Holt
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom;
| | - Linda M Penfold
- South East Zoo Alliance for Reproduction & Conservation, Yulee, Florida, USA;
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia;
| | - Susan L Walker
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
| | - Suzannah A Williams
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
4
|
Thompson LM, Thurman LL, Cook CN, Beever EA, Sgrò CM, Battles A, Botero CA, Gross JE, Hall KR, Hendry AP, Hoffmann AA, Hoving C, LeDee OE, Mengelt C, Nicotra AB, Niver RA, Pérez‐Jvostov F, Quiñones RM, Schuurman GW, Schwartz MK, Szymanski J, Whiteley A. Connecting research and practice to enhance the evolutionary potential of species under climate change. CONSERVATION SCIENCE AND PRACTICE 2023. [DOI: 10.1111/csp2.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Laura M. Thompson
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center and the University of Tennessee Knoxville Tennessee USA
| | | | - Carly N. Cook
- School of Biological Sciences Monash University Melbourne Australia
| | - Erik A. Beever
- USGS, Northern Rocky Mountain Science Center and Montana State University Bozeman Montana USA
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Australia
| | | | | | - John E. Gross
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | | | | | | | | | - Olivia E. LeDee
- USGS, Midwest Climate Adaptation Science Center Saint Paul Minnesota USA
| | | | | | - Robyn A. Niver
- U.S. Fish and Wildlife Service (USFWS), Branch of Listing and Policy Support Bailey's Crossroads Virginia USA
| | | | - Rebecca M. Quiñones
- Massachusetts Division of Fisheries and Wildlife Westborough Massachusetts USA
| | - Gregor W. Schuurman
- National Park Service (NPS) Climate Change Response Program Fort Collins Colorado USA
| | - Michael K. Schwartz
- U.S. Forest Service, National Genomics Center for Wildlife and Fish Conservation Missoula Montana USA
| | - Jennifer Szymanski
- USFWS, Branch of SSA Science Support, Division of Endangered Species Onalaska Wisconsin USA
| | | |
Collapse
|
5
|
Bosse M, van Loon S. Challenges in quantifying genome erosion for conservation. Front Genet 2022; 13:960958. [PMID: 36226192 PMCID: PMC9549127 DOI: 10.3389/fgene.2022.960958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Massive defaunation and high extinction rates have become characteristic of the Anthropocene. Genetic effects of population decline can lead populations into an extinction vortex, where declining populations show lower genetic fitness, in turn leading to lower populations still. The lower genetic fitness in a declining population due to a shrinking gene pool is known as genetic erosion. Three different types of genetic erosion are highlighted in this review: overall homozygosity, genetic load and runs of homozygosity (ROH), which are indicative of inbreeding. The ability to quantify genetic erosion could be a very helpful tool for conservationists, as it can provide them with an objective, quantifiable measure to use in the assessment of species at risk of extinction. The link between conservation status and genetic erosion should become more apparent. Currently, no clear correlation can be observed between the current conservation status and genetic erosion. However, the high quantities of genetic erosion in wild populations, especially in those species dealing with habitat fragmentation and habitat decline, may be early signs of deteriorating populations. Whole genome sequencing data is the way forward to quantify genetic erosion. Extra screening steps for genetic load and hybridization can be included, since they could potentially have great impact on population fitness. This way, the information yielded from genetic sequence data can provide conservationists with an objective genetic method in the assessment of species at risk of extinction. However, the great complexity of genome erosion quantification asks for consensus and bridging science and its applications, which remains challenging.
Collapse
Affiliation(s)
- Mirte Bosse
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Sam van Loon
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Freilij D, Ferreyra LI, Vilardi JC, Rodriguez AI, Gómez-Cendra P. Fine Scale Microevolutionary and Demographic Processes Shaping a Wild Metapopulation Dynamics of the South American Fruit Fly Anastrepha fraterculus. NEOTROPICAL ENTOMOLOGY 2022; 51:339-355. [PMID: 35103980 DOI: 10.1007/s13744-022-00944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Anastrepha fraterculus (Wiedmann) is an important American pest species. Knowledge of its population dynamics is of particular interest for ecology, evolutionary biology, and management programs. In the present study, phenotypic, genotypic, and spatial data were combined, within the frame of landscape genetics, to uncover the spatial population genetic structure (SGS) and demographic processes of an Argentinian local population from the Yungas ecoregion. Eight simple sequence repeats (SSR) loci and six morphometric traits were analysed considering the hierarchical levels: tree/fruit/individual. Genetic variability estimates were high (HE = 0.72, RA = 4.39). Multivariate analyses of phenotypic data showed that in average 52.81% of variance is explained by the tree level, followed by between individuals 28.37%. Spatial analysis of morphological traits revealed a negative autocorrelation in all cases. SGS analysis and isolation by distance based on SSR showed no significant autocorrelation for molecular coancestry. The comparison between phenotypic (PST) and molecular (FST) differentiation identified positive selection in different fruits for all traits. Bayesian analysis revealed a cryptic structure within the population, with three clusters spatially separated. The results of this study showed a metapopulation dynamics. The genetic background of the components of this metapopulation is expected to change through time due to seasonality, repopulation activities, and high gene flow, with an estimated dispersal ability of at least 10 km. Effective population size (Ne) of the metapopulation was estimated in around 800 flies, and within subpopulations (clusters) Ne was associated with the levels of genetic drift experienced by the founding lineages.
Collapse
Affiliation(s)
- Damián Freilij
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura I Ferreyra
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan C Vilardi
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angeles I Rodriguez
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Gómez-Cendra
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Gross R, Lovrenčić L, Jelić M, Grandjean F, Ðuretanović S, Simić V, Burimski O, Bonassin L, Groza MI, Maguire I. Genetic diversity and structure of the noble crayfish populations in the Balkan Peninsula revealed by mitochondrial and microsatellite DNA markers. PeerJ 2021; 9:e11838. [PMID: 34430076 PMCID: PMC8349172 DOI: 10.7717/peerj.11838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background The noble crayfish (Astacus astacus) is a native European species in decline, with a contracting range and diminishing populations and abundance. Previous studies revealed this species significant genetic diversity in the south-eastern Europe, with populations from the western and the southern part of the Balkan Peninsula being the most divergent. However, sampling of populations from the western part of the Balkans was limited and insufficient for investigating genetic diversity and population divergence for the purpose of conservation planning and management. Thus, the major aim of this study was to fill in this knowledge gap by studying mitochondrial and microsatellite DNA diversity, using 413 noble crayfish from 18 populations from waterbodies in the western part of the Balkan Peninsula. Methods Phylogenetic analysis of studied populations and their mitochondrial diversity were studied using COI and 16S sequences and population genetic structure was described using 15 microsatellite loci. Results Phylogeographic analysis revealed new divergent mitochondrial haplotypes for the populations in the westernmost part of the Balkan Peninsula in the tributaries of the Sava and Drava rivers. Microsatellite data indicated that these populations harbour an important component of genetic diversity within A. astacus. The results suggest that the western part of the Balkans played an important role as microrefugia during the Pleistocene climate fluctuations, allowing the long term persistence of A. astacus populations in this region. These results will also be important to supporting conservation decision making and planning.
Collapse
Affiliation(s)
- Riho Gross
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Leona Lovrenčić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mišel Jelić
- Department of Natural Sciences, Varaždin City Museum, Varaždin, Croatia
| | | | | | | | - Oksana Burimski
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Lena Bonassin
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Ivana Maguire
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Thompson CL, Alberti M, Barve S, Battistuzzi FU, Drake JL, Goncalves GC, Govaert L, Partridge C, Yang Y. Back to the future: Reintegrating biology to understand how past eco-evolutionary change can predict future outcomes. Integr Comp Biol 2021; 61:2218-2232. [PMID: 33964141 DOI: 10.1093/icb/icab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: 1) utilizing knowledge of biological systems to better inform eco-evolutionary models, 2) generating models with more accurate predictions, and 3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.
Collapse
Affiliation(s)
| | - Marina Alberti
- Department of Urban Design and Planning, University of Washington,
| | - Sahas Barve
- Smithsonian National Museum of Natural History,
| | | | - Jeana L Drake
- Department of Earth, Planetary, and Space Sciences, University of California Los Angeles,
| | | | - Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies, University of Zurich; Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, URPP Global Change and Biodiversity, University of Zurich,
| | | | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota,
| |
Collapse
|
9
|
Prendergast KS. Critiquing the notion of a species natural range in an era of unprecedented change. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kit S. Prendergast
- School of Molecular and Life Sciences; Curtin University; Kent Street, Perth Bentley Western Australia 6102 Australia
| |
Collapse
|
10
|
Jørgensen PS, Folke C, Carroll SP. Evolution in the Anthropocene: Informing Governance and Policy. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Anthropocene biosphere constitutes an unprecedented phase in the evolution of life on Earth with one species, humans, exerting extensive control. The increasing intensity of anthropogenic forces in the twenty-first century has widespread implications for attempts to govern both human-dominated ecosystems and the last remaining wild ecosystems. Here, we review how evolutionary biology can inform governance and policies in the Anthropocene, focusing on five governance challenges that span biodiversity, environmental management, food and other biomass production, and human health. The five challenges are: ( a) evolutionary feedbacks, ( b) maintaining resilience, ( c) alleviating constraints, ( d) coevolutionary disruption, and ( e) biotechnology. Strategies for governing these dynamics will themselves have to be coevolutionary, as eco-evolutionary and social dynamics change in response to each other.
Collapse
Affiliation(s)
- Peter Søgaard Jørgensen
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE104-05 Stockholm, Sweden;,
- Stockholm Resilience Centre, Stockholm University, SE106-91 Stockholm, Sweden
| | - Carl Folke
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE104-05 Stockholm, Sweden;,
- Stockholm Resilience Centre, Stockholm University, SE106-91 Stockholm, Sweden
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, SE104-05 Stockholm, Sweden
| | - Scott P. Carroll
- Institute for Contemporary Evolution, Davis, California 95616, USA
- Department of Entomology and Nematology, University of California, Davis, California 95616, USA
| |
Collapse
|
11
|
Abstract
De-extinction projects for species such as the woolly mammoth and passenger pigeon have greatly stimulated public and scientific interest, producing a large body of literature and much debate. To date, there has been little consistency in descriptions of de-extinction technologies and purposes. In 2016, a special committee of the International Union for the Conservation of Nature (IUCN) published a set of guidelines for de-extinction practice, establishing the first detailed description of de-extinction; yet incoherencies in published literature persist. There are even several problems with the IUCN definition. Here I present a comprehensive definition of de-extinction practice and rationale that expounds and reconciles the biological and ecological inconsistencies in the IUCN definition. This new definition brings together the practices of reintroduction and ecological replacement with de-extinction efforts that employ breeding strategies to recover unique extinct phenotypes into a single “de-extinction” discipline. An accurate understanding of de-extinction and biotechnology segregates the restoration of certain species into a new classification of endangerment, removing them from the purview of de-extinction and into the arena of species’ recovery. I term these species as “evolutionarily torpid species”; a term to apply to species falsely considered extinct, which in fact persist in the form of cryopreserved tissues and cultured cells. For the first time in published literature, all currently active de-extinction breeding programs are reviewed and their progress presented. Lastly, I review and scrutinize various topics pertaining to de-extinction in light of the growing body of peer-reviewed literature published since de-extinction breeding programs gained public attention in 2013.
Collapse
|
12
|
Affiliation(s)
- Philip J. Seddon
- Department of Zoology University of Otago PO Box 56 Dunedin9015 New Zealand
| |
Collapse
|
13
|
McCauley DJ, Hardesty‐Moore M, Halpern BS, Young HS. A mammoth undertaking: harnessing insight from functional ecology to shape de‐extinction priority setting. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Douglas J. McCauley
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara CA93106 USA
| | - Molly Hardesty‐Moore
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara CA93106 USA
| | - Benjamin S. Halpern
- Bren School of Environmental Science & Management University of California Santa Barbara CA93106 USA
- National Center for Ecological Analysis and Synthesis University of California 735 State St. Suite 300 Santa Barbara CA93101 USA
- Imperial College London Silwood Park Campus Buckhurst Rd AscotSL57PY UK
| | - Hillary S. Young
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara CA93106 USA
| |
Collapse
|
14
|
Affiliation(s)
- Alexandre Robert
- UMR 7204 MNHN‐CNRS‐UPMC Centre d'Ecologie et des Sciences de la Conservation Muséum National d'Histoire Naturelle 43, Rue Buffon 75005 Paris France
| | - Charles Thévenin
- UMR 7204 MNHN‐CNRS‐UPMC Centre d'Ecologie et des Sciences de la Conservation Muséum National d'Histoire Naturelle 43, Rue Buffon 75005 Paris France
| | - Karine Princé
- UMR 7204 MNHN‐CNRS‐UPMC Centre d'Ecologie et des Sciences de la Conservation Muséum National d'Histoire Naturelle 43, Rue Buffon 75005 Paris France
| | - François Sarrazin
- UPMC Univ Paris 06 Muséum National d'Histoire Naturelle CNRS CESCO UMR 7204 Sorbonne Universités 75005 Paris France
| | - Joanne Clavel
- UMR 7204 MNHN‐CNRS‐UPMC Centre d'Ecologie et des Sciences de la Conservation Muséum National d'Histoire Naturelle 43, Rue Buffon 75005 Paris France
| |
Collapse
|
15
|
Iacona G, Maloney RF, Chadès I, Bennett JR, Seddon PJ, Possingham HP. Prioritizing revived species: what are the conservation management implications of de‐extinction? Funct Ecol 2016. [DOI: 10.1111/1365-2435.12720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gwenllian Iacona
- ARC Centre of Excellence for Environmental Decisions School of Biological Sciences University of Queensland Goddard Building 8, St Lucia Qld 4072 Australia
| | - Richard F. Maloney
- Science and Policy Group Department of Conservation Private Bag 4715 Christchurch Mail Centre, Christchurch 8140 New Zealand
| | | | - Joseph R. Bennett
- Department of Biology Carleton University 209 Nesbitt Biology Bldg, 1125 Colonel by Drive Ottawa ON K1S 5B6 Canada
| | - Philip J. Seddon
- Department of Zoology University of Otago 340 Great King Street, PO Box 56 Dunedin 9054 New Zealand
| | - Hugh P. Possingham
- ARC Centre of Excellence for Environmental Decisions School of Biological Sciences University of Queensland Goddard Building 8, St Lucia Qld 4072 Australia
| |
Collapse
|