1
|
Yeung HTG, Caley A, Mayer-Pinto M. Artificial light at night reduces predation and herbivory rates in a nearshore reef. MARINE ENVIRONMENTAL RESEARCH 2024; 204:106908. [PMID: 39700751 DOI: 10.1016/j.marenvres.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Artificial light at night (ALAN) is an escalating anthropogenic stressor that can affect ecological communities over a range of spatial scales by altering key ecological processes, such as predation and herbivory. Shallow subtidal reefs are highly diverse and productive habitats that are vulnerable to ALAN. We investigated rates of consumption by fish (predation and herbivory) under different light treatments (ALAN, dark and daylight conditions) using standardised bioassay methods, i.e. squidpops and Ulva pops in situ. We also used GoPros to record predator identity, number of strikes and time to strike in ALAN and daylight treatments. Contrary to previous studies, we found that predation and herbivory rates were significantly lower in ALAN treatments than in daytime and dark treatments. The highest predation and herbivory rates were observed in daytime treatments. The identity of predator species, time to strike and number of strikes also differed between daytime and ALAN treatments. Due to low light conditions, dark treatments were not filmed. Our findings suggest that ALAN can alter predation in unexpected ways, depending on the environmental conditions and species affected. Future coastal management strategies need to account for light pollution as a major stressor to preserve valuable ecological resources.
Collapse
Affiliation(s)
- Hei Tung Gabrielle Yeung
- Centre for Marine Science and Innovation, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Amelia Caley
- Centre for Marine Science and Innovation, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mariana Mayer-Pinto
- Centre for Marine Science and Innovation, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
2
|
Caley A, Marzinelli EM, Byrne M, Mayer‐Pinto M. Antagonistic Effects of Light Pollution and Warming on Habitat-Forming Seaweeds. Ecol Evol 2024; 14:e70420. [PMID: 39421325 PMCID: PMC11483544 DOI: 10.1002/ece3.70420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Artificial Light at Night (ALAN) is an emerging global stressor that is likely to interact with other stressors such as warming, affecting habitat-forming species and ecological functions. Seaweeds are dominant habitat-forming species in temperate marine ecosystems, where they support primary productivity and diverse ecological communities. Warming is a major stressor affecting seaweed forests, but effects of ALAN on seaweeds are largely unknown. We manipulated ALAN (0 lx vs. 25 lx at night) and temperature (ambient vs. +1.54°C warming) to test their independent and interactive effects on the survival, growth (biomass, total-, blade- and stipe-length) and function (photosynthesis, primary productivity and respiration) on the juveniles of two habitat-forming seaweeds, the kelp Ecklonia radiata and the fucoid Sargassum sp. Warming significantly increased Ecklonia mortality; however, ALAN did not affect mortality. ALAN had positive effects on Ecklonia biomass, total and blade growth rates and gross primary productivity; however, warming largely counterbalanced these effects. We found no significant effects of warming or ALAN on Ecklonia photosynthetic yield, stipe length, net primary productivity or respiration rates. We found no effects of ALAN or warming on Sargassum for any of the measured variables. Synthesis. Our findings indicate that ALAN can have positive effects on seaweed growth and functioning, but such effects are likely species-specific and can be counterbalanced by warming, suggesting an antagonistic interaction between these global stressors. These findings can help us to predict and manage the effects of these stressors on seaweeds, which underpin coastal biodiversity.
Collapse
Affiliation(s)
- Amelia Caley
- Centre for Marine Science and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Maria Byrne
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Mariana Mayer‐Pinto
- Centre for Marine Science and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
3
|
Sanna G, Domenici P, Maggi E. Artificial light at night alters the locomotor behavior of the Mediterranean sea urchin Paracentrotus lividus. MARINE POLLUTION BULLETIN 2024; 206:116782. [PMID: 39096864 DOI: 10.1016/j.marpolbul.2024.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Artificial light at night (ALAN) is a recognized source of anthropogenic disturbance, although its effects on biological systems have not been fully explored. Within marine ecosystems, coastal areas are the most impacted by ALAN. Here, we focused on the Mediterranean sea urchin Paracentrotus lividus, which has a crucial role in shaping benthic ecosystems. Our objective was to investigate if ALAN affects the nocturnal locomotor behavior of P. lividus. A semi-controlled field study was conducted along a rocky shore near a promenade lit at night. Results suggested a potential impact of ALAN on the locomotor behavior of sea urchins. Individuals of P. lividus tended to move away from the light sources while its directions in dark conditions were uniform. Their locomotor performance, in presence of ALAN, was characterized by shorter latency time, lower sinuosity and higher mean speed at increasing light intensity, with potential cascading effect at the ecosystem level.
Collapse
Affiliation(s)
- Giorgia Sanna
- Dipartimento di Biologia, CoNISMa, Università di Pisa, via Derna No.1, Pisa 56126, Italy
| | - Paolo Domenici
- IBF-CNR, Consiglio Nazionale delle Ricerche, Area di Ricerca San Cataldo, via G. Moruzzi No.1, Pisa 56124, Italy
| | - Elena Maggi
- Dipartimento di Biologia, CoNISMa, Università di Pisa, via Derna No.1, Pisa 56126, Italy.
| |
Collapse
|
4
|
Roux C, Madru C, Millan Navarro D, Jan G, Mazzella N, Moreira A, Vedrenne J, Carassou L, Morin S. Impact of urban pollution on freshwater biofilms: Oxidative stress, photosynthesis and lipid responses. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134523. [PMID: 38723485 DOI: 10.1016/j.jhazmat.2024.134523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Urban ecosystems are subjected to multiple anthropogenic stresses, which impact aquatic communities. Artificial light at night (ALAN) for instance can significantly alter the composition of algal communities as well as the photosynthetic cycles of autotrophic organisms, possibly leading to cellular oxidative stress. The combined effects of ALAN and chemical contamination could increase oxidative impacts in aquatic primary producers, although such combined effects remain insufficiently explored. To address this knowledge gap, a one-month experimental approach was implemented under controlled conditions to elucidate effects of ALAN and dodecylbenzyldimethylammonium chloride (DDBAC) on aquatic biofilms. DDBAC is a biocide commonly used in virucidal products, and is found in urban aquatic ecosystems. The bioaccumulation of DDBAC in biofilms exposed or not to ALAN was analyzed. The responses of taxonomic composition, photosynthetic activity, and fatty acid composition of biofilms were examined. The results indicate that ALAN negatively affects photosynthetic yield and chlorophyll production of biofilms. Additionally, exposure to DDBAC at environmental concentrations induces lipid peroxidation, with an increase of oxylipins. This experimental study provides first insights on the consequences of ALAN and DDBAC for aquatic ecosystems. It also opens avenues for the identification of new biomarkers that could be used to monitor urban pollution impacts in natural environments.
Collapse
Affiliation(s)
- Caroline Roux
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France.
| | - Cassandre Madru
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | | | - Gwilherm Jan
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Nicolas Mazzella
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon 33140, France
| | - Aurélie Moreira
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France; Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon 33140, France
| | - Jacky Vedrenne
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Laure Carassou
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| | - Soizic Morin
- INRAE, UR EABX, 50 avenue de Verdun, 33612 Cestas cedex, France
| |
Collapse
|
5
|
Trethewy M, Mayer-Pinto M, Dafforn KA. Urban shading and artificial light at night alter natural light regimes and affect marine intertidal assemblages. MARINE POLLUTION BULLETIN 2023; 193:115203. [PMID: 37392591 DOI: 10.1016/j.marpolbul.2023.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Urban development in many coastal cities has resulted in altered natural light regimes, with many coastal habitats being artificially shaded during the daytime by built structures such as seawalls and piers, while artificial light emitted from buildings and associated infrastructure creates pollution at night. As a result, these habitats may experience changes to community structure and impacts on key ecological processes such as grazing. This study investigated how changes to light regimes affect the abundance of grazers on natural and artificial intertidal habitats in Sydney Harbour, Australia. We also examined whether differences in patterns of responses to shading or artificial light at night (ALAN) varied across different areas within the Harbour, characterised by different overall levels of urbanisation. As predicted, light intensity was greater during the daytime on rocky shores than seawalls at the more urbanised sites of the harbour. We found a negative relationship between the abundance of grazers and increasing light during the daytime on rocky shores (inner harbour) and seawalls (outer harbour). We found similar patterns at night on rocky shores, with a negative relationship between the abundance of grazers and light. However, on seawalls, grazer abundances increased with increasing night-time lux levels, but this was mainly driven by one site. Overall, we found the opposite patterns for algal cover. Our findings corroborate those of previous studies that found that urbanisation can significantly affect natural light cycles, with consequences to ecological communities.
Collapse
Affiliation(s)
- Megan Trethewy
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Mariana Mayer-Pinto
- Centrefor Marine Science and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Katherine A Dafforn
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
6
|
Dalle Carbonare L, Basile A, Rindi L, Bulleri F, Hamedeh H, Iacopino S, Shukla V, Weits DA, Lombardi L, Sbrana A, Benedetti-Cecchi L, Giuntoli B, Licausi F, Maggi E. Dim artificial light at night alters gene expression rhythms and growth in a key seagrass species (Posidonia oceanica). Sci Rep 2023; 13:10620. [PMID: 37391536 PMCID: PMC10313690 DOI: 10.1038/s41598-023-37261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Artificial light at night (ALAN) is a globally spreading anthropogenic stressor, affecting more than 20% of coastal habitats. The alteration of the natural light/darkness cycle is expected to impact the physiology of organisms by acting on the complex circuits termed as circadian rhythms. Our understanding of the impact of ALAN on marine organisms is lagging behind that of terrestrial ones, and effects on marine primary producers are almost unexplored. Here, we investigated the molecular and physiological response of the Mediterranean seagrass, Posidonia oceanica (L.) Delile, as model to evaluate the effect of ALAN on seagrass populations established in shallow waters, by taking advantage of a decreasing gradient of dim nocturnal light intensity (from < 0.01 to 4 lx) along the NW Mediterranean coastline. We first monitored the fluctuations of putative circadian-clock genes over a period of 24 h along the ALAN gradient. We then investigated whether key physiological processes, known to be synchronized with day length by the circadian rhythm, were also affected by ALAN. ALAN influenced the light signalling at dusk/night in P. oceanica, including that of shorter blue wavelengths, through the ELF3-LUX1-ZTL regulatory network, and suggested that the daily perturbation of internal clock orthologs in seagrass might have caused the recruitment of PoSEND33 and PoPSBS genes to mitigate the repercussions of a nocturnal stress on photosynthesis during the day. A long-lasting impairment of gene fluctuations in sites characterised by ALAN could explain the reduced growth of the seagrass leaves when these were transferred into controlled conditions and without lighting during the night. Our results highlight the potential contribution of ALAN to the global loss of seagrass meadows, posing questions about key interactions with a variety of other human-related stressors in urban areas, in order to develop more efficient strategies to globally preserve these coastal foundation species.
Collapse
Affiliation(s)
- L Dalle Carbonare
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy.
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - A Basile
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - L Rindi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - F Bulleri
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - H Hamedeh
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - S Iacopino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - V Shukla
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - D A Weits
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
| | - L Lombardi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - A Sbrana
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - L Benedetti-Cecchi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - B Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 56127, Pisa, Italy
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - F Licausi
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - E Maggi
- Dipartimento di Biologia, Universita' di Pisa, CoNISMa, Via Luca Ghini 13, 56126, Pisa, Italy.
| |
Collapse
|
7
|
Duarte C, Quintanilla-Ahumada D, Anguita C, Silva-Rodriguez EA, Manríquez PH, Widdicombe S, Pulgar J, Miranda C, Jahnsen-Guzmán N, Quijón PA. Field experimental evidence of sandy beach community changes in response to artificial light at night (ALAN). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162086. [PMID: 36764536 DOI: 10.1016/j.scitotenv.2023.162086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Artificial light at night (ALAN) is a pervasive but still under-recognized driver of global change. In coastal settings, a large majority of the studies assessing ALAN impacts has focused on individual species, even though it is unclear whether results gathered from single species can be used to predict community-wide responses. Similarly, these studies often treat species as single life-stage entities, ignoring the variation associated with distinct life stages. This study addresses both limitations by focusing on the effects of ALAN on a sandy beach community consisting of species with distinct early- and late-life stages. Our hypothesis was that ALAN alters community structure and these changes are mediated by individual species and also by their ontogenetic stages. A field experiment was conducted in a sandy beach of north-central Chile using an artificial LED system. Samples were collected at different night hours (8-levels in total) across the intertidal (9-levels) over several days in November and January (austral spring and summer seasons). The abundance of adults of all species was significantly lower in ALAN treatments. Early stages of isopods showed the same pattern, but the opposite was observed for the early stages of the other two species. Clear differences were detected in the zonation of these species during natural darkness versus those exposed to ALAN, with some adult-juvenile differences in this response. These results support our hypothesis and document a series of changes affecting differentially both early and late life stages of these species, and ultimately, the structure of the entire community. Although the effects described correspond to short-term responses, more persistent effects are likely to occur if ALAN sources become established as permanent features in sandy beaches. The worldwide growth of ALAN suggests that the scope of its effect will continue to grow and represents a concern for sandy beach systems.
Collapse
Affiliation(s)
- Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Cristóbal Anguita
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Eduardo A Silva-Rodriguez
- Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, Chile
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Miranda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Nicole Jahnsen-Guzmán
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad, Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
8
|
Bauer F, Ritter M, Šiljeg A, Gretschel G, Lenz M. Effects of artificial light at night on the feeding behaviour of three marine benthic grazers from the Adriatic Sea are species-specific and mostly short-lived. MARINE POLLUTION BULLETIN 2022; 185:114303. [PMID: 36395715 DOI: 10.1016/j.marpolbul.2022.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Artificial light at night (ALAN) has the potential to change the day-night activity of marine benthic grazers, and can therefore alter the top-down control they exert on macroalgal communities. In laboratory experiments, we investigated the influence of three realistic ALAN regimes on food consumption and feeding rhythmicity in the sea urchins Arbacia lixula and Paracentrotus lividus as well as in the snail Cerithium spp. from the Adriatic Sea. Food consumption was assessed in assays with algal pellets, while feeding rhythms were documented with 24 h time-lapse photography. Both was done in ALAN-acclimated and in non-acclimated animals. We observed temporary and potential long-term changes in the feeding rhythms of Cerithium spp. and Paracentrotus lividus, respectively, but found no lasting influence of ALAN on consumption rates. Effects were weaker when ALAN was applied only part-night, which suggests a possible mitigation measure to reduce the impact of nighttime lighting on coastal ecosystems.
Collapse
Affiliation(s)
- Franz Bauer
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | - Marie Ritter
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Anamarija Šiljeg
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Gerwin Gretschel
- Meeresschule Pula (Morska Škola Valsaline), Marine Education Center, Valsaline 31, 52100 Pula, Croatia
| | - Mark Lenz
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
9
|
Marangoni LFB, Davies T, Smyth T, Rodríguez A, Hamann M, Duarte C, Pendoley K, Berge J, Maggi E, Levy O. Impacts of artificial light at night in marine ecosystems-A review. GLOBAL CHANGE BIOLOGY 2022; 28:5346-5367. [PMID: 35583661 PMCID: PMC9540822 DOI: 10.1111/gcb.16264] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 06/10/2023]
Abstract
The globally widespread adoption of Artificial Light at Night (ALAN) began in the mid-20th century. Yet, it is only in the last decade that a renewed research focus has emerged into its impacts on ecological and biological processes in the marine environment that are guided by natural intensities, moon phase, natural light and dark cycles and daily light spectra alterations. The field has diversified rapidly from one restricted to impacts on a handful of vertebrates, to one in which impacts have been quantified across a broad array of marine and coastal habitats and species. Here, we review the current understanding of ALAN impacts in diverse marine ecosystems. The review presents the current state of knowledge across key marine and coastal ecosystems (sandy and rocky shores, coral reefs and pelagic) and taxa (birds and sea turtles), introducing how ALAN can mask seabird and sea turtle navigation, cause changes in animals predation patterns and failure of coral spawning synchronization, as well as inhibition of zooplankton Diel Vertical Migration. Mitigation measures are recommended, however, while strategies for mitigation were easily identified, barriers to implementation are poorly understood. Finally, we point out knowledge gaps that if addressed would aid in the prediction and mitigation of ALAN impacts in the marine realm.
Collapse
Affiliation(s)
- Laura F. B. Marangoni
- Smithsonian Tropical Research InstituteSmithsonian InstitutionCiudad de PanamáPanamá
| | - Thomas Davies
- School of Biological and Marine SciencesUniversity of PlymouthPlymouthDevonUK
| | - Tim Smyth
- Plymouth Marine Laboratory, Prospect PlacePlymouthDevonUK
| | - Airam Rodríguez
- Grupo de Ornitología e Historia Natural de las islas Canarias, GOHNICBuenavista del NorteCanary IslandsSpain
- Terrestrial Ecology Group, Department of EcologyUniversidad Autónoma de MadridMadridSpain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM)Universidad Autónoma de MadridMadridSpain
| | - Mark Hamann
- College of Science and Engineering, Marine BiologyJames Cook UniversityTownsvilleAustralia
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | | | - Jørgen Berge
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
- University Centre in SvalbardLongyearbyenNorway
- Department of Biology and Technology, Centre of Autonomous Marine Operations and SystemsNorwegian University of Science and TechnologyTrondheimNorway
| | - Elena Maggi
- Dip. di Biologia, CoNISMaUniversità di PisaPisaItaly
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
- The Interuniversity Institute for Marine Sciences, The H. Steinitz Marine Biology LaboratoryEilatIsrael
| |
Collapse
|
10
|
Monitoring Light Pollution with an Unmanned Aerial Vehicle: A Case Study Comparing RGB Images and Night Ground Brightness. REMOTE SENSING 2022. [DOI: 10.3390/rs14092052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are several tools and methods to quantify light pollution due to direct or reflected light emitted towards the sky. Unmanned aerial vehicles (UAV) are still rarely used in light pollution studies. In this study, a digital camera and a sky quality meter mounted on a UAV have been used to study the relationship between indices computed on night images and night ground brightness (NGB) measured by an optical device pointed downward towards the ground. Both measurements were taken simultaneously during flights at an altitude of 70 and 100 m, and with varying exposure time. NGB correlated significantly both with the brightness index (−0.49 ÷ −0.56) and with red (−0.52 ÷ −0.58) and green band indices (−0.42 ÷ −0.58). A linear regression model based on the luminous intensity index was able to estimate observed NGB with an RMSE varying between 0.21 and 0.46 mpsas. Multispectral analysis applied to images taken at 70 m showed that increasing exposure time might cause a saturation of the colors of the image, especially in the red band, that worsens the correlation between image indices and NGB. Our study suggests that the combined use of low cost devices such as UAV and a sky quality meter can be used for assessing hotspot areas of light pollution originating from the surface.
Collapse
|
11
|
Hölker F, Bolliger J, Davies TW, Giavi S, Jechow A, Kalinkat G, Longcore T, Spoelstra K, Tidau S, Visser ME, Knop E. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.767177] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night (ALAN) is closely associated with modern societies and is rapidly increasing worldwide. A dynamically growing body of literature shows that ALAN poses a serious threat to all levels of biodiversity—from genes to ecosystems. Many “unknowns” remain to be addressed however, before we fully understand the impact of ALAN on biodiversity and can design effective mitigation measures. Here, we distilled the findings of a workshop on the effects of ALAN on biodiversity at the first World Biodiversity Forum in Davos attended by several major research groups in the field from across the globe. We argue that 11 pressing research questions have to be answered to find ways to reduce the impact of ALAN on biodiversity. The questions address fundamental knowledge gaps, ranging from basic challenges on how to standardize light measurements, through the multi-level impacts on biodiversity, to opportunities and challenges for more sustainable use.
Collapse
|
12
|
Reviewing the Role of Outdoor Lighting in Achieving Sustainable Development Goals. SUSTAINABILITY 2021. [DOI: 10.3390/su132212657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Sustainable Development Goals (SDGs) aim at providing a healthier planet for present and future generations. At the most recent SDG summit held in 2019, Member States recognized that the achievements accomplished to date have been insufficient to achieve this mission. This paper presents a comprehensive literature review of 227 documents contextualizing outdoor lighting with SDGs, showing its potential to resolve some existing issues related to the SDG targets. From a list of 17 goals, six SDGs were identified to have relevant synergies with outdoor lighting in smart cities, including SDG 3 (Good health and well-being), SDG 11 (Sustainable cities and communities), SDG 14 (Life below water) and SDG 15 (Life on land). This review also links efficient lighting roles partially with SDG 7 (Affordable and clean energy) and SDG 13 (Climate action) through Target 7.3 and Target 13.2, respectively. This paper identifies outdoor lighting as a vector directly impacting 16 of the 50 targets in the six SDGs involved. Each section in this review discusses the main aspects of outdoor lighting by a human-centric, energy efficiency and environmental impacts. Each aspect addresses the most recent studies contributing to lighting solutions in the literature, helping us to understand the positive and negative impacts of artificial lighting on living beings. In addition, the work summarizes the proposed solutions and results tackling specific topics impacting SDG demands.
Collapse
|
13
|
Adams AE, Besozzi EM, Shahrokhi G, Patten MA. A case for associational resistance: Apparent support for the stress gradient hypothesis varies with study system. Ecol Lett 2021; 25:202-217. [PMID: 34775662 DOI: 10.1111/ele.13917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
According to the stress gradient hypothesis (SGH), ecological interactions between organisms shift positively as environmental stress increases. In the case of associational resistance, habitat is modified to ameliorate stress, benefitting other organisms. The SGH is contentious due to conflicting evidence and theoretical perspectives, so we adopted a meta-analytic approach to determine if it is widely supported across a variety of contexts, including different kingdoms, ecosystems, habitats, interactions, stressors, and life history stages. We developed an extensive list of Boolean search criteria to search the published ecological literature and successfully detect studies that both directly tested the hypothesis, and those that were relevant but never mentioned it. We found that the SGH is well supported by studies that feature bacteria, plants, terrestrial ecosystems, interspecific negative interactions, adults, survival instead of growth or reproduction, and drought, fire, and nutrient stress. We conclude that the SGH is indeed a broadly relevant ecological hypothesis that is currently held back by cross-disciplinary communication barriers. More SGH research is needed beyond the scope of interspecific plant competition, and more SGH research should feature multifactor stress. There remains a need to account for positive interactions in scientific pursuits, such as associational resistance in tests of the SGH.
Collapse
Affiliation(s)
- Amy E Adams
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | | | - Golya Shahrokhi
- Oklahoma Biological Survey, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael A Patten
- Ecology Research Group, Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| |
Collapse
|
14
|
Hey MH, Epstein HE, Haynes KJ. Artificial Light at Night Impacts the Litter Layer Invertebrate Community With No Cascading Effects on Litter Breakdown. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Artificial light at night (ALAN) can impact the trophic structure of assemblages of ground-dwelling invertebrates, and changes in such assemblages can affect decomposition in terrestrial systems due to the various functional roles of these invertebrates, including microbial grazing, comminution of litter, and predation of other invertebrates, that can directly or indirectly affect plant-litter breakdown. Despite this, we are unaware of any studies that have evaluated the effects of ALAN on the breakdown of plant litter in a terrestrial ecosystem. We sought to answer whether ALAN affects litter breakdown via its effects on a community of ground-dwelling arthropods using two field experiments. In one experiment, we manipulated the presence of ALAN and the size classes of soil invertebrates that could enter mesh bags containing plant litter (litterbags). We found that the rate of plant-litter breakdown increased with the mesh size of litterbags but was unaffected by presence of ALAN. In a second field experiment carried out to examine the effects of ALAN on the trophic structure of litter-layer invertebrate communities, while controlling for potential effects of ALAN on vegetation, we again found that ALAN did not affect litter breakdown despite the fact that ALAN increased the abundances of secondary and tertiary consumers. Our finding that larger assemblages of ground-dwelling secondary and tertiary consumer invertebrates under ALAN did not slow litter breakdown through increased top-down control of detritivores suggests ALAN may disrupt predator-prey interactions in litter-layer communities.
Collapse
|
15
|
Robinson JM, Cameron R, Parker B. The Effects of Anthropogenic Sound and Artificial Light Exposure on Microbiomes: Ecological and Public Health Implications. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.662588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Globally, anthropogenic sound and artificial light pollution have increased to alarming levels. Evidence suggests that these can disrupt critical processes that impact ecosystems and human health. However, limited focus has been given to the potential effects of sound and artificial light pollution on microbiomes. Microbial communities are the foundations of our ecosystems. They are essential for human health and provide myriad ecosystem services. Therefore, disruption to microbiomes by anthropogenic sound and artificial light could have important ecological and human health implications. In this mini-review, we provide a critical appraisal of available scientific literature on the effects of anthropogenic sound and light exposure on microorganisms and discuss the potential ecological and human health implications. Our mini-review shows that a limited number of studies have been carried out to investigate the effects of anthropogenic sound and light pollution on microbiomes. However, based on these studies, it is evident that anthropogenic sound and light pollution have the potential to significantly influence ecosystems and human health via microbial interactions. Many of the studies suffered from modest sample sizes, suboptimal experiments designs, and some of the bioinformatics approaches used are now outdated. These factors should be improved in future studies. This is an emerging and severely underexplored area of research that could have important implications for global ecosystems and public health. Finally, we also propose the photo-sonic restoration hypothesis: does restoring natural levels of light and sound help to restore microbiomes and ecosystem stability?
Collapse
|
16
|
Nuñez JD, Sbragaglia V, Spivak ED, Chiaradia NM, Luppi TA. The magnitude of behavioural responses to artificial light at night depends on the ecological context in a coastal marine ecosystem engineer. MARINE ENVIRONMENTAL RESEARCH 2021; 165:105238. [PMID: 33486259 DOI: 10.1016/j.marenvres.2020.105238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) is one of the most extensive human geographic disturbances to wildlife. ALAN can have ecological and evolutionary effects on individual organisms, which in turn can affect populations, communities and ecosystems. Although understanding of the effects of ALAN on the ecology and biology of organisms has increased in recent years, most of these advances are in terrestrial environments, but scarce in marine habitats, especially in ecologically important transition areas such as saltmarshes. Here, we study the effects of ALAN on the behavioural budget (i.e. the proportion of time spent performing feeding, burrow maintenance and concealment) of the South American intertidal crab Neohelice granulata, which is an ecosystem engineer of coastal salt marshes. Moreover, we compared the impact of a gradient of ALAN between two different saltmarshes with contrasting environmental characteristics. Our results showed a relationship between ALAN and the behavioural budget. In particular, we showed that an increase in ALAN drove an increase in time spent maintaining burrows at the expense of time spent concealed in the burrow or feeding outside it. Such effects showed slightly different patterns in the two saltmarshes, possibly related to the reproductive value of burrows for mating and to predation risk. Considering the ecosystem role of N. granulata, we argue that the different effect of ALAN on its behavioural budget could have ecosystem effects that differ between the two saltmarshes studied here.
Collapse
Affiliation(s)
- J D Nuñez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600, Mar del Plata, Provincia de Buenos Aires, Argentina.
| | - V Sbragaglia
- Department of Marine Renewable Resources, Institute of Marine Sciences, 08003, Barcelona, Spain
| | - E D Spivak
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600, Mar del Plata, Provincia de Buenos Aires, Argentina
| | - N M Chiaradia
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600, Mar del Plata, Provincia de Buenos Aires, Argentina
| | - T A Luppi
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600, Mar del Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
17
|
Falcón J, Torriglia A, Attia D, Viénot F, Gronfier C, Behar-Cohen F, Martinsons C, Hicks D. Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front Neurosci 2020; 14:602796. [PMID: 33304237 PMCID: PMC7701298 DOI: 10.3389/fnins.2020.602796] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
The present review draws together wide-ranging studies performed over the last decades that catalogue the effects of artificial-light-at-night (ALAN) upon living species and their environment. We provide an overview of the tremendous variety of light-detection strategies which have evolved in living organisms - unicellular, plants and animals, covering chloroplasts (plants), and the plethora of ocular and extra-ocular organs (animals). We describe the visual pigments which permit photo-detection, paying attention to their spectral characteristics, which extend from the ultraviolet into infrared. We discuss how organisms use light information in a way crucial for their development, growth and survival: phototropism, phototaxis, photoperiodism, and synchronization of circadian clocks. These aspects are treated in depth, as their perturbation underlies much of the disruptive effects of ALAN. The review goes into detail on circadian networks in living organisms, since these fundamental features are of critical importance in regulating the interface between environment and body. Especially, hormonal synthesis and secretion are often under circadian and circannual control, hence perturbation of the clock will lead to hormonal imbalance. The review addresses how the ubiquitous introduction of light-emitting diode technology may exacerbate, or in some cases reduce, the generalized ever-increasing light pollution. Numerous examples are given of how widespread exposure to ALAN is perturbing many aspects of plant and animal behaviour and survival: foraging, orientation, migration, seasonal reproduction, colonization and more. We examine the potential problems at the level of individual species and populations and extend the debate to the consequences for ecosystems. We stress, through a few examples, the synergistic harmful effects resulting from the impacts of ALAN combined with other anthropogenic pressures, which often impact the neuroendocrine loops in vertebrates. The article concludes by debating how these anthropogenic changes could be mitigated by more reasonable use of available technology - for example by restricting illumination to more essential areas and hours, directing lighting to avoid wasteful radiation and selecting spectral emissions, to reduce impact on circadian clocks. We end by discussing how society should take into account the potentially major consequences that ALAN has on the natural world and the repercussions for ongoing human health and welfare.
Collapse
Affiliation(s)
- Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Alicia Torriglia
- Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France
| | - Dina Attia
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort, France
| | | | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France
| | | | - David Hicks
- Inserm, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Elgert C, Hopkins J, Kaitala A, Candolin U. Reproduction under light pollution: maladaptive response to spatial variation in artificial light in a glow-worm. Proc Biol Sci 2020; 287:20200806. [PMID: 32673556 PMCID: PMC7423653 DOI: 10.1098/rspb.2020.0806] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The amount of artificial light at night is growing worldwide, impacting the behaviour of nocturnal organisms. Yet, we know little about the consequences of these behavioural responses for individual fitness and population viability. We investigated if females of the common glow-worm Lampyris noctiluca—which glow in the night to attract males—mitigate negative effects of artificial light on mate attraction by adjusting the timing and location of glowing to spatial variation in light conditions. We found females do not move away from light when exposed to a gradient of artificial light, but delay or even refrain from glowing. Further, we demonstrate that this response is maladaptive, as our field study showed that staying still when exposed to artificial light from a simulated streetlight decreases mate attraction success, while moving only a short distance from the light source can markedly improve mate attraction. These results indicate that glow-worms are unable to respond to spatial variation in artificial light, which may be a factor in their global decline. Consequently, our results support the hypothesis that animals often lack adaptive behavioural responses to anthropogenic environmental changes and underlines the importance of considering behavioural responses when investigating the effects of human activities on wildlife.
Collapse
Affiliation(s)
- Christina Elgert
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| | - Juhani Hopkins
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| | - Arja Kaitala
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| |
Collapse
|