1
|
Nagy DU, Thoma AE, Al-Gharaibeh M, Callaway RM, Flory SL, Frazee LJ, Hartmann M, Hensen I, Jandová K, Khasa DP, Lekberg Y, Pal RW, Samartza I, Shah MA, Sheng M, Slate M, Stein C, Tsunoda T, Rosche C. Among-population variation in drought responses is consistent across life stages but not between native and non-native ranges. THE NEW PHYTOLOGIST 2024; 243:922-935. [PMID: 38859570 DOI: 10.1111/nph.19895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Understanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages. We examined APV in the performance and functional traits of 59 Conyza canadensis populations, in response to drought, across large aridity gradients in the native (North America) and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied at the recruitment, juvenile, and adult life stages. We found contrasting patterns of APV in drought responses between the two ranges. In the native range, plant performance was less reduced by drought in populations from xeric than mesic habitats, but such relationship was not apparent for non-native populations. These range-specific patterns were consistent across the life stages. The weak adaptive responses of non-native populations indicate that they can become highly abundant even without complete local adaptation to abiotic environments and suggest that long-established invaders may still be evolving to the abiotic environment. These findings may explain lag times in invasions and raise concern about future expansions.
Collapse
Affiliation(s)
- Dávid U Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Arpad E Thoma
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Mohammad Al-Gharaibeh
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren J Frazee
- Department of Ecology, Evolution, & Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - Isabell Hensen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, CZ-12801, Czech Republic
| | - Damase P Khasa
- Centre for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Quebec, QC, G1V0A6, Canada
| | - Ylva Lekberg
- MPG Ranch Missoula, Florence, MT, 59833, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Robert W Pal
- Department of Biological Sciences, Montana Technological University, Butte, MT, 59701, USA
| | - Ioulietta Samartza
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, 57001, Greece
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Min Sheng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mandy Slate
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Claudia Stein
- Department of Biology and Environmental Science, Auburn University at Montgomery, Montgomery, AL, 36124, USA
| | - Tomonori Tsunoda
- Bioscience and Biotechnology, Fukui Prefectural University, Fukui, 910-1195, Japan
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Bertuol-Garcia D, Ladouceur E, Brudvig LA, Laughlin DC, Munson SM, Curran MF, Davies KW, Svejcar LN, Shackelford N. Testing the hierarchy of predictability in grassland restoration across a gradient of environmental severity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2922. [PMID: 37776043 DOI: 10.1002/eap.2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Ecological restoration is critical for recovering degraded ecosystems but is challenged by variable success and low predictability. Understanding which outcomes are more predictable and less variable following restoration can improve restoration effectiveness. Recent theory asserts that the predictability of outcomes would follow an order from most to least predictable from coarse to fine community properties (physical structure > taxonomic diversity > functional composition > taxonomic composition) and that predictability would increase with more severe environmental conditions constraining species establishment. We tested this "hierarchy of predictability" hypothesis by synthesizing outcomes along an aridity gradient with 11 grassland restoration projects across the United States. We used 1829 vegetation monitoring plots from 227 restoration treatments, spread across 52 sites. We fit generalized linear mixed-effects models to predict six indicators of restoration outcomes as a function of restoration characteristics (i.e., seed mixes, disturbance, management actions, time since restoration) and used variance explained by models and model residuals as proxies for restoration predictability. We did not find consistent support for our hypotheses. Physical structure was among the most predictable outcomes when the response variable was relative abundance of grasses, but unpredictable for total canopy cover. Similarly, one dimension of taxonomic composition related to species identities was unpredictable, but another dimension of taxonomic composition indicating whether exotic or native species dominated the community was highly predictable. Taxonomic diversity (i.e., species richness) and functional composition (i.e., mean trait values) were intermittently predictable. Predictability also did not increase consistently with aridity. The dimension of taxonomic composition related to the identity of species in restored communities was more predictable (i.e., smaller residuals) in more arid sites, but functional composition was less predictable (i.e., larger residuals), and other outcomes showed no significant trend. Restoration outcomes were most predictable when they related to variation in dominant species, while those responding to rare species were harder to predict, indicating a potential role of scale in restoration predictability. Overall, our results highlight additional factors that might influence restoration predictability and add support to the importance of continuous monitoring and active management beyond one-time seed addition for successful grassland restoration in the United States.
Collapse
Affiliation(s)
- Diana Bertuol-Garcia
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Emma Ladouceur
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | | | - Seth M Munson
- US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
| | | | - Kirk W Davies
- USDA, Agricultural Research Service, Burns, Oregon, USA
| | | | - Nancy Shackelford
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
3
|
Farrell HL, Munson SM, Butterfield BJ, Duniway MC, Faist AM, Gornish ES, Havrilla CA, Larios L, Reed SC, Rowe HI, Laushman KM, McCormick ML. Soil surface treatments and precipitation timing determine seedling development across southwestern US restoration sites. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2834. [PMID: 36864737 DOI: 10.1002/eap.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 06/02/2023]
Abstract
Restoration in dryland ecosystems often has poor success due to low and variable water availability, degraded soil conditions, and slow plant community recovery rates. Restoration treatments can mitigate these constraints but, because treatments and subsequent monitoring are typically limited in space and time, our understanding of their applicability across broader environmental gradients remains limited. To address this limitation, we implemented and monitored a standardized set of seeding and soil surface treatments (pits, mulch, and ConMod artificial nurse plants) designed to enhance soil moisture and seedling establishment across RestoreNet, a growing network of 21 diverse dryland restoration sites in the southwestern USA over 3 years. Generally, we found that the timing of precipitation relative to seeding and the use of soil surface treatments were more important in determining seeded species emergence, survival, and growth than site-specific characteristics. Using soil surface treatments in tandem with seeding promoted up to 3× greater seedling emergence densities compared with seeding alone. The positive effect of soil surface treatments became more prominent with increased cumulative precipitation since seeding. The seed mix type with species currently found within or near a site and adapted to the historical climate promoted greater seedling emergence densities compared with the seed mix type with species from warmer, drier conditions expected to perform well under climate change. Seed mix and soil surface treatments had a diminishing effect as plants developed beyond the first season of establishment. However, we found strong effects of the initial period seeded and of the precipitation leading up to each monitoring date on seedling survival over time, especially for annual and perennial forbs. The presence of exotic species exerted a negative influence on seedling survival and growth, but not initial emergence. Our findings suggest that seeded species recruitment across drylands can generally be promoted, regardless of location, by (1) incorporation of soil surface treatments, (2) employment of near-term seasonal climate forecasts, (3) suppression of exotic species, and (4) seeding at multiple times. Taken together, these results point to a multifaceted approach to ameliorate harsh environmental conditions for improved seeding success in drylands, both now and under expected aridification.
Collapse
Affiliation(s)
- Hannah L Farrell
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
| | - Seth M Munson
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
| | - Bradley J Butterfield
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Michael C Duniway
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - Akasha M Faist
- College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Elise S Gornish
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Caroline A Havrilla
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | - Loralee Larios
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | - Helen I Rowe
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
- McDowell Sonoran Conservancy, Scottsdale, Arizona, USA
| | | | - Molly L McCormick
- Southwest Fire Science Consortium and School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
4
|
Kirchgesser J, Hazarika M, Bachmann-Pfabe S, Dehmer KJ, Kavka M, Uptmoor R. Phenotypic variation of root-system architecture under high P and low P conditions in potato (Solanum tuberosum L.). BMC PLANT BIOLOGY 2023; 23:68. [PMID: 36721096 PMCID: PMC9890858 DOI: 10.1186/s12870-023-04070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Phosphorus (P) is an essential macronutrient required for plant metabolism and growth. Its acquisition by plants depends on the availability of dissolved P in the rhizosphere and on the characteristics of P uptake mechanisms such as root-system architecture (RSA). Compared to other crops, potato (Solanum tuberosum L.) has a relatively poor P acquisition efficiency. This is mainly due to its shallow and sparsely branched root system, resulting in a rather limited exploitable soil volume. Information about potato genotypes with RSA traits suitable to improve adaptation to nutrient scarcity is quite rare. Aim of this study is to assess phenotypic variation of RSA in a potato diversity set and its reactions to P deficiency. RESULTS Only one out of 22 RSA-traits showed a significant increase under low-P conditions. This indicates an overall negative effect of P scarcity on potato root growth. Differences among genotypes, however, were statistically significant for 21 traits, revealing a high variability in potato RSA. Using a principal component analysis (PCA), we were able to classify genotypes into three groups with regard to their root-system size. Genotypes with both small and large root systems reacted to low-P conditions by in- or decreasing their relative root-system size to medium, whereas genotypes with an intermediate root system size showed little to no changes. CONCLUSIONS We observed a huge variation in both the potato root system itself and its adaptation to P deficiency. This may enable the selection of potato genotypes with an improved root-zone exploitation. Eventually, these could be utilized to develop new cultivars adapted to low-P environments with better resource-use efficiencies.
Collapse
Affiliation(s)
- Julian Kirchgesser
- Department of Agronomy, University of Rostock, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Mousumi Hazarika
- Leibniz Institute of Plant Genetics and Crop Plant Research, Groß Luesewitz Potato Collection, Parkweg 3, 18190, Sanitz, Germany
| | - Silvia Bachmann-Pfabe
- Leibniz Institute of Plant Genetics and Crop Plant Research, Groß Luesewitz Potato Collection, Parkweg 3, 18190, Sanitz, Germany
- Neubrandenburg University of Applied Science, Brodaer Str. 2, 17033, Neubrandenburg, Germany
| | - Klaus J Dehmer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Groß Luesewitz Potato Collection, Parkweg 3, 18190, Sanitz, Germany
| | - Mareike Kavka
- Department of Agronomy, University of Rostock, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research, Groß Luesewitz Potato Collection, Parkweg 3, 18190, Sanitz, Germany
| | - Ralf Uptmoor
- Department of Agronomy, University of Rostock, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany.
| |
Collapse
|
5
|
Westoby M, Schrader J, Falster D. Trait ecology of startup plants. THE NEW PHYTOLOGIST 2022; 235:842-847. [PMID: 35488498 PMCID: PMC9325420 DOI: 10.1111/nph.18193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Startup plants include seedlings and basal and epicormic resprouts. It has long been held that startups have different strategies from adult plants, but theory for what trait differences to expect is limited and not yet quantitatively tested. Three applicable concepts are analogous to human startup firms, R-shift, and trait-growth theory. All three suggest startups should be built with lower construction costs than established plants. This appears to be almost always true in terms of leaf mass per area (LMA), though many comparisons are complicated by the startups growing in lower light. Trait-growth theory predicts LMA should increase progressively with height or total leaf area, driven by higher conductive-pathway costs associated with each unit leaf area, and by greater reward from slowing leaf turnover. Basal resprouts often have somewhat higher LMA than seedlings, but possibly this is simply because they are larger. A number of eminently testable questions are identified. Prospects are good for a theoretically cogent and field-tested body of knowledge about plant startups.
Collapse
Affiliation(s)
- Mark Westoby
- School of Natural SciencesMacquarie UniversitySydneyNSW2109Australia
| | - Julian Schrader
- School of Natural SciencesMacquarie UniversitySydneyNSW2109Australia
- Department of Biodiversity, Macroecology and BiogeographyUniversity of GoettingenGoettingen37073Germany
| | - Daniel Falster
- Evolution & Ecology ResearchUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
6
|
Agneray AC, Parchman TL, Leger EA. Phenotypes and environment predict seedling survival for seven co‐occurring Great Basin plant taxa growing with invasive grass. Ecol Evol 2022; 12:e8870. [PMID: 35509617 PMCID: PMC9055296 DOI: 10.1002/ece3.8870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Trait–environment correlations can arise from local adaptation and can identify genetically and environmentally appropriate seeds for restoration projects. However, anthropogenic changes can disrupt the relationships between traits and fitness. Finding the best seed sources for restoration may rely on describing plant traits adaptive in disturbed and invaded environments, recognizing that while traits may differ among species and functional groups, there may be similarities in the strategies that increase seedling establishment. Focusing on three grass genera, two shrub species, and two forb genera, we collected seeds of all taxa from 16 common sites in the sagebrush steppe of the western United States. We measured seed and seedling characteristics, including seed size, emergence timing, and root and shoot traits, and compiled a suite of environmental variables for each collection site. We described trait–environment associations and asked how traits or environment of origin were associated with seedling survival in invaded gardens. Sampling seven taxa from the same sites allowed us to ask how trait–environment–performance associations differ among taxa and whether natural selection favors similar traits across multiple taxa and functional groups. All taxa showed trait–environment associations consistent with local adaptation, and both environment of origin and phenotypes predicted survival in competitive restoration settings, with some commonalities among taxa. Notably, rapid emergence and larger seeds increased survival for multiple taxa. Environmental factors at collection sites, including lower slopes (especially for grasses), greater mean annual temperatures (especially for shrubs and forbs), and greater precipitation seasonality were frequently associated with increased survival. We noted one collection site with high seedling survival across all seven taxa, suggesting that conditions within some sites may result in selection for traits that increase establishment for multiple species. Thus, choosing native plant sources with the most adaptive traits, along with matching climates, will likely improve the restoration of invaded communities.
Collapse
Affiliation(s)
- Alison C. Agneray
- Graduate Program in Ecology, Evolution, and Conservation Biology Department of Biology University of Nevada, Reno Reno Nevada USA
- Nevada State Office Bureau of Land Management Reno USA
| | - Thomas L. Parchman
- Graduate Program in Ecology, Evolution, and Conservation Biology Department of Biology University of Nevada, Reno Reno Nevada USA
| | - Elizabeth A. Leger
- Graduate Program in Ecology, Evolution, and Conservation Biology Department of Biology University of Nevada, Reno Reno Nevada USA
| |
Collapse
|