1
|
Koellsch C, Poulin R, Salloum PM. Microbial artists: the role of parasite microbiomes in explaining colour polymorphism among amphipods and potential link to host manipulation. J Evol Biol 2024; 37:1009-1022. [PMID: 38989853 DOI: 10.1093/jeb/voae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Parasite infections are increasingly reported to change the microbiome of the parasitized hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites. Using colour quantification methods applied to digital images, we investigated colour variation among uninfected Transorchestia serrulata amphipods, as well as amphipods infected with Plagiorhynchus allisonae acanthocephalans and with a dilepidid cestode. We then characterized the bacteriota of amphipod hosts and of their parasites, looking for correlations between host phenotype and the bacterial taxa associated with hosts and parasites. We found large variation in amphipod colours, and weak support for a direct impact of parasites on the colour of their hosts. Conversely, and most interestingly, the parasite's bacteriota was more strongly correlated with colour variation among their amphipod hosts, with potential impact of amphipod-associated bacteria as well. Some bacterial taxa found associated with amphipods and parasites may have the ability to synthesize pigments, and we propose they may interact with colour determination in the amphipods. This study provides correlational support for an association between the parasite's microbiome and the evolution of host manipulation by parasites and host-parasite interactions more generally.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
2
|
Nokelainen O, Silvasti SA, Strauss SY, Wahlberg N, Mappes J. Predator selection on phenotypic variability of cryptic and aposematic moths. Nat Commun 2024; 15:1678. [PMID: 38395999 PMCID: PMC10891176 DOI: 10.1038/s41467-024-45329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Natural selection generally favours phenotypic variability in camouflaged organisms, whereas aposematic organisms are expected to evolve a more uniform warning coloration. However, no comprehensive analysis of the phenotypic consequences of predator selection in aposematic and cryptic species exists. Using state-of-the-art image analysis, we examine 2800 wing images of 82 moth species accessed via three online museum databases. We test whether anti-predator strategy (i.e., camouflage or aposematism) explains intraspecific variation in wing colour and pattern across northern hemisphere moths. In addition, we test two mutually non-exclusive, ecological hypotheses to explain variation in colour pattern: diel-activity or dietary-niche. In this work, taking into account phylogenetic relationships, moth phenotypic variability is best explained by anti-predator strategy with camouflaged moths being more variable in wing patterning than aposematic species.
Collapse
Affiliation(s)
- Ossi Nokelainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, P.O. Box 65, 40014, Helsinki, Finland.
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
- Open Science Centre, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Sanni A Silvasti
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sharon Y Strauss
- Department of Evolution and Ecology, University of California at Davis, 2320 Storer Hall, One Shields Avenue, Davis, CA, 95616, USA
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, Berlin, 14193, Germany
| | - Niklas Wahlberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, P.O. Box 65, 40014, Helsinki, Finland.
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, Berlin, 14193, Germany.
| |
Collapse
|
3
|
de Alcantara Viana JV, Campos Duarte R, Vieira C, Augusto Poleto Antiqueira P, Bach A, de Mello G, Silva L, Rabelo Oliveira Leal C, Quevedo Romero G. Crypsis by background matching and disruptive coloration as drivers of substrate occupation in sympatric Amazonian bark praying mantises. Sci Rep 2023; 13:19985. [PMID: 37968331 PMCID: PMC10652001 DOI: 10.1038/s41598-023-46204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/29/2023] [Indexed: 11/17/2023] Open
Abstract
Background matching and disruptive coloration are common camouflage strategies in nature, but few studies have accurately measured their protective value in living organisms. Amazon's Bark praying mantises exhibit colour patterns matching whitish and greenish-brown tree trunks. We tested the functional significance of background matching and disruptive coloration of different praying mantis morphospecies (white, grey and green) detected by DNA barcoding. Through image analysis, avian visual models and field experiments using humans as potential predators, we explored whether the background occupation of mantises provides camouflage against predation. Data were obtained for individuals against their occupied tree trunks (whitish or greenish-brown) and microhabitats (lichen or bryophyte patches), compared to non-occupied trunks. White and grey mantises showed lower colour contrasts against occupied trunks at the scale of tree trunk, with no differences in luminance contrasts. Conversely, green mantises showed lower colour and luminance contrasts against microhabitats and also exhibited high edge disruption against greenish-brown trunks. The camouflage of white and green mantis models against colour-matching trunks increased search time and reduced encounter distance of human predators. We highlight the importance of camouflage strategies at different spatial scales to enhance individual survival against predators. Specifically, we present a stunning study system to investigate the relationship of phylogenetically related species that use camouflage in sympatry.
Collapse
Affiliation(s)
- João Vitor de Alcantara Viana
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, São Paulo, CEP 13083-970, Brazil.
| | - Rafael Campos Duarte
- Universidade Federal Do ABC, São Bernardo Do Campo, São Paulo, CEP 09606-045, Brazil
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Camila Vieira
- Departamento de Ciências Básicas, Universidade de São Paulo (USP), Campus de Pirassununga, Pirassununga, São Paulo, CEP 13635-900, Brazil
| | - Pablo Augusto Poleto Antiqueira
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, São Paulo, CEP 13083-970, Brazil
| | - Andressa Bach
- Programa de Pós-Graduação Em Ecologia E Conservação da Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa, N° 2367, Boa Esperança, Cuiabá, 78060900, Brazil
| | - Gabriel de Mello
- Programa de Pós-Graduação Em Ecologia E Conservação da Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa, N° 2367, Boa Esperança, Cuiabá, 78060900, Brazil
| | - Lorhaine Silva
- Programa de Pós-Graduação Em Ecologia E Conservação da Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa, N° 2367, Boa Esperança, Cuiabá, 78060900, Brazil
| | - Camila Rabelo Oliveira Leal
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, São Paulo, CEP 13083-970, Brazil
| | - Gustavo Quevedo Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, São Paulo, CEP 13083-970, Brazil
| |
Collapse
|
4
|
Brien MN, Orteu A, Yen EC, Galarza JA, Kirvesoja J, Pakkanen H, Wakamatsu K, Jiggins CD, Mappes J. Colour polymorphism associated with a gene duplication in male wood tiger moths. eLife 2023; 12:e80116. [PMID: 37902626 PMCID: PMC10635649 DOI: 10.7554/elife.80116] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Colour is often used as an aposematic warning signal, with predator learning expected to lead to a single colour pattern within a population. However, there are many puzzling cases where aposematic signals are also polymorphic. The wood tiger moth, Arctia plantaginis, displays bright hindwing colours associated with unpalatability, and males have discrete colour morphs which vary in frequency between localities. In Finland, both white and yellow morphs can be found, and these colour morphs also differ in behavioural and life-history traits. Here, we show that male colour is linked to an extra copy of a yellow family gene that is only present in the white morphs. This white-specific duplication, which we name valkea, is highly upregulated during wing development. CRISPR targeting valkea resulted in editing of both valkea and its paralog, yellow-e, and led to the production of yellow wings. We also characterise the pigments responsible for yellow, white, and black colouration, showing that yellow is partly produced by pheomelanins, while black is dopamine-derived eumelanin. Our results add to a growing number of studies on the genetic architecture of complex and seemingly paradoxical polymorphisms, and the role of gene duplications and structural variation in adaptive evolution.
Collapse
Affiliation(s)
- Melanie N Brien
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
| | - Anna Orteu
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Eugenie C Yen
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Juan A Galarza
- Ecology and Genetics Research Unit, University of OuluOuluFinland
| | - Jimi Kirvesoja
- Department of Biological and Environmental Science, University of JyväskyläJyväskyläFinland
| | - Hannu Pakkanen
- Department of Chemistry, University of JyväskyläJyväskyläFinland
| | | | - Chris D Jiggins
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
- Department of Biological and Environmental Science, University of JyväskyläJyväskyläFinland
| |
Collapse
|
5
|
Exnerová A, Kang C, Rowland HM, Kikuchi DW. Evolution of multiple prey defences: From predator cognition to community ecology. J Evol Biol 2023; 36:961-966. [PMID: 37449469 DOI: 10.1111/jeb.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Alice Exnerová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Changku Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David W Kikuchi
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
- Evolutionary Biology, Universität Bielefeld, Bielefeld, Germany
| |
Collapse
|
6
|
Stuckert AMM, Summers K. Investigating signal modalities of aposematism in a poison frog. J Evol Biol 2022. [DOI: 10.1111/jeb.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Adam M. M. Stuckert
- Department of Biology East Carolina University Greenville North Carolina USA
- Department of Biology and Biochemistry University of Houston Houston Texas USA
| | - Kyle Summers
- Department of Biology East Carolina University Greenville North Carolina USA
| |
Collapse
|
7
|
De Pasqual C, Suisto K, Kirvesoja J, Gordon S, Ketola T, Mappes J. Heterozygote advantage and pleiotropy contribute to intraspecific color trait variability. Evolution 2022; 76:2389-2403. [PMID: 35984008 PMCID: PMC9805086 DOI: 10.1111/evo.14597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 01/22/2023]
Abstract
The persistence of intrapopulation phenotypic variation typically requires some form of balancing selection because drift and directional selection eventually erode genetic variation. Heterozygote advantage remains a classic explanation for the maintenance of genetic variation in the face of selection. However, examples of heterozygote advantage, other than those associated with disease resistance, are rather uncommon. Across most of its distribution, males of the aposematic moth Arctia plantaginis have two hindwing phenotypes determined by a heritable one locus-two allele polymorphism (genotypes: WW/Wy = white morph, yy = yellow morph). Using genotyped moths, we show that the presence of one or two copies of the yellow allele affects several life-history traits. Reproductive output of both males and females and female mating success are negatively affected by two copies of the yellow allele. Females carrying one yellow allele (i.e., Wy) have higher fertility, hatching success, and offspring survival than either homozygote, thus leading to strong heterozygote advantage. Our results indicate strong female contribution especially at the postcopulatory stage in maintaining the color polymorphism. The interplay between heterozygote advantage, yellow allele pleiotropic effect, and morph-specific predation pressure may exert balancing selection on the color locus, suggesting that color polymorphism may be maintained through complex interactions between natural and sexual selection.
Collapse
Affiliation(s)
- Chiara De Pasqual
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
- Organismal and Evolutionary Biology Research ProgramUniversity of HelsinkiHelsinki00014Finland
| | - Kaisa Suisto
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Jimi Kirvesoja
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Swanne Gordon
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York14853
| | - Tarmo Ketola
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Johanna Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
- Organismal and Evolutionary Biology Research ProgramUniversity of HelsinkiHelsinki00014Finland
| |
Collapse
|
8
|
Pereira Martins AR, Martins LP, Ho W, McMillan WO, Ready JS, Barrett R. Scale-dependent environmental effects on phenotypic distributions in Heliconius butterflies. Ecol Evol 2022; 12:e9286. [PMID: 36177141 PMCID: PMC9471044 DOI: 10.1002/ece3.9286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Identifying the relative importance of different mechanisms responsible for the emergence and maintenance of phenotypic diversity can be challenging, as multiple selective pressures and stochastic events are involved in these processes. Therefore, testing how environmental conditions shape the distribution of phenotypes can offer important insights on local adaptation, divergence, and speciation. The red-yellow Müllerian mimicry ring of Heliconius butterflies exhibits a wide diversity of color patterns across the Neotropics and is involved in multiple hybrid zones, making it a powerful system to investigate environmental drivers of phenotypic distributions. Using the distantly related Heliconius erato and Heliconius melpomene co-mimics and a multiscale distribution approach, we investigated whether distinct phenotypes of these species are associated with different environmental conditions. We show that Heliconius red-yellow phenotypic distribution is strongly driven by environmental gradients (especially thermal and precipitation variables), but that phenotype and environment associations vary with spatial scale. While co-mimics are usually predicted to occur in similar environments at large spatial scales, patterns at local scales are not always consistent (i.e., different variables are best predictors of phenotypic occurrence in different locations) or congruent (i.e., co-mimics show distinct associations with environment). We suggest that large-scale analyses are important for identifying how environmental factors shape broad mimetic phenotypic distributions, but that local studies are essential to understand the context-dependent biotic, abiotic, and historical mechanisms driving finer-scale phenotypic transitions.
Collapse
Affiliation(s)
- Ananda R. Pereira Martins
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Lucas P. Martins
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | | | | | - Jonathan S. Ready
- Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
| | | |
Collapse
|
9
|
Mattila ALK, Jiggins CD, Saastamoinen M. Condition dependence in biosynthesized chemical defenses of an aposematic and mimetic Heliconius butterfly. Ecol Evol 2022; 12:e9041. [PMID: 35784031 PMCID: PMC9227709 DOI: 10.1002/ece3.9041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/08/2022] Open
Abstract
Aposematic animals advertise their toxicity or unpalatability with bright warning coloration. However, acquiring and maintaining chemical defenses can be energetically costly, and consequent associations with other important traits could shape chemical defense evolution. Here, we have tested whether chemical defenses are involved in energetic trade-offs with other traits, or whether the levels of chemical defenses are condition dependent, by studying associations between biosynthesized cyanogenic toxicity and a suite of key life-history and fitness traits in a Heliconius butterfly under a controlled laboratory setting. Heliconius butterflies are well known for the diversity of their warning color patterns and widespread mimicry and can both sequester the cyanogenic glucosides of their Passiflora host plants and biosynthesize these toxins de novo. We find energetically costly life-history traits to be either unassociated or to show a general positive association with biosynthesized cyanogenic toxicity. More toxic individuals developed faster and had higher mass as adults and a tendency for increased lifespan and fecundity. These results thus indicate that toxicity level of adult butterflies may be dependent on individual condition, influenced by genetic background or earlier conditions, with maternal effects as one strong candidate mechanism. Additionally, toxicity was higher in older individuals, consistent with previous studies indicating accumulation of toxins with age. As toxicity level at death was independent of lifespan, cyanogenic glucoside compounds may have been recycled to release resources relevant for longevity in these long-living butterflies. Understanding the origins and maintenance of variation in defenses is necessary in building a more complete picture of factors shaping the evolution of aposematic and mimetic systems.
Collapse
Affiliation(s)
- Anniina L. K. Mattila
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- HiLIFE – Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
| | | | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- HiLIFE – Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
10
|
Binns GE, Hämäläinen L, Kemp DJ, Rowland HM, Umbers KDL, Herberstein ME. Additive genetic variation, but not temperature, influences warning signal expression in Amata nigriceps moths (Lepidoptera: Arctiinae). Ecol Evol 2022; 12:e9111. [PMID: 35866015 PMCID: PMC9288930 DOI: 10.1002/ece3.9111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Many aposematic species show variation in their color patterns even though selection by predators is expected to stabilize warning signals toward a common phenotype. Warning signal variability can be explained by trade-offs with other functions of coloration, such as thermoregulation, that may constrain warning signal expression by favoring darker individuals. Here, we investigated the effect of temperature on warning signal expression in aposematic Amata nigriceps moths that vary in their black and orange wing patterns. We sampled moths from two flight seasons that differed in the environmental temperatures and also reared different families under controlled conditions at three different temperatures. Against our prediction that lower developmental temperatures would reduce the warning signal size of the adult moths, we found no effect of temperature on warning signal expression in either wild or laboratory-reared moths. Instead, we found sex- and population-level differences in wing patterns. Our rearing experiment indicated that ~70% of the variability in the trait is genetic but understanding what signaling and non-signaling functions of wing coloration maintain the genetic variation requires further work. Our results emphasize the importance of considering both genetic and plastic components of warning signal expression when studying intraspecific variation in aposematic species.
Collapse
Affiliation(s)
- Georgina E. Binns
- School of Natural Sciences, 14 Eastern RoadMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Liisa Hämäläinen
- School of Natural Sciences, 14 Eastern RoadMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Darrell J. Kemp
- School of Natural Sciences, 14 Eastern RoadMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Hannah M. Rowland
- Max Planck Institute forChemical EcologyHans Knöll Straße 8,JenaGermany
| | - Kate D. L. Umbers
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Marie E. Herberstein
- School of Natural Sciences, 14 Eastern RoadMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
11
|
Nokelainen O, Galarza JA, Kirvesoja J, Suisto K, Mappes J. Genetic colour variation visible for predators and conspecifics is concealed from humans in a polymorphic moth. J Evol Biol 2022; 35:467-478. [PMID: 35239231 PMCID: PMC9314616 DOI: 10.1111/jeb.13994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
Abstract
The definition of colour polymorphism is intuitive: genetic variants express discretely coloured phenotypes. This classification is, however, elusive as humans form subjective categories or ignore differences that cannot be seen by human eyes. We demonstrate an example of a ‘cryptic morph’ in a polymorphic wood tiger moth (Arctia plantaginis), a phenomenon that may be common among well‐studied species. We used pedigree data from nearly 20,000 individuals to infer the inheritance of hindwing colouration. The evidence supports a single Mendelian locus with two alleles in males: WW and Wy produce the white and yy the yellow hindwing colour. The inheritance could not be resolved in females as their hindwing colour varies continuously with no clear link with male genotypes. Next, we investigated if the male genotype can be predicted from their phenotype by machine learning algorithms and by human observers. Linear discriminant analysis grouped male genotypes with 97% accuracy, whereas humans could only group the yy genotype. Using vision modelling, we also tested whether the genotypes have differential discriminability to humans, moth conspecifics and their bird predators. The human perception was poor separating the genotypes, but avian and moth vision models with ultraviolet sensitivity could separate white WW and Wy males. We emphasize the importance of objective methodology when studying colour polymorphism. Our findings indicate that by‐eye categorization methods may be problematic, because humans fail to see differences that can be visible for relevant receivers. Ultimately, receivers equipped with different perception than ours may impose selection to morphs hidden from human sight.
Collapse
Affiliation(s)
- Ossi Nokelainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki University, Helsinki, Finland
| | - Juan A Galarza
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki University, Helsinki, Finland
| | - Jimi Kirvesoja
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Kaisa Suisto
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki University, Helsinki, Finland
| |
Collapse
|
12
|
He R, Pagani-Núñez E, Goodale E, Barnett CRA. Avian predators taste reject mimetic prey in relation to their signal reliability. Sci Rep 2022; 12:2334. [PMID: 35149707 PMCID: PMC8837650 DOI: 10.1038/s41598-022-05600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
Aposematic organisms defend themselves through various means to increase their unprofitability to predators which they advertise with conspicuous warning signals. Predators learn to avoid aposematic prey through associative learning that leads to lower predation. However, when these visual signals become unreliable (e.g., through automimicry or Batesian mimicry), predators may switch from using visual signals to taste sampling prey to choose among them. In this experiment, we tested this possibility in a field experiment where we released a total of 4800 mealworm prey in two clusters consisting of either: (i) undefended prey (injected with water) and (ii) model-mimics (injected with either quinine sulphate [models] or water [mimics]). Prey were deployed at 12 sites, with the mimic frequency of the model-mimics ranging between 0 and 1 (at 0.2 intervals). We found that taste rejection peaked at moderate mimic frequencies (0.4 and 0.6), supporting the idea that taste sampling and rejection of prey is related to signal reliability and predator uncertainty. This is the first time that taste-rejection has been shown to be related to the reliability of prey signals in a mimetic prey system.
Collapse
Affiliation(s)
- R He
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - E Pagani-Núñez
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, People's Republic of China
| | - E Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, People's Republic of China.
| | - C R A Barnett
- Department of Zoology, Graduate School of Science, University of Kyoto, Kyoto, Japan.
| |
Collapse
|
13
|
Nokelainen O, de Moraes Rezende F, Valkonen JK, Mappes J. Context-dependent coloration of prey and predator decision making in contrasting light environments. Behav Ecol 2022; 33:77-86. [PMID: 35197807 PMCID: PMC8857938 DOI: 10.1093/beheco/arab111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 12/01/2022] Open
Abstract
A big question in behavioral ecology is what drives diversity of color signals. One possible explanation is that environmental conditions, such as light environment, may alter visual signaling of prey, which could affect predator decision-making. Here, we tested the context-dependent predator selection on prey coloration. In the first experiment, we tested detectability of artificial visual stimuli to blue tits (Cyanistes caeruleus) by manipulating stimulus luminance and chromatic context of the background. We expected the presence of the chromatic context to facilitate faster target detection. As expected, blue tits found targets on chromatic yellow background faster than on achromatic grey background whereas in the latter, targets were found with smaller contrast differences to the background. In the second experiment, we tested the effect of two light environments on the survival of aposematic, color polymorphic wood tiger moth (Arctia plantaginis). As luminance contrast should be more detectable than chromatic contrast in low light intensities, we expected birds, if they find the moths aversive, to avoid the white morph which is more conspicuous than the yellow morph in low light (and vice versa in bright light). Alternatively, birds may attack first moths that are more detectable. We found birds to attack yellow moths first in low light conditions, whereas white moths were attacked first more frequently in bright light conditions. Our results show that light environments affect predator foraging decisions, which may facilitate context-dependent selection on visual signals and diversity of prey phenotypes in the wild.
Collapse
Affiliation(s)
- Ossi Nokelainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Janne K Valkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, Helsinki, Finland
| |
Collapse
|
14
|
Postema EG. The effectiveness of eyespots and masquerade in protecting artificial prey across ontogenetic and seasonal shifts. Curr Zool 2021; 68:451-458. [PMID: 36090146 PMCID: PMC9450170 DOI: 10.1093/cz/zoab082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
When constraints on antipredator coloration shift over the course of development, it can be advantageous for animals to adopt different color strategies for each life stage. Many caterpillars in the genus Papilio exhibit unique ontogenetic color sequences: for example, early instars that masquerade as bird feces, with later instars possessing eyespots. I hypothesize that larvae abandon feces masquerade in favor of eyespots due to ontogenetic changes in signaler size. This ontogenetic pattern also occurs within broader seasonal shifts in background color and predator activity. I conducted predation experiments with artificial prey to determine how potential signaling constraints (specifically size and season) shape predation risk, and consequently the expression of ontogenetic color change in Papilio larvae. Seasonally, both predation and background greenness declined significantly from July to September, though there was little evidence that these patterns impacted the effectiveness of either color strategy. Caterpillar size and color strongly affected the attack rate of avian predators: attacks increased with prey size regardless of color, and eyespotted prey were attacked more than masquerading prey overall. These results may reflect a key size-mediated tradeoff between conspicuousness and intimidation in eyespotted prey, and raise questions about how interwoven aspects of behavior and signal environment might maintain the prevalence of large, eyespotted larvae in nature.
Collapse
Affiliation(s)
- Elizabeth G Postema
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Winters AE, Lommi J, Kirvesoja J, Nokelainen O, Mappes J. Multimodal Aposematic Defenses Through the Predation Sequence. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.657740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aposematic organisms warn predators of their unprofitability using a combination of defenses, including visual warning signals, startling sounds, noxious odors, or aversive tastes. Using multiple lines of defense can help prey avoid predators by stimulating multiple senses and/or by acting at different stages of predation. We tested the efficacy of three lines of defense (color, smell, taste) during the predation sequence of aposematic wood tiger moths (Arctia plantaginis) using blue tit (Cyanistes caeruleus) predators. Moths with two hindwing phenotypes (genotypes: WW/Wy = white, yy = yellow) were manipulated to have defense fluid with aversive smell (methoxypyrazines), body tissues with aversive taste (pyrrolizidine alkaloids) or both. In early predation stages, moth color and smell had additive effects on bird approach latency and dropping the prey, with the strongest effect for moths of the white morph with defense fluids. Pyrrolizidine alkaloid sequestration was detrimental in early attack stages, suggesting a trade-off between pyrrolizidine alkaloid sequestration and investment in other defenses. In addition, pyrrolizidine alkaloid taste alone did not deter bird predators. Birds could only effectively discriminate toxic moths from non-toxic moths when neck fluids containing methoxypyrazines were present, at which point they abandoned attack at the consumption stage. As a result, moths of the white morph with an aversive methoxypyrazine smell and moths in the treatment with both chemical defenses had the greatest chance of survival. We suggest that methoxypyrazines act as context setting signals for warning colors and as attention alerting or “go-slow” signals for distasteful toxins, thereby mediating the relationship between warning signal and toxicity. Furthermore, we found that moths that were heterozygous for hindwing coloration had more effective defense fluids compared to other genotypes in terms of delaying approach and reducing the latency to drop the moth, suggesting a genetic link between coloration and defense that could help to explain the color polymorphism. Conclusively, these results indicate that color, smell, and taste constitute a multimodal warning signal that impedes predator attack and improves prey survival. This work highlights the importance of understanding the separate roles of color, smell and taste through the predation sequence and also within-species variation in chemical defenses.
Collapse
|
16
|
Zvereva EL, Kozlov MV. Seasonal variations in bird selection pressure on prey colouration. Oecologia 2021; 196:1017-1026. [PMID: 34322748 PMCID: PMC8367932 DOI: 10.1007/s00442-021-04994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022]
Abstract
The direction and strength of selection for prey colouration by predators vary in space and time and depend on the composition of the predator community. We tested the hypothesis that bird selection pressure on prey colouration changes through the season due to changes in the proportion of naïve juvenile individuals in the bird community, because naïve and educated birds differ in their responses to prey colours. Bird predation on caterpillar-shaped plasticine models in two boreal forest sites increased sevenfold from early summer to mid-summer, and the time of this increase coincides with the fledging of juvenile birds. In early summer, cryptic (black and green) models were attacked at fivefold higher rates compared with conspicuous (red and yellow) models. By contrast, starting from fledging time, cryptic and conspicuous models were attacked at similar rates, hinting at a lower selectivity by naïve juvenile birds compared with educated adult birds. Cryptic models exposed in a group together with conspicuous models were attacked by birds at a threefold lower rate than cryptic models exposed singly, thus supporting the aposematic commensalism hypothesis. However, this effect was not observed in mid- and late summer, presumably due to the lack of avoidance of conspicuous prey by the juvenile birds. We conclude that selection pressure on prey colouration weakens considerably when naïve birds dominate in the community, because the survival advantages of aposematic colouration are temporarily lost for both the conspicuous and their neighbouring cryptic prey.
Collapse
Affiliation(s)
- Elena L Zvereva
- Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Mikhail V Kozlov
- Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
17
|
Gordon SP, Burdfield-Steel E, Kirvesoja J, Mappes J. Safety in Numbers: How Color Morph Frequency Affects Predation Risk in an Aposematic Moth. Am Nat 2021; 198:128-141. [PMID: 34143722 DOI: 10.1086/714528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPolymorphic warning signals in aposematic systems are enigmatic because predator learning should favor the most common form, creating positive frequency-dependent survival. However, many populations exhibit variation in warning signals. There are various selective mechanisms that can counter positive frequency-dependent selection and lead to temporal or spatial warning signal diversification. Examining these mechanisms and their effects requires first confirming whether the most common morphs are favored at both local and regional scales. Empirical examples of this are uncommon and often include potentially confounding factors, such as a lack of knowledge of predator identity and behavior. We tested how bird behavior influences the survival of three coexisting morphs of the aposematic wood tiger moth Arctia plantaginis offered to a sympatric predator (great tit Parus major) at different frequencies. We found that although positive frequency-dependent selection is present, its strength is affected by predator characteristics and varying prey profitability. These results highlight the need to understand predator foraging in natural communities with variable prey defenses in order to better examine how behavioral interactions shape evolutionary outcomes.
Collapse
|
18
|
Galarza JA. Comparative transcriptomics of albino and warningly-coloured caterpillars. Ecol Evol 2021; 11:7507-7517. [PMID: 34188830 PMCID: PMC8216890 DOI: 10.1002/ece3.7581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022] Open
Abstract
Coloration is perhaps one of the most prominent adaptations for survival and reproduction of many taxa. Coloration is of particular importance for aposematic species, which rely on their coloring and patterning acting as a warning signal to deter predators. Most research has focused on the evolution of warning coloration by natural selection. However, little information is available for color mutants of aposematic species, particularly at the genomic level. Here, I compare the transcriptomes of albino mutant caterpillars of the aposematic wood tiger moth (Arctia plantaginis) to those of their full sibs having their distinctive orange-black warning coloration. The results showed >290 differentially expressed genes genome-wide. Genes involved in the immune system, structural constituents of cuticular, and immunity were mostly downregulated in the albino caterpillars. Surprisingly, higher expression was observed in core melanin genes from albino caterpillars, suggesting that melanin synthesis may be disrupted in terminal ends of the pathway during its final conversion. Taken together, these results suggest that caterpillar albinism may not be due to a depletion of melanin precursor genes. In contrast, the albino condition may result from the combination of faulty melanin conversion late in its synthesis and structural deficiencies in the cuticular preventing its deposition. The results are discussed in the context of how albinism may impact individuals of aposematic species in the wild.
Collapse
Affiliation(s)
- Juan A. Galarza
- Dpartment of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
19
|
Motyka M, Kusy D, Masek M, Bocek M, Li Y, Bilkova R, Kapitán J, Yagi T, Bocak L. Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions. Sci Rep 2021; 11:5961. [PMID: 33727670 PMCID: PMC7971032 DOI: 10.1038/s41598-021-85567-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Biologists have reported on the chemical defences and the phenetic similarity of net-winged beetles (Coleoptera: Lycidae) and their co-mimics. Nevertheless, our knowledge has remained fragmental, and the evolution of mimetic patterns has not been studied in the phylogenetic context. We illustrate the general appearance of ~ 600 lycid species and ~ 200 co-mimics and their distribution. Further, we assemble the phylogeny using the transcriptomic backbone and ~ 570 species. Using phylogenetic information, we closely scrutinise the relationships among aposematically coloured species, the worldwide diversity, and the distribution of aposematic patterns. The emitted visual signals differ in conspicuousness. The uniform coloured dorsum is ancestral and was followed by the evolution of bicoloured forms. The mottled patterns, i.e. fasciate, striate, punctate, and reticulate, originated later in the course of evolution. The highest number of sympatrically occurring patterns was recovered in New Guinea and the Andean mountain ecosystems (the areas of the highest abundance), and in continental South East Asia (an area of moderate abundance but high in phylogenetic diversity). Consequently, a large number of co-existing aposematic patterns in a single region and/or locality is the rule, in contrast with the theoretical prediction, and predators do not face a simple model-like choice but cope with complex mimetic communities. Lycids display an ancestral aposematic signal even though they sympatrically occur with differently coloured unprofitable relatives. We show that the highly conspicuous patterns evolve within communities predominantly formed by less conspicuous Müllerian mimics and, and often only a single species displays a novel pattern. Our work is a forerunner to the detailed research into the aposematic signalling of net-winged beetles.
Collapse
Affiliation(s)
- Michal Motyka
- grid.10979.360000 0001 1245 3953Laboratory of Diversity and Molecular Evolution, CATRIN-CRH, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic
| | - Dominik Kusy
- grid.10979.360000 0001 1245 3953Laboratory of Diversity and Molecular Evolution, CATRIN-CRH, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic
| | - Michal Masek
- grid.10979.360000 0001 1245 3953Laboratory of Diversity and Molecular Evolution, CATRIN-CRH, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic
| | - Matej Bocek
- grid.10979.360000 0001 1245 3953Laboratory of Diversity and Molecular Evolution, CATRIN-CRH, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic
| | - Yun Li
- grid.10979.360000 0001 1245 3953Laboratory of Diversity and Molecular Evolution, CATRIN-CRH, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic
| | - R. Bilkova
- grid.10979.360000 0001 1245 3953Laboratory of Diversity and Molecular Evolution, CATRIN-CRH, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic
| | - Josef Kapitán
- grid.10979.360000 0001 1245 3953Department of Optics, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Takashi Yagi
- grid.261455.10000 0001 0676 0594Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 Japan
| | - Ladislav Bocak
- grid.10979.360000 0001 1245 3953Laboratory of Diversity and Molecular Evolution, CATRIN-CRH, Palacky University, 17. listopadu 50, 771 46 Olomouc, Czech Republic
| |
Collapse
|
20
|
Caro T, Koneru M. Towards an ecology of protective coloration. Biol Rev Camb Philos Soc 2020; 96:611-641. [PMID: 33258554 DOI: 10.1111/brv.12670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
The strategies underlying different forms of protective coloration are well understood but little attention has been paid to the ecological, life-history and behavioural circumstances under which they evolve. While some comparative studies have investigated the ecological correlates of aposematism, and background matching, the latter particularly in mammals, few have examined the ecological correlates of other types of protective coloration. Here, we first outline which types of defensive coloration strategies may be exhibited by the same individual; concluding that many protective coloration mechanisms can be employed simultaneously, particularly in conjunction with background matching. Second, we review the ecological predictions that have been made for each sort of protective coloration mechanism before systematically surveying phylogenetically controlled comparative studies linking ecological and social variables to antipredator defences that involve coloration. We find that some a priori predictions based on small-scale empirical studies and logical arguments are indeed supported by comparative data, especially in relation to how illumination affects both background matching and self-shadow concealment through countershading; how body size is associated with countershading, motion dazzle, flash coloration and aposematism, although only in selected taxa; how immobility may promote background matching in ambush predators; and how mobility may facilitate motion dazzle. Examination of nearly 120 comparative tests reveals that many focus on ecological variables that have little to do with predictions derived from antipredator defence theory, and that broad-scale ecological studies of defence strategies that incorporate phylogenetics are still very much in their infancy. We close by making recommendations for future evolutionary ecological research.
Collapse
Affiliation(s)
- Tim Caro
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K.,Center for Population Biology, University of California, Davis, CA, 95616, U.S.A
| | - Manisha Koneru
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, U.S.A
| |
Collapse
|
21
|
Hernández-Agüero J, Polo V, García M, Simón D, Ruiz-Tapiador I, Cayuela L. Effects of prey colour on bird predation: an experiment in Mediterranean woodlands. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Goedert D, Clement D, Calsbeek R. Evolutionary trade‐offs may interact with physiological constraints to maintain color variation. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Debora Goedert
- Department of Biological Sciences Dartmouth College Hanover03755 New Hampshire USA
- Ministry of Education of Brazil CAPES Foundation Brasília DF95616Brazil
| | - Dale Clement
- Department of Biological Sciences Dartmouth College Hanover03755 New Hampshire USA
| | - Ryan Calsbeek
- Department of Biological Sciences Dartmouth College Hanover03755 New Hampshire USA
| |
Collapse
|
23
|
Aubier TG, Sherratt TN. State-Dependent Decision-Making by Predators and Its Consequences for Mimicry. Am Nat 2020; 196:E127-E144. [PMID: 33064589 DOI: 10.1086/710568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe mimicry of one species by another provides one of the most celebrated examples of evolution by natural selection. Edible Batesian mimics deceive predators into believing they may be defended, whereas defended Müllerian mimics have evolved a shared warning signal, more rapidly educating predators to avoid them. However, it may benefit hungry predators to attack defended prey, while the benefits of learning about unfamiliar prey depends on the future value of this information. Previous energetic state-dependent models of predator foraging behavior have assumed complete knowledge, while informational state-dependent models have assumed fixed levels of hunger. Here, we identify the optimal decision rules of predators accounting for both energetic and informational states. We show that the nature of mimicry is qualitatively and quantitatively affected by both sources of state dependence. Associative learning weakens the extent of parasitic mimicry by edible prey because naive predators often attack defended models. More importantly, mimicry among equally highly defended prey may be parasitic or mutualistic depending on the ecological context (e.g., the source of mimics and the abundance of alternative prey). Finally, mimicry by prey with intermediate defenses corresponds to Batesian or Müllerian mimicry depending on whether the mimic is profitable to attack by hungry predators, but it is not a special case of mimicry.
Collapse
|
24
|
Kim Y, Hwang Y, Bae S, Sherratt TN, An J, Choi SW, Miller JC, Kang C. Prey with hidden colour defences benefit from their similarity to aposematic signals. Proc Biol Sci 2020; 287:20201894. [PMID: 32900312 DOI: 10.1098/rspb.2020.1894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some camouflaged animals hide colour signals and display them only transiently. These hidden colour signals are often conspicuous and are used as a secondary defence to warn or startle predators (deimatic displays) and/or to confuse them (flash displays). The hidden signals used in these displays frequently resemble typical aposematic signals, so it is possible that prey with hidden signals have evolved to employ colour patterns of a form that predators have previously learned to associate with unprofitability. Here, we tested this hypothesis by conducting two experiments that examined the effect of predator avoidance learning on the efficacy of deimatic and flash displays. We found that the survival benefits of both deimatic and flash displays were substantially higher against predators that had previously learned to associate the hidden colours with unprofitability than against naive predators. These findings help explain the phenological patterns we found in 1568 macro-lepidopteran species on three continents: species with hidden signals tend to occur later in the season than species without hidden signals.
Collapse
Affiliation(s)
- Yongsu Kim
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo 58554, South Korea
| | - Yerin Hwang
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo 58554, South Korea
| | - Sangryong Bae
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo 58554, South Korea
| | - Thomas N Sherratt
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Jeongseop An
- National Institute of Ecology, Seocheon, Chungcheongnamdo 33657, South Korea
| | - Sei-Woong Choi
- Department of Environmental Education, Mokpo National University, Cheonggye, Muan, Jeollanamdo 58554, South Korea
| | - Jeffrey C Miller
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Changku Kang
- Department of Biosciences, Mokpo National University, Muan, Jeollanamdo 58554, South Korea
| |
Collapse
|
25
|
Rönkä K, Valkonen JK, Nokelainen O, Rojas B, Gordon S, Burdfield‐Steel E, Mappes J. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol Lett 2020; 23:1654-1663. [DOI: 10.1111/ele.13597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 07/28/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Katja Rönkä
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
- Helsinki Institute of Life SciencesUniversity of Helsinki Helsinki Finland
- Organismal and Evolutionary Biology Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Janne K. Valkonen
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Ossi Nokelainen
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Bibiana Rojas
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Swanne Gordon
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | - Emily Burdfield‐Steel
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Johanna Mappes
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
- Organismal and Evolutionary Biology Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| |
Collapse
|
26
|
Yamazaki Y, Pagani-Núñez E, Sota T, Barnett CRA. The truth is in the detail: predators attack aposematic prey with less aggression than other prey types. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Aposematic organisms are often unprofitable to predators (e.g. because of defensive chemicals) which they advertise with a conspicuous signal (e.g. bright and conspicuous colour signals). Aposematism is thought to reduce predation of prey because the colour signal increases the ability of predators to learn, recognize and remember the prey’s defensive properties. The efficacy of aposematism has been extensively documented in laboratory studies, although its benefits seem to be harder to demonstrate in the field. In this study, we compared the levels of partial and overall predation among four prey types (undefended and cryptic, undefended and warning coloured, defended and cryptic, and aposematic prey). Overall, predation of warning coloured and defended (aposematic) prey was lower than the predation for cryptic and undefended prey; however, it was the same as predation of cryptic and defended prey. Moreover, aposematic prey had higher levels of partial predation (where prey was not wholly consumed by the predator) and lower attack intensities. This suggests that prey were being taste sampled, but also might be better able to survive attacks. Therefore, the benefits of aposematism may lie not only in reducing outright predation, but also in altering a predator’s post-attack behaviour, thus leading to greater escape opportunities and post-attack survival of prey. These results reinforce the importance of examining predation in more detail rather than simply examining attack rates.
Collapse
Affiliation(s)
- Yuki Yamazaki
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Emilio Pagani-Núñez
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, People’s Republic of China
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Craig R A Barnett
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Barnett CRA, Ringhofer M, Suzuki TN. Differences in predatory behavior among three bird species when attacking chemically defended and undefended prey. J ETHOL 2020. [DOI: 10.1007/s10164-020-00668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Interactions in multi-pattern Müllerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism. Sci Rep 2020; 10:11193. [PMID: 32641709 PMCID: PMC7343875 DOI: 10.1038/s41598-020-68027-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Mimicry is a hot spot of evolutionary research, but de novo origins of aposematic patterns, the persistence of multiple patterns in Müllerian communities, and the persistence of imperfect mimics still need to be investigated. Local mimetic assemblages can contain up to a hundred of species, their structure can be a result of multiple dispersal events, and the gradual build-up of the communities. Here, we investigate the structure of lowland and mountain mimetic communities of net-winged beetles by sampling the Crocker Range in north-eastern Borneo and neighbouring regions. The local endemics evolved from the Bornean lowland fauna which is highly endemic at the species level. We inferred that metriorrhynchine net-winged beetles evolved in high elevations yellow/black and reticulate aposematic high-contrast signals from a widespread low-contrast brown/black pattern. As the mountain range is ~ 6 million years old, and these patterns do not occur elsewhere, we assume their in situ origins. We demonstrate that a signal with increased internal contrast can evolve de novo in a mimetic community and can persist despite its low frequency. Additionally, a similar aposematic signal evolves from different structures and its similarity is imperfect. The community with multiple patterns sets conditions for the evolution of aposematic sexual dimorphism as demonstrated by the yellow/black male and reticulate female pattern of Micronychus pardus. These insights elucidate the complex character of the evolution of mimetic signalling in the dynamically diversifying biota of high tropical mountains.
Collapse
|
29
|
Nielsen ME, Mappes J. Out in the open: behavior's effect on predation risk and thermoregulation by aposematic caterpillars. Behav Ecol 2020; 31:1031-1039. [PMID: 32760178 PMCID: PMC7390994 DOI: 10.1093/beheco/araa048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/31/2020] [Accepted: 05/06/2020] [Indexed: 11/14/2022] Open
Abstract
Warning coloration should be under strong stabilizing selection but often displays considerable intraspecific variation. Opposing selection on color by predators and temperature is one potential explanation for this seeming paradox. Despite the importance of behavior for both predator avoidance and thermoregulation, its role in mediating selection by predators and temperature on warning coloration has received little attention. Wood tiger moth caterpillars, Arctia plantaginis, have aposematic coloration, an orange patch on the black body. The size of the orange patch varies considerably: individuals with larger patches are safer from predators, but having a small patch is beneficial in cool environments. We investigated microhabitat preference by these caterpillars and how it interacted with their coloration. We expected caterpillar behavior to reflect a balance between spending time exposed to maximize basking and spending time concealed to avoid detection by predators. Instead, we found that caterpillars preferred exposed locations regardless of their coloration. Whether caterpillars were exposed or concealed had a strong effect on both temperature and predation risk, but caterpillars in exposed locations were both much warmer and less likely to be attacked by a bird predator (great tits, Parus major). This shared optimum may explain why we observed so little variation in caterpillar behavior and demonstrates the important effects of behavior on multiple functions of coloration.
Collapse
Affiliation(s)
- Matthew E Nielsen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9 C, Jyväskylä, Finland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, Sweden
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9 C, Jyväskylä, Finland
| |
Collapse
|
30
|
|
31
|
Szopa-Comley AW, Donald WG, Ioannou CC. Predator personality and prey detection: inter-individual variation in responses to cryptic and conspicuous prey. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02854-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Limited attention constrains predators from engaging in cognitively demanding tasks such as searching for cryptic prey at the same time as remaining vigilant towards threats. Since finite attention can result in negative correlations between foraging and vigilance, the tendency of individual predators to focus attention on searching for cryptic prey may be correlated with other behavioural traits which reflect risk-reward trade-offs, such as consistent inter-individual variation in boldness (a personality trait describing risk-taking, defined in this study as the time taken to leave a refuge). We investigated the importance of personality in prey detection by comparing inter-individual variation in the response of three-spined sticklebacks (Gasterosteus aculeatus) to conspicuous and cryptic prey. Fish were slower to attack cryptic prey than conspicuous prey, consistent with cryptic prey being harder to detect. Despite the greater challenge involved in detecting cryptic prey, inter-individual variation in the time taken to detect prey was similar in the cryptic and conspicuous prey treatments, and was uncorrelated with boldness, which was repeatable between individuals. We also observed a positive association between the rate of attack on conspicuous prey and whether individual fish attacked cryptic prey in other trials. Our findings suggest that boldness is not related to prey detection or attention in this context. Instead, consistent differences in motivation once exploration has begun between individual predators may explain inter-individual variation in the time taken to attack both prey cryptic and conspicuous prey.
Significance statement
Using an experimental approach to manipulate the conspicuousness of prey, we show that individual fish consistently differ in their rates of attacking prey. This demonstrates that fish show “personality variation” in predatory behaviour, but these inter-individual differences were not related to the boldness of each fish (their tendency to engage in risky behaviours).
Collapse
|
32
|
Lindstedt C, Suisto K, Burdfield-Steel E, Winters AE, Mappes J. Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis. Behav Ecol 2020; 31:844-850. [PMID: 32595271 PMCID: PMC7303824 DOI: 10.1093/beheco/araa033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
To understand how variation in warning displays evolves and is maintained, we need to understand not only how perceivers of these traits select color and toxicity but also the sources of the genetic and phenotypic variation exposed to selection by them. We studied these aspects in the wood tiger moth Arctia plantaginis, which has two locally co-occurring male color morphs in Europe: yellow and white. When threatened, both morphs produce defensive secretions from their abdomen and from thoracic glands. Abdominal fluid has shown to be more important against invertebrate predators than avian predators, and the defensive secretion of the yellow morph is more effective against ants. Here, we focused on the morph-linked reproductive costs of secretion of the abdominal fluid and quantified the proportion of phenotypic and genetic variation in it. We hypothesized that, if yellow males pay higher reproductive costs for their more effective aposematic display, the subsequent higher mating success of white males could offer one explanation for the maintenance of the polymorphism. We first found that the heritable variation in the quantity of abdominal secretion was very low (h 2 = 0.006) and the quantity of defensive secretion was not dependent on the male morph. Second, deploying the abdominal defensive secretion decreased the reproductive output of both color morphs equally. This suggests that potential costs of pigment production and chemical defense against invertebrates are not linked in A. plantaginis. Furthermore, our results indicate that environmentally induced variation in chemical defense can alter an individual's fitness significantly.
Collapse
Affiliation(s)
- Carita Lindstedt
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Kaisa Suisto
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Emily Burdfield-Steel
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Anne E Winters
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
33
|
Kikuchi DW, Waldron SJ, Valkonen JK, Dobler S, Mappes J. Biased predation could promote convergence yet maintain diversity within Müllerian mimicry rings of Oreina leaf beetles. J Evol Biol 2020; 33:887-898. [PMID: 32202678 DOI: 10.1111/jeb.13620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/10/2020] [Accepted: 03/15/2020] [Indexed: 12/01/2022]
Abstract
Müllerian mimicry is a classic example of adaptation, yet Müller's original theory does not account for the diversity often observed in mimicry rings. Here, we aimed to assess how well classical Müllerian mimicry can account for the colour polymorphism found in chemically defended Oreina leaf beetles by using field data and laboratory assays of predator behaviour. We also evaluated the hypothesis that thermoregulation can explain diversity between Oreina mimicry rings. We found that frequencies of each colour morph were positively correlated among species, a critical prediction of Müllerian mimicry. Predators learned to associate colour with chemical defences. Learned avoidance of the green morph of one species protected green morphs of another species. Avoidance of blue morphs was completely generalized to green morphs, but surprisingly, avoidance of green morphs was less generalized to blue morphs. This asymmetrical generalization should favour green morphs: indeed, green morphs persist in blue communities, whereas blue morphs are entirely excluded from green communities. We did not find a correlation between elevation and coloration, rejecting thermoregulation as an explanation for diversity between mimicry rings. Biased predation could explain within-community diversity in warning coloration, providing a solution to a long-standing puzzle. We propose testable hypotheses for why asymmetric generalization occurs, and how predators maintain the predominance of blue morphs in a community, despite asymmetric generalization.
Collapse
Affiliation(s)
- David W Kikuchi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Samuel J Waldron
- Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland.,Molecular Evolutionary Biology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Janne K Valkonen
- Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland
| | - Susanne Dobler
- Molecular Evolutionary Biology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Jyväskylä, Finland.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
34
|
Hämäläinen L, Mappes J, Rowland HM, Teichmann M, Thorogood R. Social learning within and across predator species reduces attacks on novel aposematic prey. J Anim Ecol 2020; 89:1153-1164. [PMID: 32077104 PMCID: PMC7317195 DOI: 10.1111/1365-2656.13180] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
To make adaptive foraging decisions, predators need to gather information about the profitability of prey. As well as learning from prey encounters, recent studies show that predators can learn about prey defences by observing the negative foraging experiences of conspecifics. However, predator communities are complex. While observing heterospecifics may increase learning opportunities, we know little about how social information use varies across predator species. Social transmission of avoidance among predators also has potential consequences for defended prey. Conspicuous aposematic prey are assumed to be an easy target for naïve predators, but this cost may be reduced if multiple predators learn by observing single predation events. Heterospecific information use by predators might further benefit aposematic prey, but this remains untested. Here we test conspecific and heterospecific information use across a predator community with wild-caught blue tits (Cyanistes caeruleus) and great tits (Parus major). We used video playback to manipulate social information about novel aposematic prey and then compared birds' foraging choices in 'a small-scale novel world' that contained novel palatable and aposematic prey items. We expected that blue tits would be less likely to use social information compared to great tits. However, we found that both blue tits and great tits consumed fewer aposematic prey after observing a negative foraging experience of a demonstrator. In fact, this effect was stronger in blue tits compared to great tits. Interestingly, blue tits also learned more efficiently from watching conspecifics, whereas great tits learned similarly regardless of the demonstrator species. Together, our results indicate that social transmission about novel aposematic prey occurs in multiple predator species and across species boundaries. This supports the idea that social interactions among predators can reduce attacks on aposematic prey and therefore influence selection for prey defences.
Collapse
Affiliation(s)
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Hannah M Rowland
- Department of Zoology, University of Cambridge, Cambridge, UK.,Max Planck Institute for Chemical Ecology, Jena, Germany.,Institute of Zoology, Zoological Society of London, London, UK
| | - Marianne Teichmann
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Chair of Nature Conservation & Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Rose Thorogood
- Department of Zoology, University of Cambridge, Cambridge, UK.,HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Arias M, Davey JW, Martin S, Jiggins C, Nadeau N, Joron M, Llaurens V. How do predators generalize warning signals in simple and complex prey communities? Insights from a videogame. Proc Biol Sci 2020; 287:20200014. [PMID: 32070260 DOI: 10.1098/rspb.2020.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The persistence of distinct warning signals within and between sympatric mimetic communities is a puzzling evolutionary question because selection favours convergence of colour patterns among toxic species. Such convergence is partly shaped by predators' reaction to similar but not identical stimulus (i.e. generalization behaviour), and generalization by predators is likely to be shaped by the diversity of local prey. However, studying generalization behaviour is generally limited to simple variations of prey colour patterns. Here, we used a computer game played by humans as surrogate predators to investigate generalization behaviours in simple (4 morphs) and complex (10 morphs) communities of unprofitable (associated with a penalty) and profitable butterflies. Colour patterns used in the game are observed in the natural populations of unprofitable butterfly species such as Heliconius numata. Analyses of 449 game participants' behaviours show that players avoided unprofitable prey more readily in simple than in complex communities. However, generalization was observed only in players that faced complex communities, enhancing the protection of profitable prey that looked similar to at least one unprofitable morph. Additionally, similarity among unprofitable prey also reduced attack rates only in complex communities. These results are consistent with previous studies using avian predators but artificial colour patterns and suggest that mimicry is more likely to evolve in complex communities where increases in similarity are more likely to be advantageous.
Collapse
Affiliation(s)
- Mónica Arias
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles CP 50, 57 rue Cuvier, 75005 Paris, France.,Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier, École Pratique des Hautes Études, Université Paul Valéry, 34293 Montpellier 5, France
| | - John W Davey
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Simon Martin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Chris Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nicola Nadeau
- Molecular Ecology Lab, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS-Université de Montpellier, École Pratique des Hautes Études, Université Paul Valéry, 34293 Montpellier 5, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles CP 50, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
36
|
Koskenpato K, Lehikoinen A, Lindstedt C, Karell P. Gray plumage color is more cryptic than brown in snowy landscapes in a resident color polymorphic bird. Ecol Evol 2020; 10:1751-1761. [PMID: 32128114 PMCID: PMC7042677 DOI: 10.1002/ece3.5914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Camouflage may promote fitness of given phenotypes in different environments. The tawny owl (Strix aluco) is a color polymorphic species with a gray and brown morph resident in the Western Palearctic. A strong selection pressure against the brown morph during snowy and cold winters has been documented earlier, but the selection mechanisms remain unresolved. Here, we hypothesize that selection favors the gray morph because it is better camouflaged against predators and mobbers in snowy conditions compared to the brown one. We conducted an online citizen science experiment where volunteers were asked to locate a gray or a brown tawny owl specimen from pictures taken in snowy and snowless landscapes. Our results show that the gray morph in snowy landscapes is the hardest to detect whereas the brown morph in snowy landscapes is the easiest to detect. With an avian vision model, we show that, similar to human perceivers, the brown morph is more conspicuous than the gray against coniferous tree trunks for a mobbing passerine. We suggest that with better camouflage, the gray morph may avoid mobbers and predators more efficiently than the brown morph and thus survive better in snowy environments. As winters are getting milder and shorter in the species range, the selection periods against brown coloration may eventually disappear or shift poleward.
Collapse
Affiliation(s)
- Katja Koskenpato
- The Helsinki Lab of OrnithologyFinnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
- Bioeconomy Research TeamNovia University of Applied SciencesEkenäsFinland
| | - Aleksi Lehikoinen
- The Helsinki Lab of OrnithologyFinnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Carita Lindstedt
- Department of Biological and Environmental SciencesCentre of Excellence in Biological InteractionsUniversity of JyväskyläJyväskyläFinland
| | - Patrik Karell
- Bioeconomy Research TeamNovia University of Applied SciencesEkenäsFinland
- Department of BiologyLund UniversityLundSweden
| |
Collapse
|
37
|
Anderson NK, Gutierrez SO, Bernal XE. From forest to city: urbanization modulates relative abundance of anti-predator coloration. JOURNAL OF URBAN ECOLOGY 2019. [DOI: 10.1093/jue/juz016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Increased urbanization has resulted in community changes including alteration of predator communities. Little is known, however, about how such changes affect morphological anti-predator traits. Given the importance of coloration in predator avoidance, this trait in particular is expected to be susceptible to novel selective environments in urban areas. Here, we investigate the coloration pattern of a Neotropical anuran species, the túngara frog (Engystomops pustulosus), along an urbanization gradient. Túngara frogs have two distinct color patterns (unstriped and striped) which we found to occur at different frequencies along an urbanization gradient. Striped individuals increased in frequency with urbanization. To assess the strength of selection imposed by predators on the two color morphs, we deployed clay models of túngara frogs in forest and semi-urban populations. In addition, we examined microhabitat selection by individuals of the different morphs. We found higher predation rates associated with urbanization than forested areas. In particular, frogs from forested habitats had lower number of attacks by avian predators. Contrary to our predictions, however, predation rates were similar for both color morphs independent of urbanization. Also, coloration of the frogs did not affect their microhabitat preference. Overall, túngara frogs are more likely to have a striped coloration pattern in semi-urban areas where predation by birds is higher than in the forest. Our findings suggest that factors other than predation pressure shape the coloration pattern of urban frogs and emphasize the complex nature of effects that anthropogenic changes in habitat and predator communities may have on prey morphology.
Collapse
Affiliation(s)
- Nigel K Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Stephanie O Gutierrez
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Ximena E Bernal
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá, República de Panamá
| |
Collapse
|
38
|
Galarza JA, Dhaygude K, Ghaedi B, Suisto K, Valkonen J, Mappes J. Evaluating responses to temperature during pre-metamorphosis and carry-over effects at post-metamorphosis in the wood tiger moth (Arctia plantaginis). Philos Trans R Soc Lond B Biol Sci 2019; 374:20190295. [PMID: 31438813 PMCID: PMC6711291 DOI: 10.1098/rstb.2019.0295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2019] [Indexed: 01/03/2023] Open
Abstract
Insect metamorphosis is one of the most recognized processes delimiting transitions between phenotypes. It has been traditionally postulated as an adaptive process decoupling traits between life stages, allowing evolutionary independence of pre- and post-metamorphic phenotypes. However, the degree of autonomy between these life stages varies depending on the species and has not been studied in detail over multiple traits simultaneously. Here, we reared full-sib larvae of the warningly coloured wood tiger moth (Arctia plantaginis) in different temperatures and examined their responses for phenotypic (melanization change, number of moults), gene expression (RNA-seq and qPCR of candidate genes for melanization and flight performance) and life-histories traits (pupal weight, and larval and pupal ages). In the emerging adults, we examined their phenotypes (melanization and size) and compared them at three condition proxies: heat absorption (ability to engage flight), flight metabolism (ability to sustain flight) and overall flight performance. We found that some larval responses, as evidenced by gene expression and change in melanization, did not have an effect on the adult (i.e. size and wing melanization), whereas other adult traits such as heat absorption, body melanization and flight performance were found to be impacted by rearing temperature. Adults reared at high temperature showed higher resting metabolic rate, lower body melanization, faster heating rate, lower body temperature at take-off and inferior flight performance than cold-reared adults. Thus, our results did not unambiguously support the environment-matching hypothesis. Our results illustrate the importance of assessing multiple traits across life stages as these may only be partly decoupled by metamorphosis. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Juan A. Galarza
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | | | - Behnaz Ghaedi
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Kaisa Suisto
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Janne Valkonen
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
39
|
Lawrence JP, Rojas B, Fouquet A, Mappes J, Blanchette A, Saporito RA, Bosque RJ, Courtois EA, Noonan BP. Weak warning signals can persist in the absence of gene flow. Proc Natl Acad Sci U S A 2019; 116:19037-19045. [PMID: 31481623 PMCID: PMC6754554 DOI: 10.1073/pnas.1901872116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.
Collapse
Affiliation(s)
- J P Lawrence
- Department of Biology, University of Mississippi, University, MS 38677;
| | - Bibiana Rojas
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland;
| | - Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique, Centre National de la Recherche Scientifique, UMR5174, 31062 Toulouse cedex 9, France
| | - Johanna Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Annelise Blanchette
- Department of Biology, John Carroll University, University Heights, OH 44118
| | - Ralph A Saporito
- Department of Biology, John Carroll University, University Heights, OH 44118
| | | | - Elodie A Courtois
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens, Centre de Recherche de Montabo, Universite de Guyane, BP 70620, 97334 Cayenne cedex, France
| | - Brice P Noonan
- Department of Biology, University of Mississippi, University, MS 38677
| |
Collapse
|
40
|
Lindstedt C, Murphy L, Mappes J. Antipredator strategies of pupae: how to avoid predation in an immobile life stage? Philos Trans R Soc Lond B Biol Sci 2019; 374:20190069. [PMID: 31438812 DOI: 10.1098/rstb.2019.0069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antipredator strategies of the pupal stage in insects have received little attention in comparison to larval or adult stages. This is despite the fact that predation risk can be high during the pupal stage, making it a critical stage for subsequent fitness. The immobile pupae are not, however, defenceless; a wide range of antipredator strategies have evolved against invertebrate and vertebrate predators. The most common strategy seems to be 'avoiding encounters with predators' by actively hiding in vegetation and soil or via cryptic coloration and masquerade. Pupae have also evolved behavioural and secondary defences such as defensive toxins, physical defences or deimatic movements and sounds. Interestingly, warning coloration used to advertise unprofitability has evolved very rarely, even though the pupal stage often contains defensive toxins in chemically defended species. In some species, pupae gain protection from conspecifics or mimic chemical and auditory signals and thereby manipulate other species to protect them. Our literature survey highlights the importance of studying selection pressures across an individual's life stages to predict how ontogenetic variation in selective environments shapes individual fitness and population dynamics in insects. Finally, we also suggest interesting avenues for future research to pursue. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Carita Lindstedt
- Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014 University of Jyväskylä, Jyväskylä, Finland
| | - Liam Murphy
- Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014 University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014 University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
41
|
Briolat ES, Burdfield‐Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev Camb Philos Soc 2019; 94:388-414. [PMID: 30152037 PMCID: PMC6446817 DOI: 10.1111/brv.12460] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
Collapse
Affiliation(s)
- Emmanuelle S. Briolat
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
| | - Emily R. Burdfield‐Steel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
| | - Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
- Department of Chemical EcologyBielefeld UniversityUniversitätsstraße 25, 33615, BielefeldGermany
| | - Katja H. Rönkä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, 00014Finland
| | - Brett M. Seymoure
- Department of BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
| | - Theodore Stankowich
- Department of Biological SciencesCalifornia State UniversityLong BeachCA 90840U.S.A.
| | - Adam M. M. Stuckert
- Department of BiologyEast Carolina University1000 E Fifth St, GreenvilleNC 27858U.S.A.
| |
Collapse
|
42
|
Multiple modalities in insect warning displays have additive effects against wild avian predators. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2643-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Prudic KL, Timmermann BN, Papaj DR, Ritland DB, Oliver JC. Mimicry in viceroy butterflies is dependent on abundance of the model queen butterfly. Commun Biol 2019; 2:68. [PMID: 30793046 PMCID: PMC6379391 DOI: 10.1038/s42003-019-0303-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/03/2018] [Indexed: 11/26/2022] Open
Abstract
Mimics should not exist without their models, yet often they do. In the system involving queen and viceroy butterflies, the viceroy is both mimic and co-model depending on the local abundance of the model, the queen. Here, we integrate population surveys, chemical analyses, and predator behavior assays to demonstrate how mimics may persist in locations with low-model abundance. As the queen becomes less locally abundant, the viceroy becomes more chemically defended and unpalatable to predators. However, the observed changes in viceroy chemical defense and palatability are not attributable to differing host plant chemical defense profiles. Our results suggest that mimetic viceroy populations are maintained at localities of low-model abundance through an increase in their toxicity. Sharing the burden of predator education in some places but not others may also lower the fitness cost of warning signals thereby supporting the origin and maintenance of aposematism. Kathleen Prudic et al. examine the persistence of mimicry in viceroy butterflies in locations with low model abundance. They show that when queen butterflies are less abundant, viceroy butterflies become more abundant, but also increase their chemical defenses to gain protection from predation.
Collapse
Affiliation(s)
- Kathleen L Prudic
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Barbara N Timmermann
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Daniel R Papaj
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - David B Ritland
- Department of Biology, Erskine College, Due West, SC, 29639, USA
| | - Jeffrey C Oliver
- Office of Digital Innovation & Stewardship, University Libraries, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
44
|
Doktorovová L, Exnerová A, Hotová Svádová K, Štys P, Adamová-Ježová D, Zverev V, Kozlov MV, Zvereva EL. Differential Bird Responses to Colour Morphs of an Aposematic Leaf Beetle may Affect Variation in Morph Frequencies in Polymorphic Prey Populations. Evol Biol 2018. [DOI: 10.1007/s11692-018-9465-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Briolat ES, Zagrobelny M, Olsen CE, Blount JD, Stevens M. No evidence of quantitative signal honesty across species of aposematic burnet moths (Lepidoptera: Zygaenidae). J Evol Biol 2018; 32:31-48. [PMID: 30317689 PMCID: PMC6378400 DOI: 10.1111/jeb.13389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022]
Abstract
Many defended species use conspicuous visual warning signals to deter potential predators from attacking. Traditional theory holds that these signals should converge on similar forms, yet variation in visual traits and the levels of defensive chemicals is common, both within and between species. It is currently unclear how the strength of signals and potency of defences might be related: conflicting theories suggest that aposematic signals should be quantitatively honest, or, in contrast, that investment in one component should be prioritized over the other, while empirical tests have yielded contrasting results. Here, we advance this debate by examining the relationship between defensive chemicals and signal properties in a family of aposematic Lepidoptera, accounting for phylogenetic relationships and quantifying coloration from the perspective of relevant predators. We test for correlations between toxin levels and measures of wing colour across 14 species of day‐flying burnet and forester moths (Lepidoptera: Zygaenidae), protected by highly aversive cyanogenic glucosides, and find no clear evidence of quantitative signal honesty. Significant relationships between toxin levels and coloration vary between sexes and sampling years, and several trends run contrary to expectations for signal honesty. Although toxin concentration is positively correlated with increasing luminance contrast in forewing pattern in 1 year, higher toxin levels are also associated with paler and less chromatically salient markings, at least in females, in another year. Our study also serves to highlight important factors, including sex‐specific trends and seasonal variation, that should be accounted for in future work on signal honesty in aposematic species.
Collapse
Affiliation(s)
- Emmanuelle S Briolat
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, UK
| | - Mika Zagrobelny
- Plant Biochemistry Laboratory and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carl E Olsen
- Plant Biochemistry Laboratory and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan D Blount
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, UK
| | - Martin Stevens
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
46
|
Seymoure BM, Raymundo A, McGraw KJ, Owen McMillan W, Rutowski RL. Environment-dependent attack rates of cryptic and aposematic butterflies. Curr Zool 2018; 64:663-669. [PMID: 30323845 PMCID: PMC6178784 DOI: 10.1093/cz/zox062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022] Open
Abstract
Many organisms have evolved adaptive coloration that reduces their risk of predation. Cryptic coloration reduces the likelihood of detection/recognition by potential predators, while warning or aposematic coloration advertises unprofitability and thereby reduces the likelihood of attack. Although some studies show that aposematic coloration functions better at decreasing attack rate than crypsis, recent work has suggested and demonstrated that crypsis and aposematism are both successful strategies for avoiding predation. Furthermore, the visual environment (e.g., ambient lighting, background) affects the ability for predators to detect prey. We investigated these 2 related hypotheses using 2 well-known visually aposematic species of Heliconius butterflies, which occupy different habitats (open-canopy vs. closed-canopy), and one palatable, cryptic, generalist species Junonia coenia. We tested if the differently colored butterflies differ in attack rates by placing plasticine models of each of the 3 species in 2 different tropical habitats where the butterflies naturally occur: disturbed, open-canopy habitat and forested, closed-canopy habitat. The cryptic model had fewer attacks than one of the aposematic models. Predation rates differed between the 2 habitats, with the open habitat having much higher predation. However, we did not find an interaction between species and habitat type, which is perplexing due to the different aposematic phenotypes naturally occurring in different habitats. Our findings suggest that during the Panamanian dry season avian predation on perched butterflies is not a leading cause in habitat segregation between the 2 aposematic species and demonstrate that cryptically colored animals at rest may be better than aposematic prey at avoiding avian attacks in certain environments.
Collapse
Affiliation(s)
- Brett M Seymoure
- Department of Biology, Colorado State University, Fort Collins, CO, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Andrew Raymundo
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
47
|
Correlates of color polymorphism in coconut crabs Birgus latro. ZOOLOGY 2018; 129:1-8. [DOI: 10.1016/j.zool.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022]
|
48
|
|
49
|
Phenotype-dependent mate choice and the influence of mixed-morph lineage on the reproductive success of a polymorphic and aposematic moth. Evol Ecol 2018. [DOI: 10.1007/s10682-018-9944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Rojas B, Burdfield-Steel E, De Pasqual C, Gordon S, Hernández L, Mappes J, Nokelainen O, Rönkä K, Lindstedt C. Multimodal Aposematic Signals and Their Emerging Role in Mate Attraction. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|