1
|
Dudaniec RY, Carey AR, Svensson EI, Hansson B, Yong CJ, Lancaster LT. Latitudinal clines in sexual selection, sexual size dimorphism and sex-specific genetic dispersal during a poleward range expansion. J Anim Ecol 2021; 91:1104-1118. [PMID: 33759189 DOI: 10.1111/1365-2656.13488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Range expansions can be shaped by sex differences in behaviours and other phenotypic traits affecting dispersal and reproduction. Here, we investigate sex differences in morphology, behaviour and genomic population differentiation along a climate-mediated range expansion in the common bluetail damselfly (Ischnura elegans) in northern Europe. We sampled 65 sites along a 583-km gradient spanning the I. elegans range in Sweden and quantified latitudinal gradients in site relative abundance, sex ratio and sex-specific shifts in body size and mating status (a measure of sexual selection). Using single nucleotide polymorphism (SNP) data for 426 individuals from 25 sites, we further investigated sex-specific landscape and climatic effects on neutral genetic connectivity and migration patterns. We found evidence for sex differences associated with the I. elegans range expansion, namely (a) increased male body size with latitude, but no latitudinal effect on female body size, resulting in reduced sexual dimorphism towards the range limit, (b) a steeper decline in male genetic similarity with increasing geographic distance than in females, (c) male-biased genetic migration propensity and (d) a latitudinal cline in migration distance (increasing migratory distances towards the range margin), which was stronger in males. Cooler mean annual temperatures towards the range limit were associated with increased resistance to gene flow in both sexes. Sex ratios became increasingly male biased towards the range limit, and there was evidence for a changed sexual selection regime shifting from favouring larger males in the south to favouring smaller males in the north. Our findings suggest sex-specific spatial phenotype sorting at the range limit, where larger males disperse more under higher landscape resistance associated with cooler climates. The combination of latitudinal gradients in sex-biased dispersal, increasing male body size and (reduced) sexual size dimorphism should have emergent consequences for sexual selection dynamics and the mating system at the expanding range front. Our study illustrates the importance of considering sex differences in the study of range expansions driven by ongoing climate change.
Collapse
Affiliation(s)
- Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexander R Carey
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Planning, Industry and Environment, Saving our Species Program, New South Wales Government, Sydney, NSW, Australia
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Chuan Ji Yong
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lesley T Lancaster
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Contribution of Connectivity Assessments to Green Infrastructure (GI). ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9040212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A major goal of green infrastructure (GI) is to provide functional networks of habitats and ecosystems to maintain biodiversity long-term, while at the same time optimizing landscape and ecosystem functions and services to meet human needs. Traditionally, connectivity studies are informed by movement ecology with species-specific attributes of the type and timing of movement (e.g., dispersal, foraging, mating) and movement distances, while spatial environmental data help delineate movement pathways across landscapes. To date, a range of methods and approaches are available that (a) are relevant across any organism and movement type independent of time and space scales, (b) are ready-to-use as standalone freeware or custom GIS implementation, and (c) produce appealing visual outputs that facilitate communication with land managers. However, to enhance the robustness of connectivity assessments and ensure that current trends in connectivity modeling contribute to GI with their full potential, common denominators on which to ground planning and design strategies are required. Likewise, comparable, repeatable connectivity assessments will be needed to put results of these scientific tools into practice for multi-functional GI plans and implementation. In this paper, we discuss use and limitations of state-of-the-art connectivity methods in contributing to GI implementation.
Collapse
|
3
|
Multifaceted implications of the competition between native and invasive crayfish: a glimmer of hope for the native’s long-term survival. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02136-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
László Z, Dénes AL, Király L, Tóthmérész B. Biased parasitoid sex ratios: Wolbachia, functional traits, local and landscape effects. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Andreguetto Maciel G, Mendes Coutinho R, André Kraenkel R. Critical patch-size for two-sex populations. Math Biosci 2018; 300:138-144. [PMID: 29605656 DOI: 10.1016/j.mbs.2018.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 11/30/2022]
Abstract
As environments become increasingly degraded, mainly due to human activities, species are often subject to isolated habitats surrounded by unfavorable regions. Since the pioneering work by Skellam [25] mathematical models have provided useful insights into the population persistence in such cases. Most of these models, however, neglect the sex structure of populations and the differences between males and females. In this work we investigate, through a reaction-diffusion system, the dynamics of a sex-structured population in a single semipermeable patch. The critical patch size for persistence is determined from implicit relationships between model parameters. The effects of the various growth and movement parameters are also investigated.
Collapse
Affiliation(s)
- Gabriel Andreguetto Maciel
- Instituto de Física Teórica, Universidade Estadual Paulista - UNESP, R. Dr. Teobaldo Ferraz 271, São Paulo 01140-070, Brazil.
| | | | | |
Collapse
|
6
|
Bertrand P, Bowman J, Dyer RJ, Manseau M, Wilson PJ. Sex-specific graphs: Relating group-specific topology to demographic and landscape data. Mol Ecol 2017; 26:3898-3912. [PMID: 28488269 DOI: 10.1111/mec.14174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023]
Abstract
Sex-specific genetic structure is a commonly observed pattern among vertebrate species. Facing differential selective pressures, individuals may adopt sex-specific life history traits that ultimately shape genetic variation among populations. Although differential dispersal dynamics are commonly detected in the literature, few studies have used genetic structure to investigate sex-specific functional connectivity. The recent use of graph theoretic approaches in landscape genetics has demonstrated network capacities to describe complex system behaviours where network topology represents genetic interaction among subunits. Here, we partition the overall genetic structure into sex-specific graphs, revealing different male and female dispersal dynamics of a fisher (Pekania [Martes] pennanti) metapopulation in southern Ontario. Our analyses based on network topologies supported the hypothesis of male-biased dispersal. Furthermore, we demonstrated that the effect of the landscape, identified at the population level, could be partitioned among sex-specific strata. We found that female connectivity was negatively correlated with snow depth, whereas connectivity among males was not. Our findings underscore the potential of conducting sex-specific analysis by identifying landscape elements or configuration that differentially promotes or impedes functional connectivity between sexes, revealing processes that may otherwise remain cryptic. We propose that the sex-specific graph approach would be applicable to other vagile species where differential sex-specific processes are expected to occur.
Collapse
Affiliation(s)
- Philip Bertrand
- Département de Biologie, Chimie & Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Jeff Bowman
- Wildlife Research & Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, ON, Canada
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Micheline Manseau
- Office of the Chief Ecosystem Scientist, Gatineau, QC, Canada.,Natural Resources Institute, University of Manitoba, Winnipeg, MB, Canada
| | - Paul J Wilson
- Biology Department, Trent University, Peterborough, ON, Canada
| |
Collapse
|
7
|
Peacock MM, Gustin MS, Kirchoff VS, Robinson ML, Hekkala E, Pizzarro-Barraza C, Loux T. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related? THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:221-236. [PMID: 27135585 DOI: 10.1016/j.scitotenv.2016.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation.
Collapse
Affiliation(s)
- Mary M Peacock
- Department of Biology, University of Nevada-Reno, Reno, NV 89557, USA; Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada-Reno, Reno, NV 89557, USA.
| | - Mae S Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV 89557, USA
| | | | - Morgan L Robinson
- Department of Biology, University of Nevada-Reno, Reno, NV 89557, USA; Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada-Reno, Reno, NV 89557, USA
| | - Evon Hekkala
- Department of Biological Sciences, Fordham University, New York, NY 10458, USA
| | - Claudia Pizzarro-Barraza
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV 89557, USA
| | - Tim Loux
- United States Fish and Wildlife Service, Lahontan National Fish Hatchery Complex, 710 Highway 395, Gardnerville, NV 89410, USA
| |
Collapse
|
8
|
Kvistad L, Ingwersen D, Pavlova A, Bull JK, Sunnucks P. Very Low Population Structure in a Highly Mobile and Wide-Ranging Endangered Bird Species. PLoS One 2015; 10:e0143746. [PMID: 26649426 PMCID: PMC4674126 DOI: 10.1371/journal.pone.0143746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
The loss of biodiversity following fragmentation and degradation of habitat is a major issue in conservation biology. As competition for resources increases following habitat loss and fragmentation, severe population declines may occur even in common, highly mobile species; such demographic decline may cause changes within the population structure of the species. The regent honeyeater, Anthochaera phrygia, is a highly nomadic woodland bird once common in its native southeast Australia. It has experienced a sharp decline in abundance since the late 1970s, following clearing of large areas of its preferred habitat, box-ironbark woodland, within the last 200 years. A captive breeding program has been established as part of efforts to restore this species. This study used genetic data to examine the range-wide population structure of regent honeyeaters, including spatial structure, its change through time, sex differences in philopatry and mobility, and genetic differences between the captive and wild populations. There was low genetic differentiation between birds captured in different geographic areas. Despite the recent demographic decline, low spatial structure appears to have some temporal consistency. Both sexes appear to be highly mobile, and there does not seem to be significant genetic differentiation between the captive and wild populations. We conclude that management efforts for survival of this species, including habitat protection, restoration, and release of captive-bred birds into the wild, can treat the species as effectively a single genetic population.
Collapse
Affiliation(s)
- Lynna Kvistad
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - James K. Bull
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Toth CA, Cummings G, Dennis TE, Parsons S. Adoption of alternative habitats by a threatened, “obligate” forest-dwelling bat in a fragmented landscape. J Mammal 2015. [DOI: 10.1093/jmammal/gyv092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Frick KM, Ritchie AL, Krauss SL. Field of Dreams: Restitution of Pollinator Services in Restored Bird-Pollinated Plant Populations. Restor Ecol 2014. [DOI: 10.1111/rec.12152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karen M. Frick
- Science Directorate, Botanic Gardens and Parks Authority; Kings Park and Botanic Garden; Fraser Avenue West Perth 6005 Australia
- School of Plant Biology; University of Western Australia; Crawley 6005 Australia
| | - Alison L. Ritchie
- Science Directorate, Botanic Gardens and Parks Authority; Kings Park and Botanic Garden; Fraser Avenue West Perth 6005 Australia
- School of Plant Biology; University of Western Australia; Crawley 6005 Australia
| | - Siegfried L. Krauss
- Science Directorate, Botanic Gardens and Parks Authority; Kings Park and Botanic Garden; Fraser Avenue West Perth 6005 Australia
- School of Plant Biology; University of Western Australia; Crawley 6005 Australia
| |
Collapse
|
11
|
Amos N, Harrisson KA, Radford JQ, White M, Newell G, Mac Nally R, Sunnucks P, Pavlova A. Species- and sex-specific connectivity effects of habitat fragmentation in a suite of woodland birds. Ecology 2014; 95:1556-68. [PMID: 25039220 DOI: 10.1890/13-1328.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Loss of functional connectivity following habitat loss and fragmentation could drive species declines. A comprehensive understanding of fragmentation effects on functional connectivity of an ecological assemblage requires investigation of multiple species with different mobilities, at different spatial scales, for each sex, and in different landscapes. Based on published data on mobility and ecological responses to fragmentation of 10 woodland-dependent birds, and using simulation studies, we predicted that (1) fragmentation would impede dispersal and gene flow of eight "decliners" (species that disappear from suitable patches when landscape-level tree cover falls below species-specific thresholds), but not of two "tolerant" species (whose occurrence in suitable habitat patches is independent of landscape tree cover); and that fragmentation effects would be stronger (2) in the least mobile species, (3) in the more philopatric sex, and (4) in the more fragmented region. We tested these predictions by evaluating spatially explicit isolation-by-landscape-resistance models of gene flow in fragmented landscapes across a 50 x 170 km study area in central Victoria, Australia, using individual and population genetic distances. To account for sex-biased dispersal and potential scale- and configuration-specific effects, we fitted models specific to sex and geographic zones. As predicted, four of the least mobile decliners showed evidence of reduced genetic connectivity. The responses were strongly sex specific, but in opposite directions in the two most sedentary species. Both tolerant species and (unexpectedly) four of the more mobile decliners showed no reduction in gene flow. This is unlikely to be due to time lags because more mobile species develop genetic signatures of fragmentation faster than do less mobile ones. Weaker genetic effects were observed in the geographic zone with more aggregated vegetation, consistent with gene flow being unimpeded by landscape structure. Our results indicate that for all but the most sedentary species in our system, the movement of the more dispersive sex (females in most cases) maintains overall genetic connectivity across fragmented landscapes in the study area, despite some small-scale effects on the more philopatric sex for some species. Nevertheless, to improve population viability for the less mobile bird species, structural landscape connectivity must be increased.
Collapse
|