1
|
Martínez L, Zattara EE, Arbetman MP, Morales CL, Masonbrink RE, Severin AJ, Aizen MA, Toth AL. Chromosome-Level Assembly and Annotation of the Genome of the Endangered Giant Patagonian Bumble Bee Bombus dahlbomii. Genome Biol Evol 2024; 16:evae146. [PMID: 38973368 DOI: 10.1093/gbe/evae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
This article describes a genome assembly and annotation for Bombus dahlbomii, the giant Patagonian bumble bee. DNA from a single, haploid male collected in Argentina was used for PacBio (HiFi) sequencing, and Hi-C technology was then used to map chromatin contacts. Using Juicer and manual curation, the genome was scaffolded into 18 main pseudomolecules, representing a high-quality, near chromosome-level assembly. The sequenced genome size is estimated at 265 Mb. The genome was annotated based on RNA sequencing data of another male from Argentina, and BRAKER3 produced 15,767 annotated genes. The genome and annotation show high completeness, with >95% BUSCO scores for both the genome and annotated genes (based on conserved genes from Hymenoptera). This genome provides a valuable resource for studying the biology of this iconic and endangered species, as well as for understanding the impacts of its decline and designing strategies for its preservation.
Collapse
Affiliation(s)
- Lican Martínez
- Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Eduardo E Zattara
- Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Marina P Arbetman
- Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Carolina L Morales
- Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | | | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, IA, USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Marcelo A Aizen
- Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
Miller-Struttmann NE. Climate change predicted to exacerbate declines in bee populations. Nature 2024; 628:270-271. [PMID: 38538890 DOI: 10.1038/d41586-024-00681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
|
3
|
Ghisbain G, Thiery W, Massonnet F, Erazo D, Rasmont P, Michez D, Dellicour S. Projected decline in European bumblebee populations in the twenty-first century. Nature 2024; 628:337-341. [PMID: 37704726 DOI: 10.1038/s41586-023-06471-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023]
Abstract
Habitat degradation and climate change are globally acting as pivotal drivers of wildlife collapse, with mounting evidence that this erosion of biodiversity will accelerate in the following decades1-3. Here, we quantify the past, present and future ecological suitability of Europe for bumblebees, a threatened group of pollinators ranked among the highest contributors to crop production value in the northern hemisphere4-8. We demonstrate coherent declines of bumblebee populations since 1900 over most of Europe and identify future large-scale range contractions and species extirpations under all future climate and land use change scenarios. Around 38-76% of studied European bumblebee species currently classified as 'Least Concern' are projected to undergo losses of at least 30% of ecologically suitable territory by 2061-2080 compared to 2000-2014. All scenarios highlight that parts of Scandinavia will become potential refugia for European bumblebees; it is however uncertain whether these areas will remain clear of additional anthropogenic stressors not accounted for in present models. Our results underline the critical role of global change mitigation policies as effective levers to protect bumblebees from manmade transformation of the biosphere.
Collapse
Affiliation(s)
- Guillaume Ghisbain
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium.
| | - Wim Thiery
- Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - François Massonnet
- Earth and Climate Research Center, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Diana Erazo
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Rasmont
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Han L, Chang ZM, Ren CS, Chen XS, Smagghe G, Yuan YG, Long JK. Colony performance of three native bumblebee species from South China and association with their gut microbiome. INSECT SCIENCE 2024. [PMID: 38516802 DOI: 10.1111/1744-7917.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
Bumblebees play an important ecological economic role as pollinators in nature and agriculture. For reasons of biosecurity, many countries promote the cultivation of native bumblebee species for crop pollination instead of importing "alien" species. In South China, a few bumblebee species are considered useful in this way, particularly, Bombus atripes, Bombus bicoloratus and Bombus breviceps. However, whether they are suitable for artificial rearing and forming healthy colonies for pollination, remains unknown. In this project, queens from the 3 native species of Guizhou Province were collected and colonies were started under standardized conditions. The colonies were scored based on 19 parameters, including the stage of colony development, number and weight of offspring, and diet consumed. The data revealed that B. breviceps had the best performance, produced more workers and consumed the smallest diet. Next, we performed 16S rDNA sequencing of the bacterial communities found in the guts of offspring workers, and then a correlation analysis between colony performance and gut bacteria was conducted. Here, B. breviceps showed the highest diversity in gut bacterial composition, dominated by the bacteria Gilliamella, Snodgrassella, Enterobacter, and Lactobacillus Firm5. The higher the abundance of Snodgrassella, the better the performance of the colony in the foundation stage, and later Lactobacillus Firm5, Apibacter and Bifidobacterium were beneficial during the stages of rapid growth and colony decline. Although we do not understand all of the interactions yet, these correlations explain why B. breviceps demonstrated better colony performance. Our data provide valuable information for breeding local Bombus species and will contribute to developing strong colonies for crop pollination.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education/College of Animal Science, Guizhou University, Guiyang, China
| | - Zhi-Min Chang
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect Resources, Guizhou University, Guiyang, China
| | - Chang-Shi Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education/College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang-Sheng Chen
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect Resources, Guizhou University, Guiyang, China
| | - Guy Smagghe
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect Resources, Guizhou University, Guiyang, China
| | - Yi-Ge Yuan
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect Resources, Guizhou University, Guiyang, China
| | - Jian-Kun Long
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect Resources, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Klocek D, Grybchuk D, Macedo DH, Galan A, Votýpka J, Schmid-Hempel R, Schmid-Hempel P, Yurchenko V, Kostygov AY. RNA viruses of Crithidia bombi, a parasite of bumblebees. J Invertebr Pathol 2023; 201:107991. [PMID: 37714407 DOI: 10.1016/j.jip.2023.107991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Leishbuviridae (Bunyavirales) are a diverse monophyletic group of negative-sense single-stranded RNA virus infecting parasitic flagellates of the family Trypanosomatidae. The presence of RNA viruses in trypanosomatids can influence the virulence of the latter. Here, we performed a screening for viruses in Crithidia bombi - a common parasite of important pollinators Bombus spp. (bumblebees) that negatively affects its host in stressful conditions. The majority (8/10) of C. bombi isolates collected in Europe and North America were positive for a virus that we named Crithidia bombi leishbuvirus 1 with high conservation of amino acid sequences between isolates. The results of our comparative phylogenetic analyses of the trypanosomatids and their viruses suggest that the high mobility of bumblebees and frequent coinfections by different strains of C. bombi determine an extensive viral exchange between the latter.
Collapse
Affiliation(s)
- Donnamae Klocek
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czechia
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia
| | - Jan Votýpka
- Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czechia
| | | | - Paul Schmid-Hempel
- Institute of Integrative Biology, ETH Zürich, 16 8092 Zürich, Switzerland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia.
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czechia.
| |
Collapse
|
6
|
Gutierrez GM, LeCroy KA, Roulston TH, Biddinger DJ, López-Uribe MM. Osmia taurus (Hymenoptera: Megachilidae): A Non-native Bee Species With Invasiveness Potential in North America. ENVIRONMENTAL ENTOMOLOGY 2023; 52:149-156. [PMID: 36806615 DOI: 10.1093/ee/nvad005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 06/18/2023]
Abstract
Bees are important pollinators and are essential for the reproduction of many plants in natural and agricultural ecosystems. However, bees can have adverse ecological effects when introduced to areas outside of their native geographic ranges. Dozens of non-native bee species are currently found in North America and have raised concerns about their potential role in the decline of native bee populations. Osmia taurus Smith (Hymenoptera: Megachilidae) is a mason bee native to eastern Asia that was first reported in the United States in 2002. Since then, this species has rapidly expanded throughout the eastern part of North America. Here, we present a comprehensive review of the natural history of O. taurus, document its recent history of spread through the United States and Canada, and discuss the evidence suggesting its potential for invasiveness. In addition, we compare the biology and history of colonization of O. taurus to O. cornifrons (Radoszkowski), another non-native mason bee species now widespread in North America. We highlight gaps of knowledge and future research directions to better characterize the role of O. taurus in the decline of native Osmia spp. Panzer and the facilitation of invasive plant-pollinator mutualisms.
Collapse
Affiliation(s)
- Grace M Gutierrez
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kathryn A LeCroy
- Department of Entomology, Cornell University, Ithaca, NY, 2126, USA
| | - T'ai H Roulston
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22903, USA
| | - David J Biddinger
- Penn State Fruit Research and Extension Center, Biglerville, PA, 17207, USA
| | - Margarita M López-Uribe
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Yanagisawa T, Kato Y, Inoue MN. Infection Prevalence of Microsporidia Vairimorpha ( Nosema) spp. in Japanese Bumblebees. INSECTS 2023; 14:340. [PMID: 37103155 PMCID: PMC10145284 DOI: 10.3390/insects14040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Microsporidia are spore-forming intracellular parasites of various invertebrates and vertebrates. Vairimorpha bombi negatively affects the fitness of bumblebees and its prevalence correlates with declining bumblebee populations. The invasive alien species Bombus terrestris colonized Japan and possibly introduced new parasites. To assess the infection prevalence of V. bombi in Japanese bumblebees and B. terrestris, we investigated V. bombi infections using PCR and microscopy. The prevalence of sporulating V. bombi infections in three Bombus s. str. species/subspecies was low, whereas that of non/low-sporulating Vairimorpha sp. infections in three Diversobombus species/subspecies was high. Invasive B. terrestris showed low prevalence of non/low-sporulating V. bombi infections and shared the same V. bombi haplotype with B. hypocrita found in Hokkaido, where B. terrestris is present, and in Honshu, where B. terrestris is absent. Although V. bombi may have been introduced with B. terrestris colonies imported from Europe, it seems to be originally distributed in Japan. Furthermore, a new Vairimorpha sp. was found in Japanese bumblebee species. V. bombi and Vairimorpha sp. showed different organ and host specificities in bumblebees. There are no reports on the specific effects of other Vairimorpha spp. on bumblebees; further studies are needed to clarify the individual characteristics of Vairimorpha spp.
Collapse
|
8
|
Ren CS, Chang ZM, Han L, Chen XS, Long JK. Higher Essential Amino Acid and Crude Protein Contents in Pollen Accelerate the Oviposition and Colony Foundation of Bombus breviceps (Hymenoptera: Apidae). INSECTS 2023; 14:203. [PMID: 36835772 PMCID: PMC9965574 DOI: 10.3390/insects14020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Pollen is an important source of nutrition for bumblebees to survive, reproduce, and raise their offspring. To explore the nutritional requirements for the egg laying and hatching of queenright Bombus breviceps colonies, camellia pollen, oilseed rape pollen, apricot pollen, and mixtures of two or three types of pollen in equal proportions were used to feed the queens in this study. The results showed that the camellia pollen with a higher essential amino acid content was superior to the pollen with a lower essential amino acid content in the initial egg-laying time (p < 0.05), egg number (p < 0.05), larval ejection (p < 0.01), time of first worker emergence (p < 0.05), and the average weight of workers in the first batch (p < 0.01). It took less time for colonies under the camellia pollen and camellia-oilseed rape-apricot pollen mix treatments, both with a higher crude protein content, to reach ten workers in the colony (p < 0.01). On the contrary, the queens fed apricot pollen never laid an egg, and larvae fed oilseed rape pollen were all ejected-both pollens with a lower essential amino acid content. The results emphasize that the diet should be rationally allocated to meet the nutritional needs of local bumblebees at various stages when guiding them to lay eggs, hatch, and develop a colony.
Collapse
Affiliation(s)
- Chang-Shi Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education/College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhi-Min Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education/College of Animal Science, Guizhou University, Guiyang 550025, China
- Institute of Entomology/Special Key Laboratory for Developing and Utilizing of Insect Resources, Guizhou University, Guiyang 550025, China
| | - Lei Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education/College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang-Sheng Chen
- Institute of Entomology/Special Key Laboratory for Developing and Utilizing of Insect Resources, Guizhou University, Guiyang 550025, China
| | - Jian-Kun Long
- Institute of Entomology/Special Key Laboratory for Developing and Utilizing of Insect Resources, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Words matter: how ecologists discuss managed and non-managed bees and birds. Scientometrics 2023. [DOI: 10.1007/s11192-022-04620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractEffectively promoting the stability and quality of ecosystem services involves the successful management of domesticated species and the control of introduced species. In the pollinator literature, interest and concern regarding pollinator species and pollinator health dramatically increased in recent years. Concurrently, the use of loaded terms when discussing domesticated and non-native species may have increased. As a result, pollinator ecology has inherited both the confusion associated with invasion biology’s lack of a standardized terminology to describe native, managed, or introduced species as well as loaded terms with very strong positive or negative connotations. The recent explosion of research on native bees and alternative pollinators, coupled with the use of loaded language, has led to a perceived divide between native bee and managed bee researchers. In comparison, the bird literature discusses the study of managed (poultry) and non-managed (all other birds) species without an apparent conflict with regard to the use of terms with strong connotations or sentiment. Here, we analyze word usage when discussing non-managed and managed bee and bird species in 3614 ecological and evolutionary biology papers published between 1990 and 2019. Using time series analyses, we demonstrate how the use of specific descriptor terms (such as wild, introduced, and exotic) changed over time. We then conducted co-citation network analyses to determine whether papers that share references have similar terminology and sentiment. We predicted a negative language bias towards introduced species and positive language bias towards native species. We found an association between the term invasive and bumble bees and we observed significant increases in the usage of more ambiguous terms to describe non-managed species, such as wild. We detected a negative sentiment associated with the research area of pathogen spillover in bumble bees, which corroborates the subjectivity that language carries. We recommend using terms that acknowledge the role of human activities on pathogen spillover and biological invasions. Avoiding the usage of loaded terms when discussing managed and non-managed species will advance our understanding and promote effective and productive communication across scientists, general public, policy makers and other stake holders in our society.
Collapse
|
10
|
Dobelmann J, Felden A, Lester PJ. An invasive ant increases deformed wing virus loads in honey bees. Biol Lett 2023; 19:20220416. [PMID: 36651030 PMCID: PMC9845979 DOI: 10.1098/rsbl.2022.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The majority of invasive species are best known for their effects as predators. However, many introduced predators may also be substantial reservoirs for pathogens. Honey bee-associated viruses are found in various arthropod species including invasive ants. We examined how the globally invasive Argentine ant (Linepithema humile), which can reach high densities and infest beehives, is associated with pathogen dynamics in honey bees. Viral loads of deformed wing virus (DWV), which has been linked to millions of beehive deaths around the globe, and black queen cell virus significantly increased in bees when invasive ants were present. Microsporidian and trypanosomatid infections, which are more bee-specific, were not affected by ant invasion. The bee virome in autumn revealed that DWV was the predominant virus with the highest infection levels and that no ant-associated viruses were infecting bees. Viral spillback from ants could increase infections in bees. In addition, ant attacks could pose a significant stressor to bee colonies that may affect virus susceptibility. These viral dynamics are a hidden effect of ant pests, which could have a significant impact on disease emergence in this economically important pollinator. Our study highlights a perhaps overlooked effect of species invasions: changes in pathogen dynamics.
Collapse
Affiliation(s)
- Jana Dobelmann
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm 89081, Germany
| | - Antoine Felden
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
11
|
Kline O, Phan NT, Porras MF, Chavana J, Little CZ, Stemet L, Acharya RS, Biddinger DJ, Reddy GVP, Rajotte EG, Joshi NK. Biology, Genetic Diversity, and Conservation of Wild Bees in Tree Fruit Orchards. BIOLOGY 2022; 12:31. [PMID: 36671724 PMCID: PMC9854918 DOI: 10.3390/biology12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Different species of bees provide essential ecosystem services by pollinating various agricultural crops, including tree fruits. Many fruits and nuts depend on insect pollination, primarily by wild and managed bees. In different geographical regions where orchard crops are grown, fruit growers rely on wild bees in the farmscape and use orchard bees as alternative pollinators. Orchard crops such as apples, pears, plums, apricots, etc., are mass-flowering crops and attract many different bee species during their bloom period. Many bee species found in orchards emerge from overwintering as the fruit trees start flowering in spring, and the active duration of these bees aligns very closely with the blooming time of fruit trees. In addition, most of the bees in orchards are short-range foragers and tend to stay close to the fruit crops. However, the importance of orchard bee communities is not well understood, and many challenges in maintaining their populations remain. This comprehensive review paper summarizes the different types of bees commonly found in tree fruit orchards in the fruit-growing regions of the United States, their bio-ecology, and genetic diversity. Additionally, recommendations for the management of orchard bees, different strategies for protecting them from multiple stressors, and providing suitable on-farm nesting and floral resource habitats for propagation and conservation are discussed.
Collapse
Affiliation(s)
- Olivia Kline
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ngoc T. Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Vietnam
| | - Mitzy F. Porras
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua Chavana
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Coleman Z. Little
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | - Lilia Stemet
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roshani S. Acharya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - David J. Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA
| | - Gadi V. P. Reddy
- USDA-ARS-Southern Insect Management Research Unite, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
12
|
Bar-Shai N, Motro U, Shmida A, Bloch G. Earlier Morning Arrival to Pollen-Rewarding Flowers May Enable Feral Bumble Bees to Successfully Compete with Local Bee Species and Expand Their Distribution Range in a Mediterranean Habitat. INSECTS 2022; 13:816. [PMID: 36135517 PMCID: PMC9503872 DOI: 10.3390/insects13090816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
During recent decades, bumble bees (Bombus terrestris) have continuously expanded their range in the Mediterranean climate regions of Israel. To assess their potential effects on local bee communities, we monitored their diurnal and seasonal activity patterns, as well as those of native bee species in the Judean Hills. We found that all bee species tend to visit pollen-providing flowers at earlier times compared to nectar-providing flowers. Bumble bees and honey bees start foraging at earlier times and colder temperatures compared to other species of bees. This means that the two species of commercially managed social bees are potentially depleting much of the pollen, which is typically non-replenished, before most local species arrive to gather it. Taking into consideration the long activity season of bumble bees in the Judean hills, their ability to forage at the low temperatures of the early morning, and their capacity to collect pollen at early hours in the dry Mediterranean climate, feral and range-expanding bumble bees potentially pose a significant competitive pressure on native bee fauna. Their effects on local bees can further modify pollination networks, and lead to changes in the local flora.
Collapse
Affiliation(s)
- Noam Bar-Shai
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Jerusalem Botanical Garden, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Uzi Motro
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Statistics, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Avishai Shmida
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
13
|
The potential consequences of 'bee washing' on wild bee health and conservation. Int J Parasitol Parasites Wildl 2022; 18:30-32. [PMID: 35399591 PMCID: PMC8989764 DOI: 10.1016/j.ijppaw.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022]
Abstract
Concern around declining bee populations globally has become an environmental issue of mainstream importance. Policymakers, scientists, environmental non-government organizations, media outlets and the public have displayed great interest in conservation actions to support pollinators. As with many environmental causes, green washing, or in this case ‘bee washing’, has become rampant. Bee washing can lead to multiple negative consequences, including misinformation, misallocation of resources, increasing threats and steering public understanding and environmental policy away from evidence-based decision-making. Here I will discuss the multiple potential consequences of bee washing on efforts to conserve declining wild bees and promote wild bee health. Concern around declining bee populations globally has become an environmental issue of mainstream importance. Policymakers, scientists, environmental non-government organizations, media outlets and the public have displayed interest in conservation action to support pollinators. ‘Bee washing’, has become rampant. Narratives and actions tend to focus on low-hanging fruit, actions which are easy to address and/or the selling of commercial items where industry benefits but the species of concern do not. Negative consequences include misinformation, misallocation of resources, increasing threats and steering environmental policy away from evidence-based decision-making.
Collapse
|
14
|
Iwasaki JM, Hogendoorn K. Mounting evidence that managed and introduced bees have negative impacts on wild bees: an updated review. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100043. [PMID: 36003276 PMCID: PMC9387436 DOI: 10.1016/j.cris.2022.100043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Worldwide, the use of managed bees for crop pollination and honey production has increased dramatically. Concerns about the pressures of these increases on native ecosystems has resulted in a recent expansion in the literature on this subject. To collate and update current knowledge, we performed a systematic review of the literature on the effects of managed and introduced bees on native ecosystems, focusing on the effects on wild bees. To enable comparison over time, we used the same search terms and focused on the same impacts as earlier reviews. This review covers: (a) interference and resource competition between introduced or managed bees and native bees; (b) effects of introduced or managed bees on pollination of native plants and weeds; and (c) transmission and infectivity of pathogens; and classifies effects into positive, negative, or neutral. Compared to a 2017 review, we found that the number of papers on this issue has increased by 47%. The highest increase was seen in papers on pathogen spill-over, but in the last five years considerable additional information about competition between managed and wild bees has also become available. Records of negative effects have increased from 53% of papers reporting negative effects in 2017 to 66% at present. The majority of these studies investigated effects on visitation and foraging behaviour. While only a few studies experimentally assessed impacts on wild bee reproductive output, 78% of these demonstrated negative effects. Plant composition and pollination was negatively affected in 7% of studies, and 79% of studies on pathogens reported potential negative effects of managed or introduced bees on wild bees. Taken together, the evidence increasingly suggests that managed and introduced bees negatively affect wild bees, and this knowledge should inform actions to prevent further harm to native ecosystems.
Collapse
Affiliation(s)
- Jay M. Iwasaki
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide SA 5064, Australia
| | - Katja Hogendoorn
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide SA 5064, Australia
| |
Collapse
|
15
|
Brown MJF. Complex networks of parasites and pollinators: moving towards a healthy balance. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210161. [PMID: 35491603 DOI: 10.1098/rstb.2021.0161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Parasites are viewed as a major threat to wild pollinator health. While this may be true for epidemics driven by parasite spillover from managed or invasive species, the picture is more complex for endemic parasites. Wild pollinator species host and share a species-rich, generalist parasite community. In contrast to the negative health impacts that these parasites impose on individual hosts, at a community level they may act to reduce competition from common and abundant pollinator species. By providing rare species with space in which to exist, this will act to support and maintain a diverse and thus healthier pollinator community. At this level, and perhaps paraxodically, parasites may be good for pollinators. This stands in clear contrast to the obvious negative impacts of epidemic and spillover parasites on wild pollinator communities. Research into floral resources that control parasites could be best employed to help design landscapes that provide pollinators with the opportunity to moderate their parasite community, rather than attempting to eliminate specific parasites from wild pollinator communities. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
16
|
Koch H, Welcome V, Kendal-Smith A, Thursfield L, Farrell IW, Langat MK, Brown MJF, Stevenson PC. Host and gut microbiome modulate the antiparasitic activity of nectar metabolites in a bumblebee pollinator. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210162. [PMID: 35491601 PMCID: PMC9058528 DOI: 10.1098/rstb.2021.0162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial nectar secondary metabolites can support pollinator health by preventing or reducing parasite infections. To better understand the outcome of nectar metabolite-parasite interactions in pollinators, we determined whether the antiparasitic activity was altered through chemical modification by the host or resident microbiome during gut passage. We investigated this interaction with linden (Tilia spp.) and strawberry tree (Arbutus unedo) nectar compounds. Unedone from A. unedo nectar inhibited the common bumblebee gut parasite Crithidia bombi in vitro and in Bombus terrestris gynes. A compound in Tilia nectar, 1-[4-(1-hydroxy-1-methylethyl)-1,3-cyclohexadiene-1-carboxylate]-6-O-β-d-glucopyranosyl-β-d-glucopyranose (tiliaside), showed no inhibition in vitro at naturally occurring concentrations but reduced C. bombi infections of B. terrestris workers. Independent of microbiome status, tiliaside was deglycosylated during gut passage, thereby increasing its antiparasitic activity in the hindgut, the site of C. bombi infections. Conversely, unedone was first glycosylated in the midgut without influence of the microbiome to unedone-8-O-β-d-glucoside, rendering it inactive against C. bombi, but subsequently deglycosylated by the microbiome in the hindgut, restoring its activity. We therefore show that conversion of nectar metabolites by either the host or the microbiome modulates antiparasitic activity of nectar metabolites. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Hauke Koch
- Royal Botanic Gardens Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | - Vita Welcome
- Royal Botanic Gardens Kew, Kew Green, Richmond, Surrey TW9 3AE, UK.,Imperial College, South Kensington, London SW7 2BX, UK
| | - Amy Kendal-Smith
- Royal Botanic Gardens Kew, Kew Green, Richmond, Surrey TW9 3AE, UK.,Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Lucy Thursfield
- Royal Botanic Gardens Kew, Kew Green, Richmond, Surrey TW9 3AE, UK.,John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Iain W Farrell
- Royal Botanic Gardens Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | - Moses K Langat
- Royal Botanic Gardens Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Philip C Stevenson
- Royal Botanic Gardens Kew, Kew Green, Richmond, Surrey TW9 3AE, UK.,Natural Resources Institute, University of Greenwich, Greenwich, Kent ME4 4TB, UK
| |
Collapse
|
17
|
Kardum Hjort C, Paris JR, Olsson P, Herbertsson L, de Miranda JR, Dudaniec RY, Smith HG. Genomic divergence and a lack of recent introgression between commercial and wild bumblebees ( Bombus terrestris). Evol Appl 2022; 15:365-382. [PMID: 35386397 PMCID: PMC8965379 DOI: 10.1111/eva.13346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
The global movement of bees for agricultural pollination services can affect local pollinator populations via hybridization. When commercial bumblebees are of the same species but of different geographic origin, intraspecific hybridization may result in beneficial integration of new genetic variation, or alternatively may disrupt locally adapted gene complexes. However, neither the existence nor the extent of genomic introgression and evolutionary divergence between wild and commercial bumblebees is fully understood. We obtained whole-genome sequencing data from wild and commercial Bombus terrestris collected from sites in Southern Sweden with and without long-term use of commercially imported B. terrestris. We search for evidence of introgression, dispersal and genome-wide differentiation in a comparative genomic analysis of wild and commercial bumblebees. Commercial B. terrestris were found in natural environments near sites where commercial bumblebees were used, as well as drifting wild B. terrestris in commercial bumblebee colonies. However, we found no evidence for widespread, recent genomic introgression of commercial B. terrestris into local wild conspecific populations. We found that wild B. terrestris had significantly higher nucleotide diversity (Nei's pi, π), while the number of segregating sites (Watterson's theta, θw) was higher in commercial B. terrestris. A highly divergent region on chromosome 11 was identified in commercial B. terrestris and found to be enriched with structural variants. The genes present in this region are involved in flight muscle contraction and structure and pathogen immune response, providing evidence for differing evolutionary processes operating in wild and commercial B. terrestris. We did not find evidence for recent introgression, suggesting that co-occurring commercial B. terrestris have not disrupted evolutionary processes in wild B. terrestris populations.
Collapse
Affiliation(s)
- Cecilia Kardum Hjort
- Department of BiologyLund UniversityLundSweden
- School of Natural SciencesMacquarie UniversitySydneyAustralia
| | - Josephine R. Paris
- BiosciencesCollege of Life and Environmental ScienceUniversity of ExeterExeterUK
| | | | - Lina Herbertsson
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | | | | | - Henrik G. Smith
- Department of BiologyLund UniversityLundSweden
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| |
Collapse
|
18
|
Glück M, Geue JC, Thomassen HA. Environmental differences explain subtle yet detectable genetic structure in a widespread pollinator. BMC Ecol Evol 2022; 22:8. [PMID: 35105300 PMCID: PMC8808969 DOI: 10.1186/s12862-022-01963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The environment is a strong driver of genetic structure in many natural populations, yet often neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure cannot be explained by limitations to dispersal. Consequently, these species might falsely be considered quasi-panmictic and hence potentially mismanaged. A species this might apply to, is the buff-tailed bumble bee (Bombus terrestris), an economically important and widespread pollinator, which is considered to be quasi-panmictic at mainland continental scales. Here we aimed to (i) quantify genetic structure in 21+ populations of the buff-tailed bumble bee, sampled throughout two Eastern European countries, and (ii) analyse the degree to which structure is explained by environmental differences, habitat permeability and geographic distance. Using 12 microsatellite loci, we characterised populations of this species with Fst analyses, complemented by discriminant analysis of principal components and Bayesian clustering approaches. We then applied generalized dissimilarity modelling to simultaneously assess the informativeness of geographic distance, habitat permeability and environmental differences among populations in explaining divergence. RESULTS Genetic structure of the buff-tailed bumble bee quantified by means of Fst was subtle and not detected by Bayesian clustering. Discriminant analysis of principal components suggested insignificant but still noticeable structure that slightly exceeded estimates obtained through Fst analyses. As expected, geographic distance and habitat permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the genetic variation observed. CONCLUSIONS In contrast to previous studies reporting quasi-panmixia in continental populations of this species, we demonstrated the presence of subtle population structure related to environmental heterogeneity. Environmental data proved to be highly useful in unravelling the drivers of genetic structure in this vagile and opportunistic species. We highlight the potential of including these data to obtain a better understanding of population structure and the processes driving it in species considered to be quasi-panmictic.
Collapse
Affiliation(s)
- Marcel Glück
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany.
| | - Julia C Geue
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Henri A Thomassen
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany
| |
Collapse
|
19
|
Rosenberger NM, Aizen MA, Dickson RG, Harder LD. Behavioural responses by a bumble bee to competition with a niche-constructing congener. J Anim Ecol 2021; 91:580-592. [PMID: 34862619 PMCID: PMC9305565 DOI: 10.1111/1365-2656.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022]
Abstract
While feeding, foragers can alter their environment. Such alteration constitutes ecological niche construction (ENC) if it enables future benefits for the constructor and conspecific individuals. The environmental modification may also affect non‐constructing, bystander species, especially if they share resources with constructor species. If so, ENC could confer the constructor species a competitive advantage by both enhancing its foraging returns and reducing those of bystander species. Expectations – (E1) ENC frequency should vary positively with the recent and current density of the constructor species, and (E2) constructors should use modifications disproportionately. In contrast, bystanders should (E3) experience intensified competition for the affected resource, and (E4) exhibit diverse, possibly mitigating, responses to ENC, depending on opportunity and relative benefits. We investigated these expectations in Argentina for competition for Fuchsia magellanica nectar between an invasive bumble bee Bombus terrestris (terr: putative constructor), which often bites holes at the bases of floral tubes to rob nectar, and native B. dahlbomii (dahl: bystander), which normally accesses Fuchsia nectar through the flower mouth (front visits). Robbing holes constitute ENC, as they persist until the 7‐day flowers wilt. The dynamics of the incidence of robbed flowers, abundance of both bees and the number and types of their flower visits (front or robbing) were characterised by alternate‐day surveys of plants during 2.5 months. After initially accessing Fuchsia nectar via front visits, terr switched to robbing and its abundance on Fuchsia increased 20‐fold within 10 days (E2). Correspondingly, the incidence of robbed flowers varied positively with recent and past terr abundance (E1). In contrast, dahl abundance remained low and varied negatively with the incidence of robbed flowers (E3). When terr ceased visiting Fuchsia, dahl abundance increased sixfold within 10 days (E3), possibly because many dahl previously had avoided competition with terr by feeding on other plant species (E4). While terr was present, dahl on Fuchsia used front visits (tolerance) or used existing robbing holes (adoption: E4). The diverse dahl responses suggest partial compensation for competition with terr. ENC alters competitive asymmetry, favouring constructor species. However, bystander responses can partially offset this advantage, perhaps facilitating coexistence.
Collapse
Affiliation(s)
- Nick M Rosenberger
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Graduate Group in Ecology, University of California - Davis, Davis, CA, USA
| | - Marcelo A Aizen
- Laboratorio Ecotono-CRUB, Universidad Nacional del Comahue and INIBIOMA, Río Negro, Argentina
| | - Rachel G Dickson
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.,Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Lawrence D Harder
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Spatial and temporal patterns of genetic diversity in Bombus terrestris populations of the Iberian Peninsula and their conservation implications. Sci Rep 2021; 11:22471. [PMID: 34795335 PMCID: PMC8602315 DOI: 10.1038/s41598-021-01778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
The bumblebee Bombus terrestris is used worldwide for crop pollination. Despite its positive impact on crop yield, it has become a widespread threat to biodiversity due to its interactions with local bumblebee populations. Commercial subspecies introduced to the Iberian Peninsula since the 1990s without any regulation have colonized the environment, with evidence of naturalization and introgression with the endemic subspecies Bombus terrestris lusitanicus. We have used mitochondrial and nuclear genetic data to describe the current genetic diversity of the Iberian population and to estimate the expansion of commercial bumblebees. Samples from the natural distribution range of the commercial subspecies, the natural intergradation area between the two subspecies and from a period prior to the use of commercial colonies (i.e., before the 1990s) have been used for comparison. Our results show that the mitochondrial haplotype of the commercial breeds has spread throughout the territory, which, together with subtle changes observed in the nuclear genetic diversity of the populations, indicates that hybridization and consequent introgression are occurring in most of the peninsula. It is, therefore, necessary to improve the existing legislation concerning the management and exportation of commercial bumblebees to conserve locally adapted populations.
Collapse
|
21
|
Local Actions to Tackle a Global Problem: A Multidimensional Assessment of the Pollination Crisis in Chile. DIVERSITY 2021. [DOI: 10.3390/d13110571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last decades, pollinators have drastically declined as a consequence of anthropogenic activities that have local and global impacts. The food industry has been expanding intensive agriculture crops, many of them dependent on animal pollination, but simultaneously reducing native pollinator habitats. Chile is a good example of this situation. Chile is becoming an agro-alimentary powerhouse in Latin America, where intensive agriculture expansion is performed at the expense of natural lands, posing a major threat to biodiversity. Here, we discussed the drivers responsible for the decline of pollinators (including habitat loss, pesticides, invasive species, and climate change) and its synergistic effects. This is particularly critical considering that Chile is a hotspot of endemic bee species locally adapted to specific habitats (e.g., Mediterranean-type ecosystems). However, there is a lack of data and monitoring programs that can provide evidence of their conservation status and contribution to crop yields. Based on our analysis, we identified information gaps to be filled and key threats to be addressed to reconcile crop production and biodiversity conservation. Addressing the local context is fundamental to undertake management and conservation actions with global impact.
Collapse
|
22
|
Davis AE, Deutsch KR, Torres AM, Mata Loya MJ, Cody LV, Harte E, Sossa D, Muñiz PA, Ng WH, McArt SH. Eristalis flower flies can be mechanical vectors of the common trypanosome bee parasite, Crithidia bombi. Sci Rep 2021; 11:15852. [PMID: 34349198 PMCID: PMC8338921 DOI: 10.1038/s41598-021-95323-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Flowers can be transmission platforms for parasites that impact bee health, yet bees share floral resources with other pollinator taxa, such as flies, that may be hosts or non-host vectors (i.e., mechanical vectors) of parasites. Here, we assessed whether the fecal-orally transmitted gut parasite of bees, Crithidia bombi, can infect Eristalis tenax flower flies. We also investigated the potential for two confirmed solitary bee hosts of C. bombi, Osmia lignaria and Megachile rotundata, as well as two flower fly species, Eristalis arbustorum and E. tenax, to transmit the parasite at flowers. We found that C. bombi did not replicate (i.e., cause an active infection) in E. tenax flies. However, 93% of inoculated flies defecated live C. bombi in their first fecal event, and all contaminated fecal events contained C. bombi at concentrations sufficient to infect bumble bees. Flies and bees defecated inside the corolla (flower) more frequently than other plant locations, and flies defecated at volumes comparable to or greater than bees. Our results demonstrate that Eristalis flower flies are not hosts of C. bombi, but they may be mechanical vectors of this parasite at flowers. Thus, flower flies may amplify or dilute C. bombi in bee communities, though current theoretical work suggests that unless present in large populations, the effects of mechanical vectors will be smaller than hosts.
Collapse
Affiliation(s)
- Abby E Davis
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Environmental and Rural Science, The University of New England, Armidale, NSW, 2351, Australia.
| | - Kaitlin R Deutsch
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alondra M Torres
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Mesly J Mata Loya
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren V Cody
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Emma Harte
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - David Sossa
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Paige A Muñiz
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Wee Hao Ng
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Russo L, de Keyzer CW, Harmon-Threatt AN, LeCroy KA, MacIvor JS. The managed-to-invasive species continuum in social and solitary bees and impacts on native bee conservation. CURRENT OPINION IN INSECT SCIENCE 2021; 46:43-49. [PMID: 33540109 DOI: 10.1016/j.cois.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Invasive bee species have negative impacts on native bee species and are a source of conservation concern. The invasion of bee species is mediated by the abiotic environment, biotic communities, and propagule pressure of the invader. Each of these factors is further affected by management, which can amplify the magnitude of the impact on native bee species. The ecological traits and behavior of invasive bees also play a role in whether and to what degree they compete with or otherwise negatively affect native bee species. The magnitude of impact of an invasive bee species relates both to its population size in the introduced habitat and the degree of overlap between its resources and the resources native bees require.
Collapse
Affiliation(s)
- Laura Russo
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, United States.
| | - Charlotte W de Keyzer
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | | | - Kathryn A LeCroy
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, United States; Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada; Department of Entomology, University of Illinois, Urbana, IL 61801, United States; Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, United States; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - James Scott MacIvor
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
24
|
Invasion dynamics of the European bumblebee Bombus terrestris in the southern part of South America. Sci Rep 2021; 11:15306. [PMID: 34316010 PMCID: PMC8316498 DOI: 10.1038/s41598-021-94898-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Invasive species are one of the main biodiversity loss drivers. Some species can establish and thrive in novel habitats, impacting local communities, as is the case of managed pollinators. In this regard, an invasive species' expansion process over time is critical for its control and management. A good example is the European bumblebee Bombus terrestris, which has rapidly invaded the southern part of South America after being repeatedly introduced in Chile for crop pollination since 1997. We assessed the temporal dynamics of B. terrestris invasion in Argentina and Chile by compiling 562 occurrence points from 2000 to 2019. We used two estimators (minimum convex polygon and 95% fixed kernel) to estimate the increase of the invaded area over time. We found that the area invaded by B. terrestris in the southern part of South America presents a linear increase over time, which was consistent for both estimators. In this scenario, species traits, environmental characteristics, and introduction dynamics facilitate a rapid invasion process that will continue to expand, reaching other South American countries in the near future. As this bumblebee is a super-generalist, it probably will expand across South America, as climate niche modelling predicts, if no actions were taken.
Collapse
|
25
|
Kelemen EP, Rehan SM. Conservation insights from wild bee genetic studies: Geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 2021; 14:1485-1496. [PMID: 34178099 PMCID: PMC8210791 DOI: 10.1111/eva.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
Conserving bees are critical both ecologically and economically. Genetic tools are valuable for monitoring these vital pollinators since tracking these small, fast-flying insects by traditional means is difficult. By surveying the current state of the literature, this review discusses how recent advances in landscape genetic and genomic research are elucidating how wild bees respond to anthropogenic threats. Current literature suggests that there may be geographic differences in the vulnerability of bee species to landscape changes. Populations of temperate bee species are becoming more isolated and more genetically depauperate as their landscape becomes more fragmented, but tropical bee species appear unaffected. These differences may be an artifact of historical differences in land-use, or it suggests that different management plans are needed for temperate and tropical bee species. Encouragingly, genetic studies on invasive bee species indicate that low levels of genetic diversity may not lead to rapid extinction in bees as once predicted. Additionally, next-generation sequencing has given researchers the power to identify potential genes under selection, which are likely critical to species' survival in their rapidly changing environment. While genetic studies provide insights into wild bee biology, more studies focusing on a greater phylogenetic and life-history breadth of species are needed. Therefore, caution should be taken when making broad conservation decisions based on the currently few species examined.
Collapse
|
26
|
Folly AJ, Koch H, Farrell IW, Stevenson PC, Brown MJF. Agri-environment scheme nectar chemistry can suppress the social epidemiology of parasites in an important pollinator. Proc Biol Sci 2021; 288:20210363. [PMID: 34034519 PMCID: PMC8150011 DOI: 10.1098/rspb.2021.0363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Emergent infectious diseases are one of the main drivers of species loss. Emergent infection with the microsporidian Nosema bombi has been implicated in the population and range declines of a suite of North American bumblebees, a group of important pollinators. Previous work has shown that phytochemicals found in pollen and nectar can negatively impact parasites in individuals, but how this relates to social epidemiology and by extension whether plants can be effectively used as pollinator disease management strategies remains unexplored. Here, we undertook a comprehensive screen of UK agri-environment scheme (AES) plants, a programme designed to benefit pollinators and wider biodiversity in agricultural settings, for phytochemicals in pollen and nectar using liquid chromatography and mass spectrometry. Caffeine, which occurs across a range of plant families, was identified in the nectar of sainfoin (Onobrychis viciifolia), a component of UK AES and a major global crop. We showed that caffeine significantly reduces N. bombi infection intensity, both prophylactically and therapeutically, in individual bumblebees (Bombus terrestris), and, for the first time, that such effects impact social epidemiology, with colonies reared from wild-caught queens having both lower prevalence and intensity of infection. Furthermore, infection prevalence was lower in foraging bumblebees from caffeine-treated colonies, suggesting a likely reduction in population-level transmission. Combined, these results show that N. bombi is less likely to be transmitted intracolonially when bumblebees consume naturally available caffeine, and that this may in turn reduce environmental prevalence. Consequently, our results demonstrate that floral phytochemicals at ecologically relevant concentrations can impact pollinator disease epidemiology and that planting strategies that increase floral abundance to support biodiversity could be co-opted as disease management tools.
Collapse
Affiliation(s)
- Arran J. Folly
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | | | | | - Philip C. Stevenson
- Royal Botanic Gardens, Kew, UK
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Mark J. F. Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| |
Collapse
|
27
|
Martin CD, Fountain MT, Brown MJF. The potential for parasite spill-back from commercial bumblebee colonies: a neglected threat to wild bees? JOURNAL OF INSECT CONSERVATION 2021; 25:531-539. [PMID: 34720661 PMCID: PMC8550768 DOI: 10.1007/s10841-021-00322-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
Commercially-reared bumblebee colonies provide pollination services to numerous crop species globally. These colonies may harbour parasites which can spill-over to wild bee species. However, the potential for parasites to spread from wild to commercial bumblebees, which could then lead to parasite spill-back, is poorly understood. To investigate this, parasite-free commercial Bombus terrestris audax colonies, which are used commercially for strawberry pollination, were placed into seasonal strawberry crops for either 6- or 8-week blocks across two key time periods, early spring and early summer. Bumblebees were removed from colonies weekly and screened for the presence of parasites. In the early spring placement, only one parasite, the highly virulent neogregarine Apicystis bombi, was detected at a low prevalence (0.46% across all bees screened). In contrast, all colonies placed in the crop in the early summer became infected. A trypanosome, Crithidia bombi, and A. bombi were the most prevalent parasites across all samples, reaching peak prevalence in screened bees of 39.39% and 18.18% respectively at the end of the experimental period. The prevalence of A. bombi was greater than most UK records from wild bumblebees, suggesting that commercial colonies could enhance levels of A. bombi infection in wild bees through spill-back. Studies on larger geographical scales with different commercial colony densities are required to fully assess spill-back risk. However, seasonal management, to minimise spill-back opportunities, and treatment of commercial colonies to prevent infection, could be implemented to manage the potential risks of parasite spill-back to wild bees. Implications for insect conservation Our results show that commercial bumblebee populations do pick up infections, most likely from wild bees, and that these infections can reach prevalences where they may pose a threat to wild bees via parasite spill-back. More research is required to clarify the extent of this potential threat. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10841-021-00322-x.
Collapse
Affiliation(s)
- Callum D. Martin
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX UK
| | | | - Mark J. F. Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX UK
| |
Collapse
|
28
|
Salvarrey S, Antúnez K, Arredondo D, Plischuk S, Revainera P, Maggi M, Invernizzi C. Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay. PLoS One 2021; 16:e0249842. [PMID: 33901226 PMCID: PMC8075198 DOI: 10.1371/journal.pone.0249842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.
Collapse
Affiliation(s)
| | - Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Arredondo
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE) (CONICET- UNLP), La Plata, Argentina
| | - Pablo Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | | |
Collapse
|
29
|
Managed bumble bees acquire parasites from their foraging environment: A case study on parasite spillback. J Invertebr Pathol 2021; 182:107583. [PMID: 33781766 DOI: 10.1016/j.jip.2021.107583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
The use of commercially reared bumble bees in agricultural environments has been recognized as a potential threat to wild pollinators due to competition, genetic contamination, and most notably, disease transmission. Higher parasite prevalence near greenhouses where managed bumble bees are used has been linked to parasite spillover from managed to wild bees. However, pathogen transmission is not unidirectional, and can also flow from wild to managed bees. These newly infected managed bees can subsequently re-infect (other) wild bees, in a process known as spillback, which is an alternative explanation for the increased parasite prevalence near greenhouses. Reducing parasite prevalence in managed bees is key to controlling host-parasite dynamics in cases of spillover; in spillback, producing managed bees that are resilient to infection is important. Here we establish that the managed bumble bee Bombus terrestris can acquire parasites from their foraging environment, which is the major infection route for Apicystis spp. and Crithidia spp., but not for Nosema spp.. Managed B. terrestris were found to have a higher prevalence of Crithdia and a higher load of Apicystis than local wild conspecifics, showing that for these parasites, spillback is a possible risk scenario.
Collapse
|
30
|
Marceau T, Archer CR, Bulson L, Wilfert L. Dose-dependent effects of antibiotic intake on Bombus Terrestris (Linnaeus, 1758) dietary intake, survival and parasite infection prevalence. J Invertebr Pathol 2021; 182:107580. [PMID: 33757819 DOI: 10.1016/j.jip.2021.107580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
Diseases may contribute to the widespread declines seen in many bee species. The gut bacteria of bees may serve as one defence against disease, by preventing pathogen colonisation. However, exposure to antibiotics on forage or in the hive may disrupt bee gut bacteria and remove this protective effect. A number of studies show that high antibiotic doses reduce bee health but the effects of field-realistic antibiotic doses remain unclear. Here, we test how Bombus terrestris (Linnaeus, 1758) is affected by multiple field-realistic concentrations of the antibiotic oxytetracycline, which is sometimes used to protect flowering crops from bacterial infections. We measured survival, feeding behaviour and the likelihood of developing infection with the gut parasitic trypanosome Crithidia bombi Lipa & Triggiani, 1988 following oral inoculation with a range of antibiotic doses. Rising antibiotic concentrations were associated with reduced survival and food consumption, and an increased likelihood of becoming infected with C. bombi. These effects were seen at antibiotic concentrations that are applied to crops and so may be encountered by foraging bees in the field. These results support the hypothesis that field-realistic antibiotic doses have lethal and sub-lethal effects on B. terrestris and highlight the importance of improving our understanding of how field-realistic antibiotic doses affect pollinators.
Collapse
Affiliation(s)
- Thomas Marceau
- College of Life and Environment Sciences, Tremough Campus, University of Exeter, Penryn TR10 8FL, UK
| | - C Ruth Archer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Laura Bulson
- College of Life and Environment Sciences, Tremough Campus, University of Exeter, Penryn TR10 8FL, UK.
| | - Lena Wilfert
- College of Life and Environment Sciences, Tremough Campus, University of Exeter, Penryn TR10 8FL, UK; Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
31
|
Occurrence of bee viruses and pathogens associated with emerging infectious diseases in native and non-native bumble bees in southern Chile. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02428-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Fernández K, Alcaíno J, Sepúlveda D, Medel R. Assessment of intestinal parasites in the coexisting Bombus terrestris (Apidae) and Xylocopa augusti (Apidae) in central Chile. REVISTA CHILENA DE HISTORIA NATURAL 2020. [DOI: 10.1186/s40693-020-00096-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractBombus terrestris is a European bumblebee extensively commercialized worldwide for crop pollination. In Chile, this species was introduced in 1997 and after confinement escape, it has spread and established in several localities of central-southern Chile and in the Argentine Patagonia. The South American carpenter bee Xylocopa augusti, in turn, has been recently reported in central Chile, and as B. terrestris, this species has become increasingly common, often found in sympatry with B. terrestris in some localities. While intestinal parasites such as the flagellate trypanosome Crithidia bombi, the microsporidium Nosema bombi, and the neogregarine protozoan Apicystis bombi, show high levels of specialization on the Bombus genus, parasites often increase their host range, especially after invading novel habitats, hence creating new infection disease scenarios. In this work, we used molecular techniques to detect the presence of the intestinal pathogens of B. terrestris in coexisting X. augusti from different localities in the Metropolitan Region of Chile. Our results revealed the presence of the three pathogens in B. terrestris only, with population prevalence broadly similar to that reported in other studies. The carpenter bee X. augusti did not show evidence of any of the three parasites examined, indicating that this invader species is not recipient of any of the parasite species present in B. terrestris.
Collapse
|
33
|
Polidori C, Sánchez-Fernández D. Environmental niche and global potential distribution of the giant resin bee Megachile sculpturalis, a rapidly spreading invasive pollinator. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
OneHealth implications of infectious diseases of wild and managed bees. J Invertebr Pathol 2020; 186:107506. [PMID: 33249062 DOI: 10.1016/j.jip.2020.107506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 01/23/2023]
Abstract
The OneHealth approach aims to further our understanding of the drivers of human, animal and environmental health, and, ultimately, to improve them by combining approaches and knowledge from medicine, biology and fields beyond. Wild and managed bees are essential pollinators of crops and wild flowers. Their health thus directly impacts on human and environmental health. At the same time, these bee species represent highly amenable and relevant model organisms for a OneHealth approach that aims to study fundamental epidemiological questions. In this review, we focus on how infectious diseases of wild and managed bees can be used as a OneHealth model system, informing fundamental questions on ecological immunology and disease transmission, while addressing how this knowledge can be used to tackle the issues facing pollinator health.
Collapse
|
35
|
LeCroy KA, Savoy-Burke G, Carr DE, Delaney DA, Roulston TH. Decline of six native mason bee species following the arrival of an exotic congener. Sci Rep 2020; 10:18745. [PMID: 33127931 PMCID: PMC7599227 DOI: 10.1038/s41598-020-75566-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/13/2020] [Indexed: 11/10/2022] Open
Abstract
A potential driver of pollinator declines that has been hypothesized but seldom documented is the introduction of exotic pollinator species. International trade often involves movement of many insect pollinators, especially bees, beyond their natural range. For agricultural purposes or by inadvertent cargo shipment, bee species successfully establishing in new ranges could compete with native bees for food and nesting resources. In the Mid-Atlantic United States, two Asian species of mason bee (Osmia taurus and O. cornifrons) have become recently established. Using pan-trap records from the Mid-Atlantic US, we examined catch abundance of two exotic and six native Osmia species over the span of fifteen years (2003-2017) to estimate abundance changes. All native species showed substantial annual declines, resulting in cumulative catch losses ranging 76-91% since 2003. Exotic species fared much better, with O. cornifrons stable and O. taurus increasing by 800% since 2003. We characterize the areas of niche overlap that may lead to competition between native and exotic species of Osmia, and we discuss how disease spillover and enemy release in this system may result in the patterns we document.
Collapse
Affiliation(s)
- Kathryn A LeCroy
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA.
| | - Grace Savoy-Burke
- Department of Entomology and Wildlife Biology, University of Delaware, Newark, DE, USA
| | - David E Carr
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Deborah A Delaney
- Department of Entomology and Wildlife Biology, University of Delaware, Newark, DE, USA
| | - T'ai H Roulston
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
36
|
Fijen TPM. Mass‐migrating bumblebees: An overlooked phenomenon with potential far‐reaching implications for bumblebee conservation. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thijs P. M. Fijen
- Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands
| |
Collapse
|
37
|
Ngor L, Palmer-Young EC, Burciaga Nevarez R, Russell KA, Leger L, Giacomini SJ, Pinilla-Gallego MS, Irwin RE, McFrederick QS. Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology 2020; 147:1290-1304. [PMID: 32616082 PMCID: PMC7477370 DOI: 10.1017/s0031182020001018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
Recent declines of wild pollinators and infections in honey, bumble and other bee species have raised concerns about pathogen spillover from managed honey and bumble bees to other pollinators. Parasites of honey and bumble bees include trypanosomatids and microsporidia that often exhibit low host specificity, suggesting potential for spillover to co-occurring bees via shared floral resources. However, experimental tests of trypanosomatid and microsporidial cross-infectivity outside of managed honey and bumble bees are scarce. To characterize potential cross-infectivity of honey and bumble bee-associated parasites, we inoculated three trypanosomatids and one microsporidian into five potential hosts - including four managed species - from the apid, halictid and megachilid bee families. We found evidence of cross-infection by the trypanosomatids Crithidia bombi and C. mellificae, with evidence for replication in 3/5 and 3/4 host species, respectively. These include the first reports of experimental C. bombi infection in Megachile rotundata and Osmia lignaria, and C. mellificae infection in O. lignaria and Halictus ligatus. Although inability to control amounts inoculated in O. lignaria and H. ligatus hindered estimates of parasite replication, our findings suggest a broad host range in these trypanosomatids, and underscore the need to quantify disease-mediated threats of managed social bees to sympatric pollinators.
Collapse
Affiliation(s)
- Lyna Ngor
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Evan C. Palmer-Young
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | | | - Kaleigh A. Russell
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Laura Leger
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Sara June Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Quinn S. McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
38
|
Grupe AC, Quandt CA. A growing pandemic: A review of Nosema parasites in globally distributed domesticated and native bees. PLoS Pathog 2020; 16:e1008580. [PMID: 32555676 PMCID: PMC7302437 DOI: 10.1371/journal.ppat.1008580] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Arthur C. Grupe
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - C. Alisha Quandt
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
39
|
Adler LS, Fowler AE, Malfi RL, Anderson PR, Coppinger LM, Deneen PM, Lopez S, Irwin RE, Farrell IW, Stevenson PC. Assessing Chemical Mechanisms Underlying the Effects of Sunflower Pollen on a Gut Pathogen in Bumble Bees. J Chem Ecol 2020; 46:649-658. [DOI: 10.1007/s10886-020-01168-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
|
40
|
Naeem M, Huang J, Zhang S, Luo S, Liu Y, Zhang H, Luo Q, Zhou Z, Ding G, An J. Diagnostic indicators of wild pollinators for biodiversity monitoring in long-term conservation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135231. [PMID: 31780153 DOI: 10.1016/j.scitotenv.2019.135231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
For the conservation of wild pollinators, instead of surveying the whole community, one or more indicator species can be used as monitoring targets for long-term conservation. China, the richest country in terms of bumblebee species with 125 species, was selected here to investigate the indicator species of the different biogeographic regions of bumblebees. Four principal biogeographic regions of bumblebee species, i.e., South China, North-Northeast China (North China), the Mongolian Plateau and surrounding mountains (Mongolian Plateau) and the Tibetan Plateau and surrounding mountains (Tibetan Plateau), were revealed by Ward's agglomerative cluster analysis. The role of climatic factors in defining the biogeographic regions was found to be greater than those of topographical factors and their joint effects. We found that 14, 13, 12 and 12 species were associated with the regions of South China, North China, the Mongolian Plateau and the Tibetan Plateau, respectively. In addition, among these species, seven (Bombus atripes, B. bicoloratus, B. breviceps, B. eximius, B. flavescens, B. montivagus and B. trifasciatus), five (B. deuteronymus, B. patagiatus, B. pseudobaicalensis, B. tricornis and B. ussurensis), ten (B. armeniacus, B. confusus, B. cryptarum, B. cullumanus, B. hortorum, B. muscorum, B. ruderarius, B. soroeensis, B. subterraneus and B. terrestris) and four species (B. kashmirensis, B. personatus, B. rufofasciatus and B. waltoni) were identified as important indicator species for South China, North China, the Mongolian Plateau and the Tibetan Plateau, respectively. Furthermore, we identified specific areas for targeted bumblebee diversity monitoring in each region. This study highlights the bioregionalization and the identification of indicator species of bumblebee pollinators for long-term monitoring in conservation.
Collapse
Affiliation(s)
- Muhammad Naeem
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shiwen Zhang
- Gansu Institute of Apicultural Research, Tianshui, Gansu 741022, China
| | - Shudong Luo
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yanjie Liu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hong Zhang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qihua Luo
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Miyun District Bureau of Landscape and Forestry, Beijing 101500, China
| | - Zhiyong Zhou
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Miyun District Bureau of Landscape and Forestry, Beijing 101500, China
| | - Guiling Ding
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiandong An
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
41
|
Liang C, Ding G, Huang J, Zhang X, Miao C, An J. Characteristics of the Two Asian Bumblebee Species Bombus friseanus and Bombus breviceps (Hymenoptera: Apidae). INSECTS 2020; 11:insects11030163. [PMID: 32138226 PMCID: PMC7143170 DOI: 10.3390/insects11030163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022]
Abstract
This study compared the food plants, life cycle, colony development, and mating behaviour of the two Asian bumblebee species Bombus friseanus and B. breviceps, which are very important pollinators for many wild flowers and crops in local ecosystems. Both species were shown to be highly polylectic. Differences were observed in their life cycles and colony development patterns. The colony foundation rate of the field-collected queens was high in both species, 95.5% in B. friseanus and 86.5% in B. breviceps. The intervals from colony initiation to colony sizes of 30, 60, and 80 workers and to the first male and gyne emergence were significantly shorter in B. friseanus than in B. breviceps (p < 0.01). The development period of the first batch of workers showed no significant difference between the two species (p > 0.05). Compared with B. friseanus, B. breviceps produced remarkably higher numbers of workers (135 ± 30 workers/colony in B. friseanus and 318 ± 123 workers/colony in B. breviceps) and males (199 ± 46 males/colony in B. friseanus and 355 ± 166 males/colony in B. breviceps) (p < 0.01), with notable variation was found among the colonies in both species. With no significant difference in the mating rate between these two species, the copulation duration of B. breviceps (1.54 ± 0.63 min) was strikingly shorter than that of B. friseanus (27.44 ± 11.16 min) (p < 0.001). This study highlights the characteristics of the two Asian bumblebee species and will aid further studies on their conservation and agricultural pollination use.
Collapse
Affiliation(s)
- Cheng Liang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.L.); (J.H.)
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi 661101, Yunnan, China; (X.Z.); (C.M.)
| | - Guiling Ding
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.L.); (J.H.)
- Correspondence: (G.D.); (J.A.)
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.L.); (J.H.)
| | - Xuewen Zhang
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi 661101, Yunnan, China; (X.Z.); (C.M.)
| | - Chunhui Miao
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi 661101, Yunnan, China; (X.Z.); (C.M.)
| | - Jiandong An
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.L.); (J.H.)
- Correspondence: (G.D.); (J.A.)
| |
Collapse
|
42
|
Abstract
Bumble bees (Bombus) are unusually important pollinators, with approximately 260 wild species native to all biogeographic regions except sub-Saharan Africa, Australia, and New Zealand. As they are vitally important in natural ecosystems and to agricultural food production globally, the increase in reports of declining distribution and abundance over the past decade has led to an explosion of interest in bumble bee population decline. We summarize data on the threat status of wild bumble bee species across biogeographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, operating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality. We distinguish between correlational and causal results, underscoring the importance of expanding experimental research beyond the study of two commercially available species to identify causal factors affecting the diversity of wild species.
Collapse
Affiliation(s)
- Sydney A Cameron
- Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA;
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA;
| |
Collapse
|
43
|
Cejas D, López‐López A, Muñoz I, Ornosa C, De la Rúa P. Unveiling introgression in bumblebee (
Bombus terrestris
) populations through mitogenome‐based markers. Anim Genet 2019; 51:70-77. [DOI: 10.1111/age.12874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/09/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023]
Affiliation(s)
- D. Cejas
- Área de Biología Animal Departamento de Zoología y Antropología Física Facultad de Veterinaria Universidad de Murcia Murcia 30100 Spain
| | - A. López‐López
- Área de Biología Animal Departamento de Zoología y Antropología Física Facultad de Veterinaria Universidad de Murcia Murcia 30100 Spain
- Área de Zoología Departamento de Agroquímica y Medio Ambiente Campus de Elche Universidad Miguel Hernández Elche 03202 Spain
| | - I. Muñoz
- Área de Biología Animal Departamento de Zoología y Antropología Física Facultad de Veterinaria Universidad de Murcia Murcia 30100 Spain
| | - C. Ornosa
- Departamento de Biodiversidad Ecología y Evolución Facultad de Ciencias Biológicas Universidad Complutense Madrid 28040 Spain
| | - P. De la Rúa
- Área de Biología Animal Departamento de Zoología y Antropología Física Facultad de Veterinaria Universidad de Murcia Murcia 30100 Spain
| |
Collapse
|
44
|
Liu M, Huang J, Zhang G, Liu X, An J. Analysis of miRNAs in the Heads of Different Castes of the Bumblebee Bombus lantschouensis (Hymenoptera: Apidae). INSECTS 2019; 10:E349. [PMID: 31623265 PMCID: PMC6835379 DOI: 10.3390/insects10100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Bumblebees are important insect pollinators for many wildflowers and crops. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that regulate different biological functions in insects. In this study, the miRNAs in the heads of the three castes of the bumblebee Bombus lantschouensis were identified and characterized by small RNA deep sequencing. The significant differences in the expression of miRNAs and their target genes were analyzed. The results showed that the length of the small RNA reads from males, queens, and workers was distributed between 18 and 30 nt, with a peak at 22 nt. A total of 364 known and 89 novel miRNAs were identified from the heads of the three castes. The eight miRNAs with the highest expressed levels in males, queens, and workers were identical, although the order of these miRNAs based on expression differed. The male vs. queen, male vs. worker, and worker vs. queen comparisons identified nine, fourteen, and four miRNAs with significant differences in expression, respectively. The different castes were clustered based on the differentially expressed miRNAs (DE miRNAs), and the expression levels of the DE miRNAs obtained by RT-qPCR were consistent with the read counts obtained through Solexa sequencing. The putative target genes of these DE miRNAs were enriched in 29 Gene Ontology (GO) terms, and catalytic activity was the most enriched GO term, as demonstrated by its association with 2837 target genes in the male vs. queen comparison, 3535 target genes in the male vs. worker comparison, and 2185 target genes in the worker vs. queen comparison. This study highlights the characteristics of the miRNAs in the three B. lantschouensis castes and will aid further studies on the functions of miRNAs in bumblebees.
Collapse
Affiliation(s)
- Meijuan Liu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Guangshuo Zhang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Xiaofeng Liu
- School of Life Science, Peking University, Beijing 100871, China.
| | - Jiandong An
- School of Life Science, Peking University, Beijing 100871, China.
| |
Collapse
|
45
|
Koch H, Woodward J, Langat MK, Brown MJ, Stevenson PC. Flagellum Removal by a Nectar Metabolite Inhibits Infectivity of a Bumblebee Parasite. Curr Biol 2019; 29:3494-3500.e5. [DOI: 10.1016/j.cub.2019.08.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022]
|
46
|
Abstract
In this study, we sequenced and analyzed the genomes of 40 strains, in addition to the already-reported two type strains, of two Crithidia species infecting bumblebees in Alaska and Central Europe and demonstrated that different strains of Crithidia bombi and C. expoeki vary considerably in terms of single nucleotide polymorphisms and gene copy number. Based on the genomic structure, phylogenetic analyses, and the pattern of copy number variation, we confirmed the status of C. expoeki as a separate species. The Alaskan populations appear to be clearly separated from those of Central Europe. This pattern fits a scenario of rapid host-parasite coevolution, where the selective advantage of a given parasite strain is only temporary. This study provides helpful insights into possible scenarios of selection and diversification of trypanosomatid parasites.IMPORTANCE A group of trypanosomatid flagellates includes several well-studied medically and economically important parasites of vertebrates and plants. Nevertheless, the vast majority of trypanosomatids infect only insects (mostly flies and true bugs) and, because of that, has attracted little research attention in the past. Of several hundred trypanosomatid species, only four can infect bees (honeybees and bumblebees). Because of such scarcity, these parasites are severely understudied. We analyzed whole-genome information for a total of 42 representatives of bee-infecting trypanosomatids collected in Central Europe and Alaska from a population genetics point of view. Our data shed light on the evolution, selection, and diversification in this important group of trypanosomatid parasites.
Collapse
|
47
|
Martin CD, Fountain MT, Brown MJ. Varietal and seasonal differences in the effects of commercial bumblebees on fruit quality in strawberry crops. AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 2019; 281:124-133. [PMID: 31481820 PMCID: PMC6686987 DOI: 10.1016/j.agee.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 05/24/2023]
Abstract
Both wild and managed pollinators significantly contribute to global food production by providing pollination services to crops. Colonies of commercially-reared honey bees and bumblebees are two of the largest groups of managed pollinators. Bumblebees in particular are increasingly used on soft fruit crops, such as strawberry, an economically important crop globally. Despite the use of commercial bumblebees in strawberry crops, there is little quantitative evidence that they provide a benefit to farmers. Given the negative impacts that commercial colonies can have on wild bee populations, it is vital that the benefits of commercial bumblebees are quantified, so reasoned management decisions can be made that provide maximum benefit to both farmers and wild bees. In this study, commercial colonies of the UK native subspecies Bombus terrestris audax were placed into June-bearer (flowering March-April, varieties 'Malling Centenary' and 'Flair') and everbearer (flowering May-June) strawberry polytunnels on a soft-fruit farm in the south east of England, and opened and closed at weekly intervals. The flower-visiting assemblage inside polytunnels was quantified, and fruit was harvested and quality assessed. In the June-bearer variety Malling Centenary, the presence of commercial bumblebees increased the amount of high commercial grade fruit by 25%. In contrast, no benefit of commercial bees on pollination or fruit quality was observed in the June-bearer variety Flair and the everbearer crop. The increase in quality of fruit in the Malling Centenary crop may be driven by the higher B. terrestris audax flower visitation rates seen in this crop in combination with varietal differences in pollination dependency. The number of flower visits by wild pollinators was not a well-supported predictor of strawberry quality, thus the benefit they provide in this system remains to be elucidated. The results presented here suggest that commercial bumblebees can greatly increase the quality and subsequent value of a strawberry crop, when deployed on a suitable variety at a time when wild pollinator numbers are low. However, the results also raise the possibility that commercial colonies do not always provide the benefits to strawberry crops that they are thought to. For growers to make informed decisions on commercial bumblebee use, further research is required into the effect of commercial bumblebees on the major strawberry varieties, in different locations and seasons. This study is an important step in gaining this understanding.
Collapse
Affiliation(s)
- Callum D. Martin
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | | | - Mark J.F. Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| |
Collapse
|
48
|
Belsky J, Joshi NK. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. INSECTS 2019; 10:E233. [PMID: 31374933 PMCID: PMC6723792 DOI: 10.3390/insects10080233] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed.
Collapse
Affiliation(s)
- Joseph Belsky
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA
| | - Neelendra K Joshi
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA.
| |
Collapse
|
49
|
Michaud KM, Irwin RE, Barber NA, Adler LS. Preinfection Effects of Nectar Secondary Compounds on a Bumble Bee Gut Pathogen. ENVIRONMENTAL ENTOMOLOGY 2019; 48:685-690. [PMID: 30855085 DOI: 10.1093/ee/nvz018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 06/09/2023]
Abstract
Bumble bee pollinators can be exposed to pathogens when foraging on flowers previously visited by infected individuals. Infectious cells may be deposited in floral nectar, providing a site for pathogens to interact with nectar secondary compounds prior to infecting bees. Some nectar secondary compounds can reduce pathogen counts in infected bumble bees, but we know less about how exposure to these compounds directly affects pathogens prior to being ingested by their host. We exposed the trypanosomatid gut pathogen, Crithidia bombi (Lipa & Triggiani 1988) (Trypanosomatida: Trypanosomatidae), to six different compounds found in nectar (aucubin, catalpol, nicotine, thymol, anabasine, and citric acid) for 1-h prior to ingestion by Bombus impatiens (Cresson 1863) (Hymenoptera: Apidae) workers that were then reared for 1 wk on a control diet. All of these compounds except citric acid reduce pathogen levels when consumed in hosts after infection, and citric acid is a common preservative found in citrus fruits and some honeys. We found that both citric acid and aucubin reduced Crithidia cell counts compared with controls. However, catalpol, nicotine, thymol, and anabasine did not have significant effects on Crithidia levels. These results suggest that Crithidia exposure in some floral nectars may reduce cell viability, resulting in a lower risk to visiting pollinators, but this effect may not be widespread across all flowering species.
Collapse
Affiliation(s)
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC
| | - Nicholas A Barber
- Department of Biology & Ecology Program Area, San Diego State University, San Diego, CA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts, Amherst, MA
| |
Collapse
|
50
|
Makinson JC, Woodgate JL, Reynolds A, Capaldi EA, Perry CJ, Chittka L. Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation. Sci Rep 2019; 9:4651. [PMID: 30894590 PMCID: PMC6427042 DOI: 10.1038/s41598-019-40355-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/12/2019] [Indexed: 11/16/2022] Open
Abstract
The dispersal of animals from their birth place has profound effects on the immediate survival and longer-term persistence of populations. Molecular studies have estimated that bumblebee colonies can be established many kilometers from their queens’ natal nest site. However, little is known about when and how queens disperse during their lifespan. One possible life stage when dispersal may occur, is directly after emerging from hibernation. Here, harmonic radar tracking of artificially over-wintered Bombus terrestris queens shows that they spend most of their time resting on the ground with intermittent very short flights (duration and distance). We corroborate these behaviors with observations of wild queen bees, which show similar prolonged resting periods between short flights, indicating that the behavior of our radar-monitored bees was not due to the attachment of transponders nor an artifact of the bees being commercially reared. Radar-monitored flights were not continuously directed away from the origin, suggesting that bees were not intentionally trying to disperse from their artificial emergence site. Flights did not loop back to the origin suggesting bees were not trying to remember or get back to the original release site. Most individuals dispersed from the range of the harmonic radar within less than two days and did not return. Flight directions were not different from a uniform distribution and flight lengths followed an exponential distribution, both suggesting random dispersal. A random walk model based on our observed data estimates a positive net dispersal from the origin over many flights, indicating a biased random dispersal, and estimates the net displacement of queens to be within the range of those estimated in genetic studies. We suggest that a distinct post-hibernation life history stage consisting mostly of rest with intermittent short flights and infrequent foraging fulfils the dual purpose of ovary development and dispersal prior to nest searching.
Collapse
Affiliation(s)
- James C Makinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Joseph L Woodgate
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | | | | | - Clint J Perry
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.,Wissenschaftskolleg, Institute for Advanced Study, D19413, Berlin, Germany
| |
Collapse
|