1
|
Britton S, Davidowitz G. No evidence for the melanin desiccation hypothesis in a larval Lepidopteran. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104669. [PMID: 38936542 DOI: 10.1016/j.jinsphys.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Water regulation is an important physiological challenge for insects due to their small body sizes and large surface area to volume ratios. Adaptations for decreasing cuticular water loss, the largest avenue of loss, are especially important. The melanin desiccation hypothesis states that melanin molecules in the cuticle may help prevent water loss, thus offering protection from desiccation. This hypothesis has much empirical support in Drosophila species, but remains mostly untested in other taxa, including Lepidoptera. Because melanin has many other important functions in insects, its potential role in desiccation prevention is not always clear. In this study we investigated the role of melanin in desiccation prevention in the white-lined Sphinx moth, Hyles lineata (Lepidoptera, Sphingidae), which shows high plasticity in the degree of melanin pigmentation during the late larval instars. We took advantage of this plasticity and used density treatments to induce a wide range of cuticular melanization; solitary conditions induced low melanin pigmentation while crowded conditions induced high melanin pigmentation. We tested whether more melanic larvae from the crowded treatment were better protected from desiccation in three relevant responses: i) total water loss over a desiccation period, ii) change in hemolymph osmolality over a desiccation period, and iii) evaporation rate of water through the cuticle. We did not find support for the melanin desiccation hypothesis in this species. Although treatment influenced total water loss, this effect did not occur via degree of melanization. Interestingly, this implies that crowding, which was used to induce high melanin phenotypes, may have other physiological effects that influence water regulation. There were no differences between treatments in cuticular evaporative water loss or change in hemolymph osmolality. However, we conclude that osmolality may not sufficiently reflect water loss in this case. This study emphasizes the context dependency of melanin's role in desiccation prevention and the importance of considering how it may vary across taxa. In lepidopteran larvae that are constantly feeding phytophagous insects with soft cuticles, melanin may not be necessary for preventing cuticular water loss.
Collapse
Affiliation(s)
- Sarah Britton
- University of Arizona, Department of Ecology and Evolutionary Biology, USA.
| | - Goggy Davidowitz
- University of Arizona, Department of Ecology and Evolutionary Biology, USA; University of Arizona, Department of Entomology, USA
| |
Collapse
|
2
|
Newell FL, Ausprey IJ, Robinson SK. Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics. GLOBAL CHANGE BIOLOGY 2023; 29:308-323. [PMID: 36102197 PMCID: PMC10087840 DOI: 10.1111/gcb.16379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/01/2023]
Abstract
Warming temperatures are increasing rainfall extremes, yet arthropod responses to climatic fluctuations remain poorly understood. Here, we used spatiotemporal variation in tropical montane climate as a natural experiment to compare the importance of biotic versus abiotic drivers in regulating arthropod biomass. We combined intensive field data on arthropods, leaf phenology and in situ weather across a 1700-3100 m elevation and rainfall gradient, along with desiccation-resistance experiments and multi-decadal modelling. We found limited support for biotic drivers with weak increases in some herbivorous taxa on shrubs with new leaves, but no landscape-scale effects of leaf phenology, which tracked light and cloud cover. Instead, rainfall explained extensive interannual variability with maximum biomass at intermediate rainfall (130 mm month-1 ) as both 3 months of high and low rainfall reduced arthropods by half. Based on 50 years of regional rainfall, our dynamic arthropod model predicted shifts in the timing of biomass maxima within cloud forests before plant communities transition to seasonally deciduous dry forests (mean annual rainfall 1000-2500 mm vs. <800 mm). Rainfall magnitude was the primary driver, but during high solar insolation, the 'drying power of air' (VPDmax ) reduced biomass within days contributing to drought related to the El Niño-Southern Oscillation (ENSO). Highlighting risks from drought, experiments demonstrated community-wide susceptibility to desiccation except for some caterpillars in which melanin-based coloration appeared to reduce the effects of evaporative drying. Overall, we provide multiple lines of evidence that several months of heavy rain or drought reduce arthropod biomass independently of deep-rooted plants with the potential to destabilize insectivore food webs.
Collapse
Affiliation(s)
- Felicity L. Newell
- Florida Museum of Natural History & Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
- Division of Conservation BiologyInstitute of Ecology and Evolution, University of BernBernCH‐3012Switzerland
| | - Ian J. Ausprey
- Florida Museum of Natural History & Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
- Division of Conservation BiologyInstitute of Ecology and Evolution, University of BernBernCH‐3012Switzerland
| | - Scott K. Robinson
- Florida Museum of Natural History & Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Goldenberg J, Bisschop K, D'Alba L, Shawkey MD. The link between body size, colouration and thermoregulation and their integration into ecogeographical rules: a critical appraisal in light of climate change. OIKOS 2022. [DOI: 10.1111/oik.09152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jonathan Goldenberg
- Evolution and Optics of Nanostructures group, Dept of Biology, Ghent Univ. Ghent Belgium
| | - Karen Bisschop
- Inst. for Biodiversity and Ecosystem Dynamics, Univ. of Amsterdam Amsterdam the Netherlands
- Laboratory of Aquatic Biology, Dept of Biology, KU Leuven KULAK Kortrijk Belgium
| | - Liliana D'Alba
- Evolution and Optics of Nanostructures group, Dept of Biology, Ghent Univ. Ghent Belgium
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures group, Dept of Biology, Ghent Univ. Ghent Belgium
| |
Collapse
|
4
|
Rosa E, Saastamoinen M. Beyond thermal melanism: association of wing melanization with fitness and flight behaviour in a butterfly. Anim Behav 2020; 167:275-288. [PMID: 32952201 PMCID: PMC7487764 DOI: 10.1016/j.anbehav.2020.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cold developmental conditions can greatly affect adult life history of ectotherms in seasonal habitats. Such effects are mostly negative, but sometimes adaptive. Here, we tested how cold conditions experienced during pupal development affect adult wing melanization of an insect ectotherm, the Glanville fritillary butterfly, Melitaea cinxia. We also assessed how in turn previous cold exposure and increased melanization can shape adult behaviour and fitness, by monitoring individuals in a seminatural set-up. We found that, despite pupal cold exposure inducing more melanization, wing melanization was not linked to adult thermoregulation preceding flight, under the conditions tested. Conversely, wing-vibrating behaviour had a major role in producing heat preceding flight. Moreover, more melanized individuals were more mobile across the experimental set-up. This may be caused by a direct impact of melanization on flight ability or a more indirect impact of coloration on behaviours such as mate search strategies and/or eagerness to disperse to more suitable mating habitats. We also found that more melanized individuals of both sexes had reduced mating success and produced fewer offspring, which suggests a clear fitness cost of melanization. Whether the reduced mating success is dictated by impaired mate search behaviour, reduced physical condition leading to a lower dominance status or weakened visual signalling remains unknown. In conclusion, while there was no clear role of melanization in providing a thermal advantage under our seminatural conditions, we found a fitness cost of being more melanized, which potentially impacted adult space use behaviour.
Collapse
Affiliation(s)
- Elena Rosa
- Life-history Evolution Research Group, University of Helsinki, Organismal and Evolutionary Biology Research Programme, Helsinki, Finland
| | - Marjo Saastamoinen
- Life-history Evolution Research Group, University of Helsinki, Organismal and Evolutionary Biology Research Programme, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Briolat ES, Burdfield‐Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev Camb Philos Soc 2019; 94:388-414. [PMID: 30152037 PMCID: PMC6446817 DOI: 10.1111/brv.12460] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
Collapse
Affiliation(s)
- Emmanuelle S. Briolat
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
| | - Emily R. Burdfield‐Steel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
| | - Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
- Department of Chemical EcologyBielefeld UniversityUniversitätsstraße 25, 33615, BielefeldGermany
| | - Katja H. Rönkä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, 00014Finland
| | - Brett M. Seymoure
- Department of BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
| | - Theodore Stankowich
- Department of Biological SciencesCalifornia State UniversityLong BeachCA 90840U.S.A.
| | - Adam M. M. Stuckert
- Department of BiologyEast Carolina University1000 E Fifth St, GreenvilleNC 27858U.S.A.
| |
Collapse
|
6
|
|
7
|
Sandre SL, Kaart T, Morehouse N, Tammaru T. Weak and inconsistent associations between melanic darkness and fitness-related traits in an insect. J Evol Biol 2018; 31:1959-1968. [PMID: 30311708 DOI: 10.1111/jeb.13387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/08/2018] [Indexed: 01/16/2023]
Abstract
The idea that the fitness value of body coloration may be affected by biochemically mediated trade-offs has received much research attention. For example, melanization is believed to interact with other fitness-related traits via competition for substrates, costs associated with the synthesis of melanin or pleiotropic effects of the involved genes. However, genetic correlations between coloration and fitness-related traits remain poorly understood. Here, we present a quantitative-genetic study of a coloration trait correlated to melanin-based cuticular darkness ('darkness', hereafter) in a geometrid moth, Ematurga atomaria. This species has considerable variation in larval appearance. We focus on correlations between larval darkness and fitness-related growth performance traits. Both a half-sib analysis and an 'animal model' approach revealed moderately high heritabilities of larval darkness and indices of growth performance. Heritability estimates of darkness derived from the animal model were, however, considerably higher than those based on the half-sib model suggesting that the determination of coloration includes genetic interactions and epigenetic effects. Importantly, on the host plant with the largest sample size, we found no evidence for either genetic or environmental correlations between darkness and growth parameters. On an alternative host plant, there was some indication of positive genetic and negative environmental correlation between these traits. This shows that respective relationships are environment-specific. Nevertheless, the overall pattern of weak and inconsistent correlations between larval coloration and growth parameters does not support universal trade-offs between these traits and suggests that physiological costs of producing colour patterns do not necessarily interfere with adaptive evolution of coloration.
Collapse
Affiliation(s)
- Siiri-Lii Sandre
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Tanel Kaart
- Department of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Nathan Morehouse
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Harrison JF, Greenlee KJ, Verberk WCEP. Functional Hypoxia in Insects: Definition, Assessment, and Consequences for Physiology, Ecology, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:303-325. [PMID: 28992421 DOI: 10.1146/annurev-ento-020117-043145] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Insects can experience functional hypoxia, a situation in which O2 supply is inadequate to meet oxygen demand. Assessing when functional hypoxia occurs is complex, because responses are graded, age and tissue dependent, and compensatory. Here, we compare information gained from metabolomics and transcriptional approaches and by manipulation of the partial pressure of oxygen. Functional hypoxia produces graded damage, including damaged macromolecules and inflammation. Insects respond by compensatory physiological and morphological changes in the tracheal system, metabolic reorganization, and suppression of activity, feeding, and growth. There is evidence for functional hypoxia in eggs, near the end of juvenile instars, and during molting. Functional hypoxia is more likely in species with lower O2 availability or transport capacities and when O2 need is great. Functional hypoxia occurs normally during insect development and is a factor in mediating life-history trade-offs.
Collapse
Affiliation(s)
- Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501;
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108-6050;
| | - Wilco C E P Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University, Nijmegen, Netherlands;
| |
Collapse
|
9
|
Carrascal LM, Ruiz YJ, Lobo JM. Beetle Exoskeleton May Facilitate Body Heat Acting Differentially across the Electromagnetic Spectrum. Physiol Biochem Zool 2017; 90:338-347. [PMID: 28384421 DOI: 10.1086/690200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exoskeletons of beetles and their associated morphological characteristics can serve many different functions, including thermoregulation. We study the thermal role of the exoskeleton in 13 Geotrupidae dung beetle species using heating experiments under controlled conditions. The main purpose was to measure the influence of heating sources (solar radiance vs. infrared), animal position (dorsal exposure vs. ventral exposure), species identity, and phylogenetic relationships on internal asymptotic temperatures and heating rates. The thermal response was significantly influenced by phylogenetic relatedness, although it was not affected by the apterous condition. The asymptotic internal temperature of specimens was not affected by the thoracic volume but was significantly higher under simulated sunlight conditions than under infrared radiation and when exposed dorsally as opposed to ventrally. There was thus a significant interaction between heating source and body position. Heating rate was negatively and significantly influenced by thoracic volume, and, although insignificantly slower under simulated sunlight, it was significantly affected by body position, being faster under dorsal exposure. The results constitute the first evidence supporting the hypothesis that the beetle exoskeleton acts differentially across the electromagnetic spectrum determining internal body temperatures. This interesting finding suggests the existence of a kind of passive physiology imposed by the exoskeleton and body size, where interspecific relationships play a minor role.
Collapse
|
10
|
RNA sequencing reveals differential thermal regulation mechanisms between sexes of Glanville fritillary butterfly in the Tianshan Mountains, China. Mol Biol Rep 2016; 43:1423-1433. [PMID: 27649991 DOI: 10.1007/s11033-016-4076-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
The Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae) has been extensively studied as a model species in metapopulation ecology. We investigated in the earlier studies that female butterflies exhibit higher thermal tolerance than males in the Tianshan Mountains of China. We aim to understand the molecular mechanism of differences of thermal responses between sexes. We used RNA-seq approach and performed de novo assembly of transcriptome to compare the gene expression patterns between two sexes after heat stress. All the reads were assembled into 84,376 transcripts and 72,701 unigenes. The number of differential expressed genes (DEGs) between control and heat shock samples was 175 and 268 for males and females, respectively. Heat shock proteins genes (hsps) were up-regulated in response to heat stress in both males and females. Most of the up-regulated hsps showed higher fold changes in males than in females. Females expressed more ribosomal subunit protein genes, transcriptional elongation factor genes, and methionine-rich storage protein genes, participating in protein synthesis. It indicated that protein synthesis is needed for females to replace the damaged proteins due to heat shock. In addition, aspartate decarboxylase might contribute to thermal tolerance in females. These differences in gene expression may at least partly explain the response to high temperature stress, and the fact that females exhibit higher thermal tolerance.
Collapse
|
11
|
Yin H, Shi Q, Shakeel M, Kuang J, Li J. The Environmental Plasticity of Diverse Body Color Caused by Extremely Long Photoperiods and High Temperature in Saccharosydne procerus (Homoptera: Delphacidae). Front Physiol 2016; 7:401. [PMID: 27672370 PMCID: PMC5018601 DOI: 10.3389/fphys.2016.00401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Melanization reflects not only body color variation but also environmental plasticity. It is a strategy that helps insects adapt to environmental change. Different color morphs may have distinct life history traits, e.g., development time, growth rate, and body weight. The green slender planthopper Saccharosydne procerus (Matsumura) is the main pest of water bamboo (Zizania latifolia). This insect has two color morphs. The present study explored the influence of photoperiod and its interaction with temperature in nymph stage on adult melanism. Additionally, the longevity, fecundity, mating rate, and hatching rate of S. procerus were examined to determine whether the fitness of the insect was influenced by melanism under different temperature and photoperiod. The results showed that a greater number of melanic morphs occurred if the photoperiod was extremely long. A two-factor ANOVA showed that temperature and photoperiod both have a significant influence on melanism. The percentages of variation explained by these factors were 45.53 and 48.71%, respectively. Moreover, melanic morphs had greater advantages than non-melanic morphs under an environmental regime of high temperatures and a long photoperiod, whereas non-melanic morphs were better adapted to cold temperatures and a short photoperiod. These results cannot be explained by the thermal melanism hypothesis. Thus, it may be unavailable to seek to explain melanism in terms of only one hypothesis.
Collapse
Affiliation(s)
- Haichen Yin
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Qihao Shi
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Muhammad Shakeel
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jing Kuang
- Wuhan Vegetable Research Institute Wuhan, China
| | - Jianhong Li
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
12
|
Torres-Campos I, Abram PK, Guerra-Grenier E, Boivin G, Brodeur J. A scenario for the evolution of selective egg coloration: the roles of enemy-free space, camouflage, thermoregulation and pigment limitation. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150711. [PMID: 27152215 PMCID: PMC4852638 DOI: 10.1098/rsos.150711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/08/2016] [Indexed: 05/11/2023]
Abstract
Behavioural plasticity can drive the evolution of new traits in animals. In oviparous species, plasticity in oviposition behaviour could promote the evolution of new egg traits by exposing them to different selective pressures in novel oviposition sites. Individual females of the predatory stink bug Podisus maculiventris are able to selectively colour their eggs depending on leaf side, laying lightly pigmented eggs on leaf undersides and more pigmented eggs, which are more resistant to ultraviolet (UV) radiation damage, on leaf tops. Here, we propose an evolutionary scenario for P. maculiventris egg pigmentation and its selective application. We experimentally tested the influence of several ecological factors that: (i) could have favoured a behavioural shift towards laying eggs on leaf tops and thus the evolution of a UV-protective egg pigment (i.e. exploitation of enemy-reduced space or a thermoregulatory benefit) and (ii) could have subsequently led to the evolution of selective pigment application (i.e. camouflage or costly pigment production). We found evidence that a higher predation pressure on leaf undersides could have caused a shift in oviposition effort towards leaf tops. We also found the first evidence of an insect egg pigment providing a thermoregulatory advantage. Our study contributes to an understanding of how plasticity in oviposition behaviour could shape the responses of organisms to ecological factors affecting their reproductive success, spurring the evolution of new morphological traits.
Collapse
Affiliation(s)
- Inmaculada Torres-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental La Mayora, 29750 Algarrobo-Costa, Málaga, Spain
- Author for correspondence: Inmaculada Torres-Campos e-mail:
| | - Paul K. Abram
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques.Université de Montréal, 4101 Sherbrooke Est, Montréal, CanadaH1X 2B2
- Centre de Recherche et de Développement en Horticulture, Agriculture et Agroalimentaire Canada, 430 Blvd. Gouin, St-Jean-sur-Richelieu, CanadaJ3B 3E6
| | - Eric Guerra-Grenier
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques.Université de Montréal, 4101 Sherbrooke Est, Montréal, CanadaH1X 2B2
| | - Guy Boivin
- Centre de Recherche et de Développement en Horticulture, Agriculture et Agroalimentaire Canada, 430 Blvd. Gouin, St-Jean-sur-Richelieu, CanadaJ3B 3E6
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques.Université de Montréal, 4101 Sherbrooke Est, Montréal, CanadaH1X 2B2
| |
Collapse
|