1
|
Gross CP, Duffy JE, Hovel KA, Kardish MR, Reynolds PL, Boström C, Boyer KE, Cusson M, Eklöf J, Engelen AH, Eriksson BK, Fodrie FJ, Griffin JN, Hereu CM, Hori M, Hughes AR, Ivanov MV, Jorgensen P, Kruschel C, Lee KS, Lefcheck J, McGlathery K, Moksnes PO, Nakaoka M, O'Connor MI, O'Connor NE, Olsen JL, Orth RJ, Peterson BJ, Reiss H, Rossi F, Ruesink J, Sotka EE, Thormar J, Tomas F, Unsworth R, Voigt EP, Whalen MA, Ziegler SL, Stachowicz JJ. The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceans. Proc Biol Sci 2022; 289:20211762. [PMID: 35193403 PMCID: PMC8864368 DOI: 10.1098/rspb.2021.1762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/14/2022] [Indexed: 01/15/2023] Open
Abstract
While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (Zostera marina) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.
Collapse
Affiliation(s)
- Collin P. Gross
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - J. Emmett Duffy
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Kevin A. Hovel
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Melissa R. Kardish
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Pamela L. Reynolds
- DataLab: Data Science and Informatics, University of California, Davis, CA, USA
| | - Christoffer Boström
- Department of Environmental and Marine Biology, Åbo Akademi University, Åbo, Finland
| | - Katharyn E. Boyer
- Estuary & Ocean Science Center and Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Mathieu Cusson
- Sciences fondamentales and Québec Océan, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Johan Eklöf
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | | | - F. Joel Fodrie
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | | | - Clara M. Hereu
- Universidad Autónoma de Baja California, Mexicali, Baja CA, Mexico
| | - Masakazu Hori
- Fisheries Research and Education Agency, Hatsukaichi, Hiroshima, Japan
| | - A. Randall Hughes
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| | - Mikhail V. Ivanov
- Department of Ichthyology and Hydrobiology, St Petersburg State University, St Petersburg, Russia
| | - Pablo Jorgensen
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Antártida e Islas del Atlántico Sur, Argentina
| | | | - Kun-Seop Lee
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Jonathan Lefcheck
- DataLab: Data Science and Informatics, University of California, Davis, CA, USA
| | - Karen McGlathery
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Per-Olav Moksnes
- Department of Marine Sciences, University of Gothenburg, Goteborg, Sweden
| | | | - Mary I. O'Connor
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nessa E. O'Connor
- School of Natural Sciences, Trinity College Dublin, Dublin, Republic of Ireland
| | | | - Robert J. Orth
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, USA
| | - Bradley J. Peterson
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | | | - Francesca Rossi
- Centre National de la Récherche Scientifique, ECOSEAS Laboratory, Université de Cote d'Azur, Nice, France
| | - Jennifer Ruesink
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Erik E. Sotka
- Grice Marine Laboratory, College of Charleston, Charleston, SC, USA
| | | | - Fiona Tomas
- IMEDEAS (CSIC), Esporles, Islas Baleares, Spain
| | | | - Erin P. Voigt
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Matthew A. Whalen
- Hakai Institute, Campbell River, British Columbia, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | - John J. Stachowicz
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Murphy GE, Dunic JC, Adamczyk EM, Bittick SJ, Côté IM, Cristiani J, Geissinger EA, Gregory RS, Lotze HK, O’Connor MI, Araújo CA, Rubidge EM, Templeman ND, Wong MC. From coast to coast to coast: ecology and management of seagrass ecosystems across Canada. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Seagrass meadows are among the most productive and diverse marine ecosystems, providing essential structure, functions, and services. They are also among the most impacted by human activities and in urgent need of better management and protection. In Canada, eelgrass ( Zostera marina) meadows are found along the Atlantic, Pacific, and Arctic coasts, and thus occur across a wide range of biogeographic conditions. Here, we synthesize knowledge of eelgrass ecosystems across Canada’s coasts, highlighting commonalities and differences in environmental conditions, plant, habitat, and community structure, as well as current trends and human impacts. Across regions, eelgrass life history, phenology, and general species assemblages are similar. However, distinct regional differences occur in environmental conditions, particularly with water temperature and nutrient availability. There is considerable variation in the types and strengths of human activities among regions. The impacts of coastal development are prevalent in all regions, while other impacts are of concern for specific regions, e.g., nutrient loading in the Atlantic and impacts from the logging industry in the Pacific. In addition, climate change represents a growing threat to eelgrass meadows. We review current management and conservation efforts and discuss the implications of observed differences from coast to coast to coast.
Collapse
Affiliation(s)
- Grace E.P. Murphy
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Jillian C. Dunic
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Emily M. Adamczyk
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah J. Bittick
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Isabelle M. Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - John Cristiani
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Robert S. Gregory
- Department of Biology, Memorial University, St. John’s, NL A1C 5S7, Canada
- Fisheries and Oceans Canada, St. John’s, NL A1A 5J7, Canada
| | - Heike K. Lotze
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mary I. O’Connor
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carlos A.S. Araújo
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Emily M. Rubidge
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Melisa C. Wong
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| |
Collapse
|
3
|
Twining JP, Montgomery I, Fitzpatrick V, Marks N, Scantlebury DM, Tosh DG. Seasonal, geographical, and habitat effects on the diet of a recovering predator population: the European pine marten (Martes martes) in Ireland. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1289-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Whippo R, Knight NS, Prentice C, Cristiani J, Siegle MR, O'Connor MI. Epifaunal diversity patterns within and among seagrass meadows suggest landscape‐scale biodiversity processes. Ecosphere 2018. [DOI: 10.1002/ecs2.2490] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ross Whippo
- Department of Zoology and Biodiversity Research Centre University of British Columbia 2212 Main Mall Vancouver British Columbia V6T 1Z4 Canada
- Smithsonian Institution Tennenbaum Marine Observatories Network 647 Contees Wharf Road Edgewater Maryland 21037 USA
| | - Nicole S. Knight
- Department of Zoology and Biodiversity Research Centre University of British Columbia 2212 Main Mall Vancouver British Columbia V6T 1Z4 Canada
- Department of Biology McGill University 1205 Avenue Docteur Penfield Montreal Quebec H3A 1B1 Canada
- Smithsonian Tropical Research Institute Apartado Balboa 0843‐03092 Ancon Republic of Panama
| | - Carolyn Prentice
- Department of Zoology and Biodiversity Research Centre University of British Columbia 2212 Main Mall Vancouver British Columbia V6T 1Z4 Canada
- School of Resource and Environmental Management Simon Fraser University 8888 University Drive Burnaby British Columbia V5A 1S6 Canada
| | - John Cristiani
- Department of Zoology and Biodiversity Research Centre University of British Columbia 2212 Main Mall Vancouver British Columbia V6T 1Z4 Canada
| | - Matthew R. Siegle
- Department of Zoology and Biodiversity Research Centre University of British Columbia 2212 Main Mall Vancouver British Columbia V6T 1Z4 Canada
| | - Mary I. O'Connor
- Department of Zoology and Biodiversity Research Centre University of British Columbia 2212 Main Mall Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
5
|
Coffin MR, Courtenay SC, Knysh KM, Pater CC, van den Heuvel MR. Impacts of hypoxia on estuarine macroinvertebrate assemblages across a regional nutrient gradient. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the effects of dissolved oxygen, via metrics based on hourly measurements, and other environmental variables on invertebrate assemblages in estuaries spanning a gradient of nutrient loading and geography in the southern Gulf of St. Lawrence, Canada. Upper areas (15–25 practical salinity units (PSU)) of 13 estuaries that were dominated by either seagrass ( Zostera marina Linnaeus, 1753) or macroalgae ( Ulva spp. Linnaeus, 1753) were sampled from June to September 2013. Macroinvertebrate assemblages from Z. marina were found to be distinct from Ulva assemblages for both epifauna and infauna. Small snails dominated each vegetation type, specifically cerithids in Z. marina and hydrobids in Ulva. Although Z. marina had higher species richness, approximately 70% of species were common to both habitats. Faunal communities differed among estuaries with large, within-estuary, temporal variance only observed at Ulva sites impacted by hypoxia and particularly at sites with long water residence time. Indeed, abundances varied by several orders of magnitude in Ulva ranging from zero to thousands of macroinvertebrates. There was a strong negative correlation between hypoxic or anoxic water, 48 h prior to sampling, with relative abundances of amphipods, and a positive correlation with the relative abundances of snails. As one of the first studies to use high-frequency oxygen monitoring, this study revealed probable impacts and the transient nature of hypoxia in eutrophication.
Collapse
Affiliation(s)
- Michael R.S. Coffin
- Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Simon C. Courtenay
- Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
- Canadian Rivers Institute, Canadian Water Network, School of Environment, Resources and Sustainability, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kyle M. Knysh
- Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Christina C. Pater
- Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Michael R. van den Heuvel
- Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
6
|
Jiménez-Ramos R, Egea LG, Vergara JJ, Bouma TJ, Brun FG. The role of flow velocity combined with habitat complexity as a top-down regulator in seagrass meadows. OIKOS 2018. [DOI: 10.1111/oik.05452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Jiménez-Ramos
- Dept of Biology, Faculty of Marine and Environmental Sciences, Univ. of Cadiz; Puerto Real Cadiz Spain
| | - L. G. Egea
- Dept of Biology, Faculty of Marine and Environmental Sciences, Univ. of Cadiz; Puerto Real Cadiz Spain
| | - J. J. Vergara
- Dept of Biology, Faculty of Marine and Environmental Sciences, Univ. of Cadiz; Puerto Real Cadiz Spain
| | - T. J. Bouma
- Dept of Estuarine and Delta systems, Royal Netherlands Inst. for Sea Research (NIOZ); Yerseke the Netherlands
| | - F. G. Brun
- Dept of Biology, Faculty of Marine and Environmental Sciences, Univ. of Cadiz; Puerto Real Cadiz Spain
| |
Collapse
|
7
|
Hessing-Lewis M, Rechsteiner EU, Hughes BB, Tim Tinker M, Monteith ZL, Olson AM, Henderson MM, Watson JC. Ecosystem features determine seagrass community response to sea otter foraging. MARINE POLLUTION BULLETIN 2018; 134:134-144. [PMID: 29221592 DOI: 10.1016/j.marpolbul.2017.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Comparing sea otter recovery in California (CA) and British Columbia (BC) reveals key ecosystem properties that shape top-down effects in seagrass communities. We review potential ecosystem drivers of sea otter foraging in CA and BC seagrass beds, including the role of coastline complexity and environmental stress on sea otter effects. In BC, we find greater species richness across seagrass trophic assemblages. Furthermore, Cancer spp. crabs, an important link in the seagrass trophic cascade observed in CA, are less common. Additionally, the more recent reintroduction of sea otters, more complex coastline, and reduced environmental stress in BC seagrass habitats supports the hypotheses that sea otter foraging pressure is currently reduced there. In order to manage the ecosystem features that lead to regional differences in top predator effects in seagrass communities, we review our findings, their spatial and temporal constraints, and present a social-ecological framework for future research.
Collapse
Affiliation(s)
| | - Erin U Rechsteiner
- Hakai Institute, PO Box 309, Heriot Bay, BC V0P 1H0, Canada; Applied Conservation Science Lab, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4, Canada
| | - Brent B Hughes
- Institute of Marine Science, University of California Santa Cruz, 115 McAllister Way, Santa Cruz, CA 95060, USA; Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| | - M Tim Tinker
- U.S. Geological Survey, Western Ecological Research Center, Long Marine Laboratory, 115 McAllister Way, Santa Cruz, CA 95060, USA
| | | | | | | | - Jane C Watson
- Biology Department, Vancouver Island University, 900 Fifth St., Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
8
|
Fricke A, Pey A, Gianni F, Lemée R, Mangialajo L. Multiple stressors and benthic harmful algal blooms (BHABs): Potential effects of temperature rise and nutrient enrichment. MARINE POLLUTION BULLETIN 2018; 131:552-564. [PMID: 29886982 DOI: 10.1016/j.marpolbul.2018.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Blooms of Ostreopsis cf. ovata, causing health incidence and mass human intoxications in the Mediterranean, gained special attention over the past decades. To study the potential effects of temperature and nutrient enrichment on this benthic dinoflagellate and other associated microalgae in situ, a multifactorial experiment was set up along a temperature gradient of a heat pump system in Monaco. Microalgae were quantified in experimental units, in the natural biofilm and in the water column. No significant interaction was observed between temperature and nutrients. A species- and bloom phase-dependent effect of the increased temperature was recorded, while the nutrient enrichment had a significant effect only at the end of the experiment (when cell abundances were low). Temperature effects were also visible in the biofilm and the surrounding water. The observed assemblages were mainly driven by changes in abundances of Ostreopsis cf. ovata and Actinocyclus sp., affected in different ways.
Collapse
Affiliation(s)
- A Fricke
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Nice 06108, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche sur mer, France; Instituto Argentino de Oceanografía (IADO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Florida 4750, Bahía Blanca, B8000FWB, n/a, Argentina.
| | - A Pey
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Nice 06108, France
| | - F Gianni
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Nice 06108, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche sur mer, France
| | - R Lemée
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche sur mer, France
| | - L Mangialajo
- Université Côte d'Azur, CNRS, ECOMERS, Parc Valrose 28, Nice 06108, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche sur mer, France
| |
Collapse
|
9
|
Beermann J, Boos K, Gutow L, Boersma M, Peralta AC. Combined effects of predator cues and competition define habitat choice and food consumption of amphipod mesograzers. Oecologia 2018; 186:645-654. [PMID: 29335795 PMCID: PMC5829112 DOI: 10.1007/s00442-017-4056-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 12/24/2017] [Indexed: 12/01/2022]
Abstract
Predation has direct impact on prey populations by reducing prey abundance. In addition, predator presence alone can also have non-consumptive effects on prey species, potentially influencing their interspecific interactions and thus the structure of entire assemblages. The performance of potential prey species may, therefore, depend on both the presence of predators and competitors. We studied habitat use and food consumption of a marine mesograzer, the amphipod Echinogammarus marinus, in the presence/absence of a fish mesopredator and/or an amphipod competitor. The presence of the predator affected both habitat choice and food consumption of the grazer, indicating a trade-off between the use of predator-free space and food acquisition. Without the predator, E. marinus were distributed equally over different microhabitats, whereas in the presence of the predator, most individuals chose a sheltered microhabitat and reduced their food consumption. Furthermore, habitat choice of the amphipods changed in the presence of interspecific competitors, also resulting in reduced feeding rates. The performance of E. marinus is apparently driven by trait-mediated direct and indirect effects caused by the interplay of predator avoidance and competition. This highlights the importance of potential non-consumptive impacts of predators on their prey organisms. The flexible responses of small invertebrate consumers to the combined effects of predation and competition potentially lead to changes in the structure of coastal ecosystems and the multiple species interactions therein.
Collapse
Affiliation(s)
- Jan Beermann
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, PO Box 120161, 27515, Bremerhaven, Germany.
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Postbox 180, 27483, Helgoland, Germany.
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany.
| | - Karin Boos
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
| | - Lars Gutow
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, PO Box 120161, 27515, Bremerhaven, Germany
| | - Maarten Boersma
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Postbox 180, 27483, Helgoland, Germany
- FB2, University of Bremen, Bremen, Germany
| | - Ana Carolina Peralta
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Postbox 180, 27483, Helgoland, Germany
- Marine Biology Laboratory, Simon Bolivar University, Caracas, Venezuela
| |
Collapse
|
10
|
Amundrud SL, Srivastava DS. Trophic interactions determine the effects of drought on an aquatic ecosystem. Ecology 2016; 97:1475-83. [PMID: 27459778 DOI: 10.1890/15-1638.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Species interactions can be important mediators of community and ecosystem responses to environmental stressors. However, we still lack a mechanistic understanding of the indirect ecological effects of stress that arise via altered species interactions. To understand how species interactions will be altered by environmental stressors, we need to know if the species that are vulnerable to such stressors also have large impacts on the ecosystem. As predators often exhibit certain traits that are linked to a high vulnerability to stress (e.g., large body size, long generation time), as well as having large effects on communities (e.g., top-down trophic effects), predators may be particularly likely to mediate ecological effects of environmental stress. Other functional groups, like facilitators, are known to have large impacts on communities, but their vulnerability to perturbations remains undocumented. Here, we use aquatic insect communities in bromeliads to examine the indirect effects of an important stressor (drought) on community and ecosystem responses. In a microcosm experiment, we manipulated predatory and facilitative taxa under a range of experimental droughts, and quantified effects on community structure and ecosystem function. Drought, by adversely affecting the top predator, had indirect cascading effects on the entire food web, altering community composition and decomposition. We identified the likely pathway of how drought cascaded through the food web from the top-down as drought -->predator --> shredder --> decomposition. This stress-induced cascade depended on predators exhibiting both a strong vulnerability to drought and large impacts on prey (especially shredders), as well as shredders exhibiting high functional importance as decomposers.
Collapse
|