1
|
Nanglu K, de Carle D, Cullen TM, Anderson EB, Arif S, Castañeda RA, Chang LM, Iwama RE, Fellin E, Manglicmot RC, Massey MD, Astudillo‐Clavijo V. The nature of science: The fundamental role of natural history in ecology, evolution, conservation, and education. Ecol Evol 2023; 13:e10621. [PMID: 37877102 PMCID: PMC10591213 DOI: 10.1002/ece3.10621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
There is a contemporary trend in many major research institutions to de-emphasize the importance of natural history education in favor of theoretical, laboratory, or simulation-based research programs. This may take the form of removing biodiversity and field courses from the curriculum and the sometimes subtle maligning of natural history research as a "lesser" branch of science. Additional threats include massive funding cuts to natural history museums and the maintenance of their collections, the extirpation of taxonomists across disciplines, and a critical under-appreciation of the role that natural history data (and other forms of observational data, including Indigenous knowledge) play in the scientific process. In this paper, we demonstrate that natural history knowledge is integral to any competitive science program through a comprehensive review of the ways in which they continue to shape modern theory and the public perception of science. We do so by reviewing how natural history research has guided the disciplines of ecology, evolution, and conservation and how natural history data are crucial for effective education programs and public policy. We underscore these insights with contemporary case studies, including: how understanding the dynamics of evolutionary radiation relies on natural history data; methods for extracting novel data from museum specimens; insights provided by multi-decade natural history programs; and how natural history is the most logical venue for creating an informed and scientifically literate society. We conclude with recommendations aimed at students, university faculty, and administrators for integrating and supporting natural history in their mandates. Fundamentally, we are all interested in understanding the natural world, but we can often fall into the habit of abstracting our research away from its natural contexts and complexities. Doing so risks losing sight of entire vistas of new questions and insights in favor of an over-emphasis on simulated or overly controlled studies.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Danielle de Carle
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Invertebrate ZoologyRoyal Ontario MuseumTorontoOntarioCanada
| | - Thomas M. Cullen
- Department of GeosciencesAuburn UniversityAuburnAlabamaUSA
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Erika B. Anderson
- The HunterianUniversity of GlasgowGlasgowUK
- Department of Earth and SpaceRoyal Ontario MuseumTorontoOntarioCanada
| | - Suchinta Arif
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Rowshyra A. Castañeda
- Ecosystems and Ocean SciencesPacific Region, Fisheries and Oceans CanadaSidneyBritish ColumbiaCanada
| | | | - Rafael Eiji Iwama
- Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Erica Fellin
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | | | | | |
Collapse
|
2
|
Quintanilla JM, Malca E, Lamkin J, García A, Laiz-Carrión R. Evidence of isotopic maternal transmission influence on bluefin tuna (Thunnus thynnus) larval growth. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106112. [PMID: 37523845 DOI: 10.1016/j.marenvres.2023.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Pre-flexion stages of Atlantic bluefin tuna (Thunnus thynnus) larvae were collected in 2014 during the peak of spawning in the two main spawning areas: Gulf of Mexico (GOM) and Mediterranean Sea (MED). We examined daily growth, otolith biometry, and stable isotopes and found that the GOM grew at a faster rate, had larger otoliths, wider daily increments, and significantly lower values of δ15N when compared to the MED. In addition, an intra-population comparative analysis between slow- and fast-growing individuals (deficient vs. optimal growth groups, respectively) showed that optimal growth groups had significantly lower δ15N within each spawning area, implying a direct relationship between growth potential, development, and maternal transmission of isotopic signatures. A third pre-flexion larval group that was aquaculture-reared also exhibited the same pattern to the wild larval groups. In addition, for the first time, we estimated the maternal trophic niches using models developed with field-captured pre-flexion larvae. The estimated maternal trophic niches for the GOM were narrower than the MED, implying differences in the maternal trophodynamics from each nursery area. Overall, the inter-population (GOM vs. MED) and intra-population growth groups (deficient vs. optimal) grew faster and had narrower maternal niches. This study shows the advantages that larval SIA research can aid in the understanding of the trophodynamics of their breeders by examining the trophic relationship of a spawning stock jointly with the development of growth potential in offspring within the same breeding season.
Collapse
Affiliation(s)
- José M Quintanilla
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO-CSIC), Fuengirola, Málaga, Spain.
| | - Estrella Malca
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - John Lamkin
- Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Alberto García
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO-CSIC), Fuengirola, Málaga, Spain
| | - Raúl Laiz-Carrión
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO-CSIC), Fuengirola, Málaga, Spain
| |
Collapse
|
3
|
Rader JA, Matute DR. Isotopic niches do not follow the expectations of niche conservatism in the bird genus Cinclodes. J Evol Biol 2023; 36:1185-1197. [PMID: 37428811 DOI: 10.1111/jeb.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Phenotypic traits are expected to be more similar among closely related species than among species that diverged long ago (all else being equal). This pattern, known as phylogenetic niche conservatism, also applies to traits that are important to determine the niche of species. To test this hypothesis on ecological niches, we analysed isotopic data from 254 museum study skins from 12 of the 16 species of the bird genus Cinclodes and measured stable isotope ratios for four different elements: carbon, nitrogen, hydrogen and oxygen. We find that all traits, measured individually, or as a composite measurement, lack any phylogenetic signal, which in turn suggests a high level of lability in ecological niches. We compared these metrics to the measurements of morphological traits in the same genus and found that isotopic niches are uniquely evolutionarily labile compared to other traits. Our results suggest that, in Cinclodes, the realized niche evolves much faster than expected by the constraints of phylogenetic history and poses the question of whether this is a general pattern across the tree of life.
Collapse
Affiliation(s)
- Jonathan A Rader
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel R Matute
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Hobson KA, Kardynal KJ. Multi-isotope (δ 2H, δ 13C, δ 15N) feather profiles and morphometrics inform patterns of migratory connectivity in three species of North American swallows. MOVEMENT ECOLOGY 2023; 11:48. [PMID: 37528460 PMCID: PMC10391972 DOI: 10.1186/s40462-023-00412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Aerial insectivorous birds have suffered steep population declines in North America over the last 60 years. A lack of information on migratory connectivity between breeding and non-breeding grounds for these species limits our ability to interpret factors affecting their population-specific trends. We determined likely Latin American non-breeding regions of Bank (Riparia riparia), Barn (Hirundo rustica) and Cliff (Petrochelidon pyrrhonota) swallow from populations across their breeding ranges. We used predicted feather hydrogen (δ2Hf) and carbon (δ13Cf) isoscapes for winter-grown feathers to indicate areas of highest probability of moult origin and incorporated these results into a cluster analysis to determine likely broad non-breeding regions. We also assessed variation in wing length among populations to determine the potential for this metric to differentiate population moult origins. We then investigated patterns of multi-isotopic (δ2Hf, δ13Cf, δ15Nf) and wing-length niche occupancy by quantifying niche size and overlap among populations under the assumption that broad niches were consistent with low within-species migratory connectivity and narrow and non-overlapping niches with higher connectivity. Multivariate assignment identified different non-breeding regions and potential clusters of moult origin generally corresponding to Central America and northern South America, eastern and south-central South America, and the western and southern part of that continent, with variation within and among populations and species. Separate niche space indicated different wintering habitat or areas used by species or populations whereas niche overlap indicated only potential spatial similarity. Wing length varied significantly among populations by species, being longer in the west and north for Bank and Cliff Swallow and longer in eastern Canadian Barn Swallow populations. Barn Swallow occupied consistently larger isotopic and wing length niche space than the other species. Comparisons among populations across species showed variable isotopic and wing-length niche overlap generally being greater within breeding regions and lower between western and eastern breeding populations supporting a general North American continental divide for all species with generally low migratory connectivity for all species. We present a novel approach to assessing connectivity using inexpensive and broad isotopic approaches that provides the basis for hypothesis testing using more spatially explicit expensive techniques.
Collapse
Affiliation(s)
- Keith A Hobson
- Wildlife and Landscape Research Directorate, Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada.
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Kevin J Kardynal
- Wildlife and Landscape Research Directorate, Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
5
|
Navarrete L, Lübcker N, Alvarez F, Nespolo R, Sanchez-Hernandez JC, Maldonado K, Sharp ZD, Whiteman JP, Newsome SD, Sabat P. A multi-isotope approach reveals seasonal variation in the reliance on marine resources, production of metabolic water, and ingestion of seawater by two species of coastal passerine to maintain water balance. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1120271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Tracing how free-ranging organisms interact with their environment to maintain water balance is a difficult topic to study for logistical and methodological reasons. We use a novel combination of triple-oxygen stable isotope analyses of water extracted from plasma (δ16O, δ17O, δ18O) and bulk tissue carbon (δ13C) and nitrogen (δ15N) isotopes of feathers and blood to estimate the proportional contribution of marine resources, seawater, and metabolic water used by two species of unique songbirds (genus Cinclodes) to maintain their water balance in a seasonal coastal environment. We also assessed the physiological adjustments that these birds use to maintain their water balance. In agreement with previous work on these species, δ13C and δ15N data show that the coastal resident and invertivore C. nigrofumosus consumes a diet rich in marine resources, while the diet of migratory C. oustaleti shifts seasonally between marine (winter) to freshwater aquatic resources (summer). Triple-oxygen isotope analysis (Δ17O) of blood plasma, basal metabolic rate (BMR), and total evaporative water loss (TEWL) revealed that ~25% of the body water pool of both species originated from metabolic water, while the rest originated from a mix of seawater and fresh water. Δ17O measurements suggest that the contribution of metabolic water tends to increase in summer in C. nigrofumosus, which is coupled with a significant increase in BMR and TEWL. The two species had similar BMR and TEWL during the austral winter when they occur sympatrically in coastal environments. We also found a positive and significant association between the use of marine resources as measured by δ13C and δ15N values and the estimated δ18O values of ingested (pre-formed) water in both species, which indicates that Cinclodes do not directly drink seawater but rather passively ingest when consuming marine invertebrates. Finally, results obtained from physiological parameters and the isotope-based estimates of marine (food and water) resource use are consistent, supporting the use of the triple-oxygen isotopes to quantify the contribution of water sources to the total water balance of free-ranging birds.
Collapse
|
6
|
Bökenhans V, Galván D, Bigatti G, Averbuj A. Stable Isotopes Reveal Algal Assimilation in the Carnivorous Sea Slug Pleurobranchaea maculata (Quoy & Gaimard, 1832) on Patagonian Coasts. MALACOLOGIA 2022. [DOI: 10.4002/040.065.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Verena Bökenhans
- LARBIM-IBIOMAR, CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina
| | - David Galván
- CESIMAR-CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina
| | - Gregorio Bigatti
- LARBIM-IBIOMAR, CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina
| | - Andrés Averbuj
- LARBIM-IBIOMAR, CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV Puerto Madryn, Chubut, Argentina
| |
Collapse
|
7
|
Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) Invasion Caused Trophic Structure Disruptions of Fish Communities in the South China River—Pearl River. BIOLOGY 2022; 11:biology11111665. [DOI: 10.3390/biology11111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Widespread introductions of non-native species, including aquaculture and ornamental species, threaten biodiversity and ecosystem functioning by modifying the trophic structure of communities. In this study, we quantified the multiple facets of trophic disruption in freshwater communities invaded by Nile tilapia, by comparing uninvaded and invaded rivers downstream of the Pearl River, China. Nile tilapia invasion reduced the trophic status of native fish species by forcing native herbivores and planktivores to seek new food sources. The food chain was also shortened by decreasing the trophic levels of native invertivores, omnivores, and piscivores, while the total isotopic niche area (TA) of native invertivores, omnivores, piscivores, and planktivores species also decreased. Simultaneously, Nile tilapia invasion affected the isotopic diversity of the fish community. Decreasing isotopic richness (IRic), isotopic evenness (IEve), and increasing isotopic uniqueness (IUni) indicated that Nile tilapia had a high trophic niche overlap with native species and competed with native species for food resources, and even caused the compression of the trophic niche of native species. Understanding the process described in this study is essential to conserve the stability of freshwater ecosystems, and improve the control strategy of alien aquatic organisms in south China.
Collapse
|
8
|
Leppi JC, Rinella DJ, Wipfli MS, Whitman MS. Broad Whitefish (Coregonus nasus) isotopic niches: Stable isotopes reveal diverse foraging strategies and habitat use in Arctic Alaska. PLoS One 2022; 17:e0270474. [PMID: 35881611 PMCID: PMC9321764 DOI: 10.1371/journal.pone.0270474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Understanding the ecological niche of some fishes is complicated by their frequent use of a broad range of food resources and habitats across space and time. Little is known about Broad Whitefish (Coregonus nasus) ecological niches in Arctic landscapes even though they are an important subsistence species for Alaska’s Indigenous communities. We investigated the foraging ecology and habitat use of Broad Whitefish via stable isotope analyses of muscle and liver tissue and otoliths from mature fish migrating in the Colville River within Arctic Alaska. The range of δ13C (-31.8– -21.9‰) and δ15N (6.6–13.1‰) across tissue types and among individuals overlapped with isotope values previously observed in Arctic lakes and rivers, estuaries, and nearshore marine habitat. The large range of δ18O (4.5–10.9‰) and δD (-237.6– -158.9‰) suggests fish utilized a broad spectrum of habitats across elevational and latitudinal gradients. Cluster analysis of muscle δ13Cˈ, δ15N, δ18O, and δD indicated that Broad Whitefish occupied four different foraging niches that relied on marine and land-based (i.e., freshwater and terrestrial) food sources to varying degrees. Most individuals had isotopic signatures representative of coastal freshwater habitat (Group 3; 25%) or coastal lagoon and delta habitat (Group 1; 57%), while individuals that mainly utilized inland freshwater (Group 4; 4%) and nearshore marine habitats (Group 2; 14%) represented smaller proportions. Otolith microchemistry confirmed that individuals with more enriched muscle tissue δ13Cˈ, δD, and δ18O tended to use marine habitats, while individuals that mainly used freshwater habitats had values that were less enriched. The isotopic niches identified here represent important foraging habitats utilized by Broad Whitefish. To preserve access to these diverse habitats it will be important to limit barriers along nearshore areas and reduce impacts like roads and climate change on natural flow regimes. Maintaining these diverse connected habitats will facilitate long-term population stability, buffering populations from future environmental and anthropogenic perturbations.
Collapse
Affiliation(s)
- Jason C. Leppi
- Alaska Cooperative Fish and Wildlife Research Unit, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- Research Department, The Wilderness Society, Anchorage, Alaska, United States of America
- * E-mail: ,
| | - Daniel J. Rinella
- Anchorage Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, Anchorage, Alaska, United States of America
| | - Mark S. Wipfli
- U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Matthew S. Whitman
- Arctic District Office, Bureau of Land Management, Fairbanks, Alaska, United States of America
| |
Collapse
|
9
|
Alp M, Cucherousset J. Food webs speak of human impact: Using stable isotope-based tools to measure ecological consequences of environmental change. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2021.e00218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
He M, Liu F, Wang F. Determination of the stable isotope discrimination factor of wild organisms: a case study of the red swamp crayfish in integrated rice-crayfish ( Procambarus clarkii) culture without artificial diets. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2022; 58:81-98. [PMID: 34890270 DOI: 10.1080/10256016.2021.2008380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
This study collected samples from a 95-day integrated rice-crayfish culture experiment, and determined the stable isotope discrimination factor of the red swamp crayfish (Procambarus clarkii) by using a model method and difference value method. The isotope ratios of P. clarkii and the dietary resources in rice fields and its feeding niche volumes were 'conservative' as proposed. This result broadly supported the assumption of the laboratory feeding experiment that animals should be fed a single diet exhibiting a constant isotopic composition. Using standard ellipse areas (SEA) to screen the data, growth- and time-dependent models of carbon and nitrogen isotopes of females and males were obtained. The Δ13C and its half-lives for females and males were 0.67 (21.0 d) and 0.91 (33.0 d), whereas Δ15N and its half-lives for those were 3.45 (17.8 d) and 3.05 (17.3 d), respectively. The results of integrated rice-crayfish culture without artificial diets provides a reference example for future studies on species-specific discrimination factors in specific field habitats.
Collapse
Affiliation(s)
- Mingdi He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Jimo, People's Republic of China
| | - Feng Liu
- Shandong Freshwater Fisheries Research Institute, Jinan, People's Republic of China
| | - Fang Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Jimo, People's Republic of China
| |
Collapse
|
11
|
Multidimensional natal isotopic niches reflect migratory patterns in birds. Sci Rep 2021; 11:20800. [PMID: 34675313 PMCID: PMC8531022 DOI: 10.1038/s41598-021-00373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
Naturally occurring stable isotope ratios in animal tissues allow estimation of species trophic position and ecological niche. Measuring multiple isotopes of migratory species along flyway bottlenecks offers the opportunity to sample multiple populations and species whose tissues carry information at continental scales. We measured δ2H, δ18O, δ13C, δ15N in juvenile feathers of 21 bird species captured at a migratory bottleneck in the Italian Alps. We examined if trends in individual isotopes reflected known migratory strategies and whether dietary (δ13C–δ15N) and spatially-explicit breeding origin (δ2H–δ18O) niche breadth (NB) differed among long-distance trans-Saharan (TS), short-distance (IP) and irruptive (IR) intra-Palearctic migrants, and whether they correlated with reported populations long-term trends. In both TS and IP groups, species δ2H declined with capture date, indicating that northern populations reached the stopover site later in the season, following a Type-I migration strategy. Values of δ2H indicated that breeding range of TS migrants extended farther north than IP and IR migrants. The breeding season was longer for IP migrants whose δ13C and δ15N values declined and increased, respectively, with time of capture. Average species dietary NB did not differ among migratory groups, but TS migrants displayed wider breeding origin niches, suggesting that long-distant migration is linked to broader ecological niches. Isotope origin NB well reflected species geographic range extent, while dietary NB did not correlate with literature accounts of species’ diet. We found no relationship between species breeding NB and population trends in Europe, suggesting that conditions in the breeding grounds, as inferred by stable isotopes, are not the only determinant of species’ long-term persistence. We demonstrate that ringing activities and isotopic measurements of passerines migrating through a bottleneck represents a unique opportunity to investigate large-scale life-history phenomena relevant to conservation.
Collapse
|
12
|
Navarro AB, Magioli M, Bogoni JA, Silveira LF, Moreira MZ, Alexandrino ER, da Luz DTA, Silva WR, Pizo MA, de Oliveira VC, Ferraz KMPMDB. Isotopic niches of tropical birds reduced by anthropogenic impacts: a 100‐year perspective. OIKOS 2021. [DOI: 10.1111/oik.08386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Beatriz Navarro
- Laboratório de Ecologia, Manejo e Conservação de Fauna Silvestre (LEMaC), Depto de Ciências Florestais, Escola Superior de Agricultura ‘Luiz de Queiroz’
- Seção de Aves, Museu de Zoologia da Univ. de São Paulo São Paulo SP Brazil
| | - Marcelo Magioli
- Laboratório de Ecologia, Manejo e Conservação de Fauna Silvestre (LEMaC), Depto de Ciências Florestais, Escola Superior de Agricultura ‘Luiz de Queiroz’
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros, Inst. Chico Mendes de Conservação da Biodiversidade Atibaia SP Brazil
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros, Inst. Chico Mendes de Conservação da Biodiversidade Atibaia SP Brazil
| | - Juliano André Bogoni
- Laboratório de Ecologia, Manejo e Conservação de Fauna Silvestre (LEMaC), Depto de Ciências Florestais, Escola Superior de Agricultura ‘Luiz de Queiroz’
| | | | - Marcelo Zacharias Moreira
- Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura – Univ. de São Paulo Piracicaba SP Brazil
| | - Eduardo Roberto Alexandrino
- Laboratório de Ecologia, Manejo e Conservação de Fauna Silvestre (LEMaC), Depto de Ciências Florestais, Escola Superior de Agricultura ‘Luiz de Queiroz’
- Inst. Nacional da Mata Atlântica Santa Teresa ES Brazil
- Univ. de São Paulo Piracicaba SP Brazil
- Inst. Nacional da Mata Atlântica Santa Teresa ES Brazil
| | - Daniela Tomasio Apolinario da Luz
- Laboratório de Ecologia, Manejo e Conservação de Fauna Silvestre (LEMaC), Depto de Ciências Florestais, Escola Superior de Agricultura ‘Luiz de Queiroz’
| | - Wesley Rodrigues Silva
- Laboratório de Interações Vertebrados Plantas, Depto de Biologia Animal, Inst. de Biologia, Univ. Estadual de Campinas Campinas SP Brazil
| | - Marco Aurelio Pizo
- Inst. de Biociências, Depto de Zoologia, Univ. Estadual Paulista Rio Claro SP Brazil
| | - Vanessa Cristina de Oliveira
- Laboratório de Ecologia, Manejo e Conservação de Fauna Silvestre (LEMaC), Depto de Ciências Florestais, Escola Superior de Agricultura ‘Luiz de Queiroz’
| | | |
Collapse
|
13
|
Shipley ON, Kelly JB, Bizzarro JJ, Olin JA, Cerrato RM, Power M, Frisk MG. Evolution of realized Eltonian niches across
Rajidae
species. Ecosphere 2021. [DOI: 10.1002/ecs2.3368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Oliver N. Shipley
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| | - Joseph B. Kelly
- Department for Ecology and Evolution Stony Brook University Stony Brook New York11794USA
| | - Joseph J. Bizzarro
- Moss Landing Marine Laboratories California State University 8272 Moss Landing Road Moss Landing California95039USA
- Cooperative Institute for Marine Ecosystems and Climate University of California, Santa Cruz 110 McAllister Way Santa Cruz California95060USA
| | - Jill A. Olin
- Great Lakes Research Center Michigan Technological University Houghton Michigan49931USA
| | - Robert M. Cerrato
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| | - Michael Power
- Department of Biology University of Waterloo 200 University Avenue West Waterloo OntarioN2L 3G1Canada
| | - Michael G. Frisk
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| |
Collapse
|
14
|
Walsh LL, Tucker PK. Isotopic niche breadth of a generalist mesopredator increases with habitat heterogeneity across its range. Ecosphere 2020. [DOI: 10.1002/ecs2.3314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Lisa L. Walsh
- Department of Ecology and Evolutionary Biology and Museum of Zoology University of Michigan 1105 North University Ann Arbor Michigan48109USA
| | - Priscilla K. Tucker
- Department of Ecology and Evolutionary Biology and Museum of Zoology University of Michigan 1105 North University Ann Arbor Michigan48109USA
| |
Collapse
|
15
|
Wilkinson CL, Chua KWJ, Fiala R, Liew JH, Kemp V, Hadi Fikri A, Ewers RM, Kratina P, Yeo DCJ. Forest conversion to oil palm compresses food chain length in tropical streams. Ecology 2020; 102:e03199. [PMID: 32969053 DOI: 10.1002/ecy.3199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 11/11/2022]
Abstract
In Southeast Asia, biodiversity-rich forests are being extensively logged and converted to oil palm monocultures. Although the impacts of these changes on biodiversity are largely well documented, we know addition to samples we collected in 201 little about how these large-scale impacts affect freshwater trophic ecology. We used stable isotope analyses (SIA) to determine the impacts of land-use changes on the relative contribution of allochthonous and autochthonous basal resources in 19 stream food webs. We also applied compound-specific SIA and bulk-SIA to determine the trophic position of fish apex predators and meso-predators (invertivores and omnivores). There was no difference in the contribution of autochthonous resources in either consumer group (70-82%) among streams with different land-use type. There was no change in trophic position for meso-predators, but trophic position decreased significantly for apex predators in oil palm plantation streams compared to forest streams. This change in maximum food chain length was due to turnover in identity of the apex predator among land-use types. Disruption of aquatic trophic ecology, through reduction in food chain length and shift in basal resources, may cause significant changes in biodiversity as well as ecosystem functions and services. Understanding this change can help develop more focused priorities for mediating the negative impacts of human activities on freshwater ecosystems.
Collapse
Affiliation(s)
- Clare L Wilkinson
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Kenny W J Chua
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Roswitha Fiala
- School of Biological and Chemical Sciences, Queen Mary University London, London, E1 4DQ, UK
| | - Jia H Liew
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Victoria Kemp
- School of Biological and Chemical Sciences, Queen Mary University London, London, E1 4DQ, UK
| | - Arman Hadi Fikri
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Malaysia
| | - Robert M Ewers
- Department of Life Sciences, Imperial College London-Silwood Park, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Pavel Kratina
- School of Biological and Chemical Sciences, Queen Mary University London, London, E1 4DQ, UK
| | - Darren C J Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.,Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
| |
Collapse
|
16
|
Quinby BM, Feldman NS, Flaherty EA, Belk MC, Smith ADF, Creighton JC. Isotopic discrimination between carrion and elytra clippings of lab-reared American burying beetles (Nicrophorus americanus): Implications for conservation and evaluation of feeding relationships in the wild. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8785. [PMID: 32196781 DOI: 10.1002/rcm.8785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Differences in stable isotope composition between an animal and its diet are quantified by experimentally derived diet-tissue discrimination factors. Appropriate discrimination factors between consumers and prey are essential for interpreting stable isotope patterns in ecological studies. While available for many taxa, these values are rarely estimated for organisms within the carrion food web. METHODS We used a controlled-diet stable isotope feeding trial to quantify isotopic diet-tissue discrimination factors of carbon (δ13 C values) and nitrogen (δ15 N values) from laboratory-reared Nicrophorus americanus raised on carrion. We used exoskeleton samples of beetle elytra (wing covers) to determine diet-tissue discrimination factors using a continuous flow isotope ratio mass spectrometer equipped with an elemental analyzer. We also measured the isotopic compositions of five species of co-occurring, wild-caught burying beetles and evaluated feeding relationships. RESULTS We found differences in stable carbon discrimination between carrion sources (mammalian and avian) and lab-reared beetles, but no difference in stable nitrogen discrimination. Values for δ13 C did not differ among wild-caught burying beetle species, but values for δ15 N were significantly different for the three species with overlapping breeding seasons. Furthermore, wild-caught burying beetles within our study area do not appear to use avian carrion resources to rear their young. CONCLUSIONS This study informs future interpretation of stable isotope data for insects within the carrion food web. In addition, these results provide insight into carrion resources used by co-occurring burying beetle species in situ. We also demonstrated that independent of adult food type, the larval food source has a significant impact on the isotopic signatures of adult beetles, which can be estimated using a minimally invasive elytra clipping.
Collapse
Affiliation(s)
- Brandon M Quinby
- Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, IN, 47907, USA
| | - Noah S Feldman
- Department of Biological Sciences, Purdue University Northwest, 2200 169th Street, Hammond, IN, 46323, USA
| | - Elizabeth A Flaherty
- Department of Forestry and Natural Resources, Purdue University, 195 Marsteller Street, West Lafayette, IN, 47907, USA
| | - Mark C Belk
- Department of Biology, Brigham Young University, 4023 LSB, Provo, UT, 84602, USA
| | - Amy D F Smith
- Department of Natural Sciences, John Brown University, 2000 W. University St, Siloam Springs, AR, 72761, USA
| | - J Curtis Creighton
- Department of Biological Sciences, Purdue University Northwest, 2200 169th Street, Hammond, IN, 46323, USA
| |
Collapse
|
17
|
Studying animal niches using bulk stable isotope ratios: an updated synthesis. Oecologia 2020; 193:27-51. [DOI: 10.1007/s00442-020-04654-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
|
18
|
Eckrich CA, Albeke SE, Flaherty EA, Bowyer RT, Ben‐David M. rKIN: Kernel‐based method for estimating isotopic niche size and overlap. J Anim Ecol 2020; 89:757-771. [DOI: 10.1111/1365-2656.13159] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/11/2019] [Indexed: 11/28/2022]
Affiliation(s)
| | - Shannon E. Albeke
- Wyoming Geographic Information Science Center University of Wyoming Laramie WY USA
- Program in Ecology University of Wyoming Laramie WY USA
| | - Elizabeth A. Flaherty
- Department of Forestry and Natural Resources Purdue University West Lafayette IN USA
| | - R. Terry Bowyer
- Institute of Arctic Biology University of Alaska Fairbanks Fairbanks AK USA
| | - Merav Ben‐David
- Program in Ecology University of Wyoming Laramie WY USA
- Department of Zoology and Physiology University of Wyoming Laramie WY USA
| |
Collapse
|
19
|
Price EL, Sertić Perić M, Romero GQ, Kratina P. Land use alters trophic redundancy and resource flow through stream food webs. J Anim Ecol 2019; 88:677-689. [PMID: 30712255 DOI: 10.1111/1365-2656.12955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022]
Abstract
The changes to physical and chemical ecosystem characteristics as a response to pervasive and intensifying land use have the potential to alter the consumer-resource interactions and to rewire the flow of energy through entire food webs. We investigated these structural and functional properties of food webs in stream ecosystems distributed across woodland, agricultural and urban areas in the Zagreb region of Croatia. We compared resource availability and consumer diet composition using stable isotope mixing models and tested how the isotopic variance of basal resources, primary consumers, macroinvertebrate predators and other food web characteristics change with different land-use types. Combination of increased loading and altered composition of nutrients, lower water discharge and higher light availability at urban sites likely promoted the contribution of aquatic macrophytes to diets of primary consumers. Macroinvertebrate predators shifted their diet, relying more on active filterers at urban sites relative to woodland and agricultural sites. Urban food webs also had lower trophic redundancy (i.e. fewer species at each trophic level) and a more homogenized energy flow from lower to higher trophic levels. There was no effect of land use on isotopic variation of basal resources, primary consumers or macroinvertebrate predators, but all these trophic groups at urban and agricultural sites were 15 N-enriched relative to their counterparts in woodland stream food webs. The physical and chemical ecosystem characteristics associated with intensive land use altered the resource availability, trophic redundancy and the flow of energy to other trophic levels, with potentially negative consequences for community dynamics and ecosystem functioning. These empirical findings indicate that reducing nutrient pollution, agricultural runoffs and maintaining riparian vegetation can mitigate the impacts of land use on structure and function of stream ecosystems.
Collapse
Affiliation(s)
- Elliott L Price
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Mirela Sertić Perić
- Faculty of Science, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Gustavo Q Romero
- Departamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Pavel Kratina
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
Doi H, Chang KH, Nakano SI. Trophic niche breadth of pond zooplankton species using stable isotope analysis and the relationship with the abiotic and biotic factors. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180917. [PMID: 30800349 PMCID: PMC6366219 DOI: 10.1098/rsos.180917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Zooplankton species have different feeding habits, but the diversity of their food resources and the factors governing them are still largely unknown. We here estimated the differences in the trophic niche breadths of dominant zooplankton species in ponds, using stable isotopes. To understand the differences in trophic niches of different zooplankton species, we measured the carbon and nitrogen stable isotope ratios and calculated the nearest-neighbour distance (NND), and standard deviation of NND (SDNND) of the bi-plot space of stable carbon and nitrogen isotopes in pond zooplankton. We tested the relationship between the NND/SDNND and environmental factors, as well as the zooplankton biomass, using generalized linear models (GLMs). For cladocerans, including Bosmina, Ceriodaphnia and Daphnia, the NNDs were significantly correlated with the biomass, pond morphology (volume and depth), total phosphorous (TP) and fish presence. For copepod species, including Eodiaptomus and cyclopoids, NNDs were significantly correlated with pond morphology, TP and fish presence, but not with biomass. In GLMs of SDNND, significant correlated factors were less than those for NND, and for some species, pond morphology and TP were significantly correlated with SDNND. Here, we found that the NND and SDNND of zooplankton species were related to various factors, including their biomass, predator presence, pond size and water quality. For cladocerans, biomass may be supported by trophic niche breadth, probably because of the consequences of resource competition. Also, predation and ecosystem size may influence trophic niche breadth due to changes in zooplankton behaviours.
Collapse
Affiliation(s)
- Hideyuki Doi
- LAFWEDY, Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, Japan
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, Japan
| | - Kwang-Hyeon Chang
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Korea
| | - Shin-ichi Nakano
- LAFWEDY, Faculty of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, Japan
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, Japan
| |
Collapse
|
21
|
Terrestrial birds in coastal environments: metabolic rate and oxidative status varies with the use of marine resources. Oecologia 2018; 188:65-73. [PMID: 29948312 DOI: 10.1007/s00442-018-4181-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/30/2018] [Indexed: 01/21/2023]
Abstract
Life in saline environments represents a major physiological challenge for birds, particularly for passerines that lack nasal salt glands and hence are forced to live in environments that do not contain salty resources. Increased energy costs associated with increased salt intake, which in turn increases the production of reactive oxygen species, is likely a major selection pressure for why passerines are largely absent from brackish and marine environments. Here we measured basal metabolic rates (BMR) and oxidative status of free-ranging individuals of three species of Cinclodes, a group of passerine birds that inhabit marine and freshwater habitats in Chile. We used a combination of carbon, nitrogen, and hydrogen isotope data from metabolically active (blood) and inert (feathers) tissues to estimate seasonal changes in marine resource use and infer altitudinal migration. Contrary to our expectations, the consumption of marine resources did not result in higher BMR values and higher oxidative stress. Specifically, the marine specialist C. nigrofumosus had lower BMR than the other two species (C. fuscus and C. oustaleti), which seasonally switch between terrestrial and marine resources. C. fuscus had significantly higher total antioxidant capacity than the other two species (C. nigrofumosus and C. oustaleti) that consumed a relatively high proportion of marine resources. Nearly all studies examining the effects of salt consumption have focused on intraspecific acclimation via controlled experiments in the laboratory. The mixed results obtained from field- and lab-based studies reflect our poor understanding of the mechanistic link among hydric-salt balance, BMR, and oxidative stress in birds.
Collapse
|