1
|
Villa S, Magoga G, Montagna M, Pierce S. Elevational shifts in reproductive ecology indicate the climate response of a model chasmophyte, Rainer's bellflower (Campanula raineri). ANNALS OF BOTANY 2024:mcae164. [PMID: 39349404 DOI: 10.1093/aob/mcae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND AND AIMS Elevation gradients provide 'natural experiments' for investigating plant climate change responses, advantageous for the study of protected species and life forms for which transplantation experiments are illegal or unfeasible, such as chasmophytes with perennial rhizomes pervading rock fissures. Elevational climatic differences impact mountain plant reproductive traits (pollen and seed quality, sexual vs. vegetative investment) and pollinator community composition; we investigated the reproductive ecology of a model chasmophyte, Campanula raineri Perp. (Campanulaceae), throughout its current elevational/climatic range to understand where sub-optimal conditions jeopardise survival. We hypothesised that: 1) reproductive fitness measures are positively correlated with elevation, indicative of the relationship between fitness and climate; 2) C. raineri, like other campanulas, is pollinated mainly by Hymenoptera; 3) potential pollinators shift with elevation. METHODS We measured pollen and seed quality, seed production, the relative investment in sexual vs. vegetative structures and vegetative (Grime's CSR) strategies at different elevations. Potential pollinators were assessed by combining molecular and morphological identification. KEY RESULTS Whereas CSR strategies were not linked to elevation, pollen and seed quality were positively correlated, as was seed production per fruit (Hypothesis 1 is supported). The main pollinators of C. raineri were Apidae, Andrenidae, Halictidae (Hymenoptera) and Syrphidae (Diptera), probably complemented by a range of occasional pollinators and visitors (Hypothesis 2 partially supported). Potential pollinator communities showed a taxonomic shift towards Diptera with elevation (particularly Anthomyiidae and Muscidae) and away from Hymenoptera (Hypothesis 3 was supported). CONCLUSIONS Pollinator availability is maintained at all elevations by taxon replacement. However, reduced pollen quality and seed production at lower elevations suggest an impact of climate change on reproduction (especially <1200 m a.s.l., where seed germination was limited). Aside from guiding targeted conservation actions for C. raineri, our results highlight problems that may be common to mountain chasmophytes worldwide.
Collapse
Affiliation(s)
- Sara Villa
- Institute for Sustainable Plant Protection, National Research Council, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), University of Milan, via G. Celoria 2, 20133, Milan, Italy
| | - Giulia Magoga
- Department of Agricultural Sciences, University of Naples 'Federico II', via Università 100, 80055, Portici, Italy
| | - Matteo Montagna
- Department of Agricultural Sciences, University of Naples 'Federico II', via Università 100, 80055, Portici, Italy
- BAT Center ‑ Interuniversity Center for Studies on Bioinspired Agro‑Environmental Technology, University of Napoli 'Federico II', via Università 100, 80055, Portici, Italy
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), University of Milan, via G. Celoria 2, 20133, Milan, Italy
| |
Collapse
|
2
|
Devriese A, Peeters G, Brys R, Jacquemyn H. The impact of extraction method and pollen concentration on community composition for pollen metabarcoding. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11601. [PMID: 39360193 PMCID: PMC11443440 DOI: 10.1002/aps3.11601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 10/04/2024]
Abstract
Premise Plants and pollinators closely interact with each other to form complex networks of species interactions. Metabarcoding of pollen collections has recently been proposed as an advantageous method for the construction of such networks, but the extent to which diversity and community analyses depend on the extraction method and pollen concentration used remains unclear. Methods In this study, we used a dilution series of two pollen mixtures (a mock community and pooled natural pollen loads from bumblebees) to assess the effect of mechanical homogenization and two DNA extraction kits (spin column DNA extraction kit and magnetic bead DNA extraction kit) on the detected pollen richness and community composition. Results All species were successfully detected using the three methods, even in the most dilute samples. However, the extraction method had a significant effect on the detected pollen richness and community composition, with simple mechanical homogenization introducing an extraction bias. Discussion Our findings suggest that all three methods are effective for detecting plant species in the pollen loads on insects, even in cases of very low pollen loads. However, our results also indicate that extraction methods can have a profound impact on the ability to correctly assess the community composition of the pollen loads on insects. The choice of extraction methodology should therefore be carefully considered to ensure reliable and unbiased results in pollen diversity and community analyses.
Collapse
Affiliation(s)
- Arne Devriese
- Department of Biology, Plant Conservation and Population Biology KU Leuven Leuven B-3001 Belgium
| | - Gerrit Peeters
- Department of Biology, Plant Conservation and Population Biology KU Leuven Leuven B-3001 Belgium
| | - Rein Brys
- Research Institute for Forest and Nature Gaverstraat 4 Geraardsbergen B-9500 Belgium
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology KU Leuven Leuven B-3001 Belgium
| |
Collapse
|
3
|
Requier F, Abdelli M, Baude M, Genoud D, Gens H, Geslin B, Henry M, Ropars L. Neglecting non-bee pollinators may lead to substantial underestimation of competition risk among pollinators. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100093. [PMID: 39220234 PMCID: PMC11364274 DOI: 10.1016/j.cris.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Due to the increasing pressures on bees, many beekeepers currently wish to move their managed livestock of Apis mellifera into little disturbed ecosystems such as protected natural areas. This may, however, exert detrimental competitive effects upon local wild pollinators. While it appears critical for land managers to get an adequate knowledge of this issue for effective wildlife conservation schemes, the frequency of this competition is not clear to date. Based on a systematic literature review of 96 studies, we assessed the frequency of exploitative competition between honey bees and wild pollinators. We found that 78% of the studies highlighted exploitative competition from honey bees to wild pollinators. Importantly, these studies have mostly explored competition with wild bees, while only 18% of them considered other pollinator taxa such as ants, beetles, bugs, butterflies, flies, moths, and wasps. The integration of non-bee pollinators into scientific studies and conservation plans is urgently required as they are critical for the pollination of many wild plants and crops. Interestingly, we found that a majority (88%) of these studies considering also non-bee pollinators report evidence of competition. Thus, neglecting non-bee pollinators could imply an underestimation of competition risks from honey bees. More inclusive work is needed to estimate the risks of competition in its entirety, but also to apprehend the context-dependency of competition so as to properly inform wildlife conservation schemes.
Collapse
Affiliation(s)
- Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Myriam Abdelli
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Mathilde Baude
- Université d′Orléans, Chateau de la Source, BP 6749, Cedex2, 45067, Orléans, France
- Sorbonne Université, UPEC,Université Paris Cité, CNRS, IRD, INRAE, Institut d'Ecologie et des Sciences de l'Environnement (iEESParis), Paris, France
| | | | - Hadrien Gens
- Amis de la réserve naturelle du lac de Remoray, 25320, Labergement-Sainte-Marie, France
| | - Benoît Geslin
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Université de Rennes (UNIR), UMR 6553 ECOBIO, CNRS, Rennes, France
| | - Mickaël Henry
- INRAE, UR 406 Abeilles et Environnement, Avignon, France
| | - Lise Ropars
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, CP 135, 57 rue Cuvier, 75005, Paris, France
| |
Collapse
|
4
|
Wang X, Cai J, Tong M, Shi M, Zhao Z, Li S, Tu T. Heterospecific pollen avoidance strategy prevails in the generalized plant-pollinator network on Yongxing Island. Ecol Evol 2024; 14:e11123. [PMID: 38444723 PMCID: PMC10912527 DOI: 10.1002/ece3.11123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
Heterospecific pollen (HP) deposition varies widely among species in communities, which has been explicated by two adaptation strategies: HP avoidance and HP tolerance. Studies of the plant-pollinator network have uncovered that oceanic island communities are highly generalized and strongly connected. It remains unclear, however, which strategy prevails in such communities. We examined stigma pollen deposition on 29 plant species, and assessed patterns of HP load size and diversity in the Yongxing Island community. We assessed the effects of phenotypic specialization and species-level network structural properties of plant species on pollen deposition among species. The hypothesis of three accrual patterns of HP within species was tested by illustrating the relationship between conspecific pollen (CP) and HP receipt. Extensive variation occurred among species in HP receipt, while 75.9% of species received less than 10% HP and one species received more than 40% HP throughout the community. Flower size strongly drives the variation of HP receipt, while network structural properties had no effect on the pollen receipt. Nineteen species showed no relationship between the number of HP and CP loads, and they received smaller HP load sizes and lower HP proportions. Most plant species evolved HP avoidance strategy, and HP receipt was an occasional event for most plant species in the generalized community. HP and CP receipts are independent of each other in plant species with the HP avoidance mechanism. Our results highlight that plants in the generalized pollination system may preferentially select to minimize the HP load on stigmas.
Collapse
Affiliation(s)
- Xiang‐Ping Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Jin‐Chao Cai
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- Gannan Normal UniversityGanzhouChina
| | - Ma‐Yin Tong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Miao‐Miao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Zhong‐Tao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Shi‐Jin Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Tie‐Yao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| |
Collapse
|
5
|
Li M, Runemark A, Hernandez J, Rota J, Bygebjerg R, Brydegaard M. Discrimination of Hover Fly Species and Sexes by Wing Interference Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304657. [PMID: 37847885 PMCID: PMC10700183 DOI: 10.1002/advs.202304657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Indexed: 10/19/2023]
Abstract
Remote automated surveillance of insect abundance and diversity is poised to revolutionize insect decline studies. The study reveals spectral analysis of thin-film wing interference signals (WISs) can discriminate free-flying insects beyond what can be accomplished by machine vision. Detectable by photonic sensors, WISs are robust indicators enabling species and sex identification. The first quantitative survey of insect wing thickness and modulation through shortwave-infrared hyperspectral imaging of 600 wings from 30 hover fly species is presented. Fringy spectral reflectance of WIS can be explained by four optical parameters, including membrane thickness. Using a Naïve Bayes Classifier with five parameters that can be retrieved remotely, 91% is achieved accuracy in identification of species and sexes. WIS-based surveillance is therefore a potent tool for remote insect identification and surveillance.
Collapse
Affiliation(s)
- Meng Li
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
| | - Anna Runemark
- Department of BiologyLund UniversitySölvegatan 35Lund22362Sweden
| | | | - Jadranka Rota
- Biological Museum, Department of BiologyLund UniversitySölvegatan 37Lund22362Sweden
| | - Rune Bygebjerg
- Biological Museum, Department of BiologyLund UniversitySölvegatan 37Lund22362Sweden
| | - Mikkel Brydegaard
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
- Department of BiologyLund UniversitySölvegatan 35Lund22362Sweden
- Norsk Elektro OptikkØstensjøveien 34Oslo0667Norway
- FaunaPhotonicsStøberigade 14Copenhagen2450Denmark
| |
Collapse
|
6
|
Encinas-Viso F, Bovill J, Albrecht DE, Florez-Fernandez J, Lessard B, Lumbers J, Rodriguez J, Schmidt-Lebuhn A, Zwick A, Milla L. Pollen DNA metabarcoding reveals cryptic diversity and high spatial turnover in alpine plant-pollinator networks. Mol Ecol 2023; 32:6377-6393. [PMID: 36065738 DOI: 10.1111/mec.16682] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Alpine plant-pollinator communities play an important role in the functioning of alpine ecosystems, which are highly threatened by climate change. However, we still have a poor understanding of how environmental factors and spatiotemporal variability shape these communities. Here, we investigate what drives structure and beta diversity in a plant-pollinator metacommunity from the Australian alpine region using two approaches: pollen DNA metabarcoding (MB) and observations. Individual pollinators often carry pollen from multiple plant species, and therefore we expected MB to reveal a more diverse and complex network structure. We used two gene regions (ITS2 and trnL) to identify plant species present in the pollen loads of 154 insect pollinator specimens from three alpine habitats and construct MB networks, and compared them to networks based on observations alone. We compared species and interaction turnover across space for both types of networks, and evaluated their differences for plant phylogenetic diversity and beta diversity. We found significant structural differences between the two types of networks; notably, MB networks were much less specialized but more diverse than observation networks, with MB detecting many cryptic plant species. Both approaches revealed that alpine pollination networks are very generalized, but we estimated a high spatial turnover of plant species (0.79) and interaction rewiring (0.6) as well as high plant phylogenetic diversity (0.68) driven by habitat differences based on the larger diversity of plant species and species interactions detected with MB. Overall, our findings show that habitat and microclimatic heterogeneity drives diversity and fine-scale spatial turnover of alpine plant-pollinator networks.
Collapse
Affiliation(s)
- Francisco Encinas-Viso
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| | - Jessica Bovill
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| | - David E Albrecht
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| | - Jaime Florez-Fernandez
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - Bryan Lessard
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - James Lumbers
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - Juanita Rodriguez
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - Alexander Schmidt-Lebuhn
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| | - Andreas Zwick
- Australian National Insect Collection, Australian Capital Territory, Canberra, Australia
| | - Liz Milla
- Centre for Australian National Biodiversity Research, Australian Capital Territory, Canberra, Australia
| |
Collapse
|
7
|
Ronca S, Ford CS, Allanguillaume J, Szabo C, Kipling R, Wilkinson MJ. The value of twinned pollinator-pollen metabarcoding: bumblebee pollination service is weakly partitioned within a UK grassland community. Sci Rep 2023; 13:18016. [PMID: 37865658 PMCID: PMC10590402 DOI: 10.1038/s41598-023-44822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Predicting ecological impact of declining bumblebee (Bombus) populations requires better understanding of interactions between pollinator partitioning of floral resources and plant partitioning of pollinator resources. Here, we combine Cytochrome Oxidase 1 (CO1) barcoding for bumblebee identification and rbcL metabarcoding of pollen carried by bees in three species-rich UK pastures. CO1 barcoding assigned 272 bees to eight species, with 33 individuals belonging to the cryptic Bombus lucorum complex (16 B. lucorum and 17 B. cryptarum). Seasonal bias in capture rates varied by species, with B. pratorum found exclusively in June/July and B. pascuorum more abundant in August. Pollen metabarcoding coupled with PERMANOVA and NMDS analyses revealed all bees carried several local pollen species and evidence of pollen resource partitioning between some species pairings, with Bombus pratorum carrying the most divergent pollen load. There was no evidence of resource partitioning between the two cryptic species present, but significantly divergent capture rates concorded with previous suggestions of separation on the basis of foraging behaviour being shaped by local/temporal differences in climatic conditions. Considering the bee carriage profile of pollen species revealed no significant difference between the nine most widely carried plant species. However, there was a sharp, tipping point change in community pollen carriage across all three sites that occurred during the transition between late July and early August. This transition resulted in a strong divergence in community pollen carriage between the two seasonal periods in both years. We conclude that the combined use of pollen and bee barcoding offers several benefits for further study of plant-pollinator interactions at the landscape scale.
Collapse
Affiliation(s)
- Sandra Ronca
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Caroline S Ford
- Wales Veterinary Science Centre, Y Buarth, Aberystwyth, SY23 1ND, Ceredigion, UK
| | - Joël Allanguillaume
- Department of Biological, Biomedical and Analytical Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Claudia Szabo
- School of Computer Science, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Richard Kipling
- The Sustainable Food Trust, 38 Richmond Street, Totterdown, Bristol, BS3 4TQ, UK
| | - Mike J Wilkinson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK.
| |
Collapse
|
8
|
Crone MK, Boyle NK, Bresnahan ST, Biddinger DJ, Richardson RT, Grozinger CM. More than mesolectic: Characterizing the nutritional niche of Osmia cornifrons. Ecol Evol 2023; 13:e10640. [PMID: 37869440 PMCID: PMC10589078 DOI: 10.1002/ece3.10640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Characterizing the nutritional needs of wild bee species is an essential step to better understanding bee biology and providing suitable supplemental forage for at-risk species. Here, we aim to characterize the nutritional needs of a model solitary bee species, Osmia cornifrons (Radoszkowski), by using dietary protein-to-lipid ratio (P:L ratio) as a proxy for nutritional niche and niche breadth. We first identified the mean target P:L ratio (~3.02:1) and P:L collection range (0.75-6.26:1) from pollen provisions collected across a variety of sites and time points. We then investigated the P:L tolerance range of larvae by rearing bees in vitro on a variety of diets. Multifloral and single-source pollen diets with P:L ratios within the range of surveyed provisions did not always support larval development, indicating that other dietary components such as plant secondary compounds and micronutrients must also be considered in bee nutritional experiments. Finally, we used pollen metabarcoding to identify pollen from whole larval provisions to understand how much pollen bees used from plants outside of their host plant families to meet their nutritional needs, as well as pollen from individual forager bouts, to observe if bees maintained strict floral constancy or visited multiple plant genera per foraging bout. Whole larval provision surveys revealed a surprising range of host plant pollen use, ranging from ~5% to 70% of host plant pollen per provision. Samples from individual foraging trips contained pollen from multiple genera, suggesting that bees are using some form of foraging decision making. Overall, these results suggest that O. cornifrons have a wide nutritional niche breadth, but while pollen P:L ratio tolerance is broad, a tolerable P:L ratio alone is not enough to create a quality diet for O. cornifrons, and the plant species that make up these diets must also be carefully considered.
Collapse
Affiliation(s)
- Makaylee K. Crone
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Intercollege Graduate Program in Ecology, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Natalie K. Boyle
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Sean T. Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - David J. Biddinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Penn State Fruit Research and Extension CenterBiglervillePennsylvaniaUSA
| | | | - Christina M. Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
9
|
Kočić A, Vujić A, Tot T, Milosavljević MJ, Groot MDE. An updated checklist of the hoverflies (Diptera: Syrphidae) of Slovenia. Zootaxa 2023; 5297:189-227. [PMID: 37518800 DOI: 10.11646/zootaxa.5297.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 08/01/2023]
Abstract
This paper is an updated checklist of the hoverflies of Slovenia. Since the last checklist of 274 species published by de Groot & Govedič in 2008, a large number of additional specimens have been collected and studied. In the present study, 42 species are reported for the first time for the Slovenian hoverfly fauna. Sphegina sublatifrons Vujić, 1990 is deleted from the Slovenian list. In total, 362 species from 77 genera are reported. According to the IUCN European Red List of Hoverflies, 29 species are classified as Endangered, 9 as Vulnerable, 19 as Near Threatened, 302 as Least Concern and 3 as Data Deficient. The distribution of species per region in Slovenia is presented. With 243 species, Upper Carniola hosts the largest number of registered species, followed by Central Slovenia (233 spp.), Gorizia (230 spp.), Savinja and Littoral Inner-Carniola (both with 173 spp.), Coastal-Karst (133 spp.), Southeast Slovenia (71 spp.), Drava (60 spp.), Carinthia (56 spp.), Lower Sava (52 spp.), Mura (47 spp.) and Central Sava (8 spp.). A significant increase in the number of new records has been noted in recent decades, and the possible reasons for this trend are also discussed here.
Collapse
Affiliation(s)
- Anja Kočić
- University of Novi Sad; Faculty of Sciences; Department of Biology and Ecology; Trg Dositeja Obradovića 2; 21000 Novi Sad; Serbia.
| | - Ante Vujić
- University of Novi Sad; Faculty of Sciences; Department of Biology and Ecology; Trg Dositeja Obradovića 2; 21000 Novi Sad; Serbia.
| | - Tamara Tot
- University of Novi Sad; Faculty of Sciences; Department of Biology and Ecology; Trg Dositeja Obradovića 2; 21000 Novi Sad; Serbia.
| | - Marina Janković Milosavljević
- University of Novi Sad; Faculty of Sciences; Department of Biology and Ecology; Trg Dositeja Obradovića 2; 21000 Novi Sad; Serbia.
| | - Maarten DE Groot
- Slovenian Forestry Institute; Department of Forest Protection; Večna pot 2; 1000 Ljubljana; Slovenia.
| |
Collapse
|
10
|
Westreich LR, Westreich ST, Tobin PC. Native solitary bee reproductive success depends on early season precipitation and host plant richness. Oecologia 2023; 201:965-978. [PMID: 36947272 DOI: 10.1007/s00442-023-05354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Spring-emerging bees depend upon the synchronized bloom times of angiosperms that provide pollen and nectar for offspring. The emergence of such bees and bloom times are linked to weather but can be phenologically mismatched, which could limit bee developmental success. However, it remains unclear how such phenologically asynchrony could affect spring-emerging pollinators, and especially for those that forage over a relatively short time period. We examined the relationship between weather and host plant selection on the native spring-foraging solitary bee, Osmia lignaria, across 3 years at urban and rural sites in and around Seattle, Washington, USA. We used community science weather data to test the effects of precipitation, wind, and temperature on O. lignaria oviposition and developmental success. We also collected pollen data over two distinct foraging periods, early and late spring, and used Next-Generation Sequencing to identify plant genera from pollen. Among the weather variables, precipitation during the early foraging period adversely affected larval developmental success and adult bee emergence success, but not oviposition. Using DNA metabarcoding, we observed that increases in the number of plant genera in pollen increased adult emergence in both foraging periods, but not oviposition or larval development. We also observed that foraging bees consistently visited certain genera during each foraging period, especially Acer, Salix, and Rubus. However, pollen collected by O. lignaria over different years varied in the number of total genera visited, highlighting the importance of multi-year studies to ascertain bee foraging preferences and its link to developmental success.
Collapse
Affiliation(s)
- Lila R Westreich
- School of Environmental and Forest Sciences, University of Washington, 3715 W. Stevens Way NE, Seattle, WA, 98195, USA
| | | | - Patrick C Tobin
- School of Environmental and Forest Sciences, University of Washington, 3715 W. Stevens Way NE, Seattle, WA, 98195, USA.
| |
Collapse
|
11
|
Tsz Long Wong D, Norman H, Creedy TJ, Jordaens K, Moran KM, Young A, Mengual X, Skevington JH, Vogler AP. The phylogeny and evolutionary ecology of hoverflies (Diptera: Syrphidae) inferred from mitochondrial genomes. Mol Phylogenet Evol 2023; 184:107759. [PMID: 36921697 DOI: 10.1016/j.ympev.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Hoverflies (Diptera: Syrphidae) are a diverse group of pollinators and a major research focus in ecology, but their phylogenetic relationships remain incompletely known. Using a genome skimming approach we generated mitochondrial genomes for 91 species, capturing a wide taxonomic diversity of the family. To reduce the required amount of input DNA and overall cost of the library construction, sequencing and assembly was conducted on mixtures of specimens, which raises the problem of chimera formation of mitogenomes. We present a novel chimera detection test based on gene tree incongruence, but identified only a single mitogenome of chimeric origin. Together with existing data for a final set of 127 taxa, phylogenetic analysis on nucleotide and amino acid sequences using Maximum Likelihood and Bayesian Inference revealed a basal split of Microdontinae from all other syrphids. The remainder consists of several deep clades assigned to the subfamily Eristalinae in the current classification, including a clade comprising the subfamily Syrphinae (plus Pipizinae). These findings call for a re-definition of subfamilies, but basal nodes had insufficient support to allow such action. Molecular-clock dating placed the origin of the Syrphidae crown group in the mid-Cretaceous while the Eristalinae-Syrphinae clade likely originated near the K/Pg boundary. Transformation of larval life history characters on the tree suggests that Syrphidae initially had sap feeding larvae, which diversified greatly in diet and habitat association during the Eocene and Oligocene, coinciding with the diversification of angiosperms and the evolution of various insect groups used as larval host, prey, or mimicry models. Mitogenomes proved to be a powerful phylogenetic marker for studies of Syrphidae at subfamily and tribe levels, allowing dense taxon sampling that provided insight into the great ecological diversity and rapid evolution of larval life history traits of the hoverflies.
Collapse
Affiliation(s)
- Daniel Tsz Long Wong
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Hannah Norman
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Thomas J Creedy
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Kurt Jordaens
- Department of Biology-Invertebrates Unit, Royal Museum for Central Africa, Joint Experimental Molecular Unit Leuvensesteenweg 13, B-3080 Tervuren, Belgium.
| | - Kevin M Moran
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Andrew Young
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada.
| | - Ximo Mengual
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany.
| | - Jeffrey H Skevington
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Alfried P Vogler
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| |
Collapse
|
12
|
Nakas G, Kantsa A, Vujić A, Mescher MC, De Moraes CΜ, Petanidou T. Recent fire in a Mediterranean ecosystem strengthens hoverfly populations and their interaction networks with plants. Ecol Evol 2023; 13:e9803. [PMID: 36789333 PMCID: PMC9905663 DOI: 10.1002/ece3.9803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Fire affects many critical ecological processes, including pollination, and effects of climate change on fire regimes may have profound consequences that are difficult to predict. Considerable work has examined effects of fire on pollinator diversity, but relatively few studies have examined these effects on interaction networks including those of pollinators other than bees. We examined the effects of a severe wildfire on hoverfly pollinators in a Mediterranean island system. Using data collected over 3 consecutive years at burnt and unburnt sites, we documented differences in species diversity, abundance, and functional traits, as well as hoverfly interactions with flowering plants. Hoverfly abundance and species richness peaked during the first post-fire flowering season (year 1), which coincided with the presence of many opportunistic species. Also in year 1, hoverfly pollination networks were larger, less specialized, more nested, and less modular at burnt (vs. unburnt) sites; furthermore, these networks exhibited higher phylogenetic host-plant diversity. These effects declined over the next 2 years, with burnt and unburnt sites converging in similarity to hoverfly communities and interaction networks. While data obtained over 3 years provide a clear timeline of initial post-fire recovery, we emphasize the importance of longer-term monitoring for understanding the responses of natural communities to wildfires, which are projected to become more frequent and more destructive in the future.
Collapse
Affiliation(s)
- Georgios Nakas
- Department of GeographyUniversity of the AegeanMytileneGreece
| | - Aphrodite Kantsa
- Department of Environmental System SciencesETH ZürichZürichSwitzerland
| | - Ante Vujić
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Mark C. Mescher
- Department of Environmental System SciencesETH ZürichZürichSwitzerland
| | | | | |
Collapse
|
13
|
Dubois B, Debode F, Hautier L, Hulin J, Martin GS, Delvaux A, Janssen E, Mingeot D. A detailed workflow to develop QIIME2-formatted reference databases for taxonomic analysis of DNA metabarcoding data. BMC Genom Data 2022; 23:53. [PMID: 35804326 PMCID: PMC9264521 DOI: 10.1186/s12863-022-01067-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background The DNA metabarcoding approach has become one of the most used techniques to study the taxa composition of various sample types. To deal with the high amount of data generated by the high-throughput sequencing process, a bioinformatics workflow is required and the QIIME2 platform has emerged as one of the most reliable and commonly used. However, only some pre-formatted reference databases dedicated to a few barcode sequences are available to assign taxonomy. If users want to develop a new custom reference database, several bottlenecks still need to be addressed and a detailed procedure explaining how to develop and format such a database is currently missing. In consequence, this work is aimed at presenting a detailed workflow explaining from start to finish how to develop such a curated reference database for any barcode sequence. Results We developed DB4Q2, a detailed workflow that allowed development of plant reference databases dedicated to ITS2 and rbcL, two commonly used barcode sequences in plant metabarcoding studies. This workflow addresses several of the main bottlenecks connected with the development of a curated reference database. The detailed and commented structure of DB4Q2 offers the possibility of developing reference databases even without extensive bioinformatics skills, and avoids ‘black box’ systems that are sometimes encountered. Some filtering steps have been included to discard presumably fungal and misidentified sequences. The flexible character of DB4Q2 allows several key sequence processing steps to be included or not, and downloading issues can be avoided. Benchmarking the databases developed using DB4Q2 revealed that they performed well compared to previously published reference datasets. Conclusion This study presents DB4Q2, a detailed procedure to develop custom reference databases in order to carry out taxonomic analyses with QIIME2, but also with other bioinformatics platforms if desired. This work also provides ready-to-use plant ITS2 and rbcL databases for which the prediction accuracy has been assessed and compared to that of other published databases. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01067-5.
Collapse
|
14
|
Klečka J, Mikát M, Koloušková P, Hadrava J, Straka J. Individual-level specialisation and interspecific resource partitioning in bees revealed by pollen DNA metabarcoding. PeerJ 2022; 10:e13671. [PMID: 35959478 PMCID: PMC9359135 DOI: 10.7717/peerj.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/12/2022] [Indexed: 01/17/2023] Open
Abstract
It is increasingly recognised that intraspecific variation in traits, such as morphology, behaviour, or diet is both ubiquitous and ecologically important. While many species of predators and herbivores are known to display high levels of between-individual diet variation, there is a lack of studies on pollinators. It is important to fill in this gap because individual-level specialisation of flower-visiting insects is expected to affect their efficiency as pollinators with consequences for plant reproduction. Accordingly, the aim of our study was to quantify the level of individual-level specialisation and foraging preferences, as well as interspecific resource partitioning, in three co-occurring species of bees of the genus Ceratina (Hymenoptera: Apidae: Xylocopinae), C. chalybea, C. nigrolabiata, and C. cucurbitina. We conducted a field experiment where we provided artificial nesting opportunities for the bees and combined a short-term mark-recapture study with the dissection of the bees' nests to obtain repeated samples from individual foraging females and complete pollen provisions from their nests. We used DNA metabarcoding based on the ITS2 locus to identify the composition of the pollen samples. We found that the composition of pollen carried on the bodies of female bees and stored in the brood provisions in their nests significantly differed among the three co-occurring species. At the intraspecific level, individual females consistently differed in their level of specialisation and in the composition of pollen carried on their bodies and stored in their nests. We also demonstrate that higher generalisation at the species level stemmed from larger among-individual variation in diets, as observed in other types of consumers, such as predators. Our study thus reveals how specialisation and foraging preferences of bees change from the scale of individual foraging bouts to complete pollen provisions accumulated in their nests over many days. Such a multi-scale view of foraging behaviour is necessary to improve our understanding of the functioning of plant-flower visitor communities.
Collapse
Affiliation(s)
- Jan Klečka
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michael Mikát
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavla Koloušková
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jiří Hadrava
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Banerjee P, Stewart KA, Dey G, Antognazza CM, Sharma RK, Maity JP, Saha S, Doi H, de Vere N, Chan MWY, Lin PY, Chao HC, Chen CY. Environmental DNA analysis as an emerging non-destructive method for plant biodiversity monitoring: a review. AOB PLANTS 2022; 14:plac031. [PMID: 35990516 PMCID: PMC9389569 DOI: 10.1093/aobpla/plac031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Environmental DNA (eDNA) analysis has recently transformed and modernized biodiversity monitoring. The accurate detection, and to some extent quantification, of organisms (individuals/populations/communities) in environmental samples is galvanizing eDNA as a successful cost and time-efficient biomonitoring technique. Currently, eDNA's application to plants remains more limited in implementation and scope compared to animals and microorganisms. This review evaluates the development of eDNA-based methods for (vascular) plants, comparing its performance and power of detection with that of traditional methods, to critically evaluate and advise best-practices needed to innovate plant biomonitoring. Recent advancements, standardization and field applications of eDNA-based methods have provided enough scope to utilize it in conservation biology for numerous organisms. Despite our review demonstrating only 13% of all eDNA studies focus on plant taxa to date, eDNA has considerable environmental DNA has considerable potential for plants, where successful detection of invasive, endangered and rare species, and community-level interpretations have provided proof-of-concept. Monitoring methods using eDNA were found to be equal or more effective than traditional methods; however, species detection increased when both methods were coupled. Additionally, eDNA methods were found to be effective in studying species interactions, community dynamics and even effects of anthropogenic pressure. Currently, elimination of potential obstacles (e.g. lack of relevant DNA reference libraries for plants) and the development of user-friendly protocols would greatly contribute to comprehensive eDNA-based plant monitoring programs. This is particularly needed in the data-depauperate tropics and for some plant groups (e.g., Bryophytes and Pteridophytes). We further advocate to coupling traditional methods with eDNA approaches, as the former is often cheaper and methodologically more straightforward, while the latter offers non-destructive approaches with increased discrimination ability. Furthermore, to make a global platform for eDNA, governmental and academic-industrial collaborations are essential to make eDNA surveys a broadly adopted and implemented, rapid, cost-effective and non-invasive plant monitoring approach.
Collapse
Affiliation(s)
- Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Kathryn A Stewart
- Institute of Environmental Science, Leiden University, 2333 CC Leiden, The Netherlands
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Caterina M Antognazza
- Department of Theoretical and Applied Science, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Santanu Saha
- Post Graduate Department of Botany, Bidhannagar College, Salt Lake City, Kolkata 700064, India
| | - Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Natasha de Vere
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K
| | - Michael W Y Chan
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pin-Yun Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | |
Collapse
|
16
|
Kovács-Hostyánszki A, Szigeti V, Miholcsa Z, Sándor D, Soltész Z, Török E, Fenesi A. Threats and benefits of invasive alien plant species on pollinators. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Jia H, Liu Y, Li X, Li H, Pan Y, Hu C, Zhou X, Wyckhuys KAG, Wu K. Windborne migration amplifies insect-mediated pollination services. eLife 2022; 11:76230. [PMID: 35416148 PMCID: PMC9042232 DOI: 10.7554/elife.76230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, hoverflies (Syrphidae: Diptera) provide crucial ecosystem services such as pollination and biological pest control. Although many hoverfly species exhibit migratory behavior, the spatiotemporal facets of these movement dynamics, and their ecosystem services implications are poorly understood. In this study, we use long-term (16-year) trapping records, trajectory analysis, and intrinsic (i.e., isotope, genetic, pollen) markers to describe migration patterns of the hoverfly Episyrphus balteatus in northern China. Our work reveals how E. balteatus migrate northward during spring–summer and exhibits return (long-range) migration during autumn. The extensive genetic mixing and high genetic diversity of E. balteatus populations underscore its adaptive capacity to environmental disturbances, for example, climate change. Pollen markers and molecular gut analysis further illuminate how E. balteatus visits min. 1012 flowering plant species (39 orders) over space and time. By thus delineating E. balteatus transregional movements and pollination networks, we advance our understanding of its migration ecology and facilitate the design of targeted strategies to conserve and enhance its ecosystem services.
Collapse
Affiliation(s)
- Huiru Jia
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Liu
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xaiokang Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunfei Pan
- Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Xainyong Zhou
- Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Kongming Wu
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Donald ML, Bolstridge N, Ridden JD. Precision glycerine jelly swab for removing pollen from small and fragile insect specimens. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marion L. Donald
- Manaaki Whenua Landcare Research, 54 Gerald St Lincoln, NZ, 7608
| | - Nic Bolstridge
- Manaaki Whenua Landcare Research, 54 Gerald St Lincoln, NZ, 7608
| | - Johnathon D. Ridden
- Canterbury Museum, 11 Rolleston Avenue, Christchurch Central City Christchurch, NZ, 8013
| |
Collapse
|
19
|
Baksay S, Andalo C, Galop D, Burrus M, Escaravage N, Pornon A. Using Metabarcoding to Investigate the Strength of Plant-Pollinator Interactions From Surveys of Visits to DNA Sequences. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.735588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ongoing decline in pollinators and increasing concerns about pollination services require a better understanding of complex pollination networks, particularly their response to global climate change. While metabarcoding is increasingly used for the identification of taxa in DNA mixtures, its reliability in providing quantitative information on plant-pollinator interactions is still the subject of debate. Combining metabarcoding and microscopy, we investigated the relationships between the number and composition of sequences and the abundance and composition of pollen in insect pollen loads (IPL) and how the two are linked to insect visits. Our findings confirm that metabarcoding is more effective than microscopy in identifying plant species in IPL. For a given species, we found a strong positive relationship between the amount of pollen in IPL and the number of sequences. The relationship was stable across species even if the abundance of co-occurring species in IPL (hereafter “co-occurring pollen”) tended to reduce the sequence yield (number of sequences obtained from one pollen grain) of a given species. We also found a positive relationship between the sequence count and the frequency of visits, and between the frequency and the amounts of pollen in IPL. Our results demonstrate the reliability of metabarcoding in assessing the strength of plant-pollinator interactions and in providing a broader perspective for the analyses of plant-pollinator interactions and pollination networks.
Collapse
|
20
|
Abstract
Abstract
The prospects for application of metagenomic technologies in environmental studies are discussed. The advantages in investigating the taxonomic composition of aquatic and terrestrial ecosystems, as well as examples of trophic and phoric relationships found in ecosystems using the metagenomic approach, are described. The capabilities of metagenomics to study prokaryotic communities in complicated environments such as soils or animal intestines are shown. The role of relic DNA in the metagenome and the possibilities to study ancient organisms are highlighted. Particular attention is paid to the criticism of metagenomic technologies related to the low reproducibility of the sequencing data. Common methodological mistakes in bioinformatics processing of metagenomic data leading to misleading results are considered.
Collapse
|
21
|
Abstract
The identification of floral visitation by pollinators provides an opportunity to improve our understanding of the fine-scale ecological interactions between plants and pollinators, contributing to biodiversity conservation and promoting ecosystem health. In this review, we outline the various methods which can be used to identify floral visitation, including plant-focused and insect-focused methods. We reviewed the literature covering the ways in which DNA metabarcoding has been used to answer ecological questions relating to plant use by pollinators and discuss the findings of this research. We present detailed methodological considerations for each step of the metabarcoding workflow, from sampling through to amplification, and finally bioinformatic analysis. Detailed guidance is provided to researchers for utilisation of these techniques, emphasising the importance of standardisation of methods and improving the reliability of results. Future opportunities and directions of using molecular methods to analyse plant–pollinator interactions are then discussed.
Collapse
|
22
|
Different Distribution Patterns of Hoverflies (Diptera: Syrphidae) and Bees (Hymenoptera: Anthophila) Along Altitudinal Gradients in Dolomiti Bellunesi National Park (Italy). INSECTS 2022; 13:insects13030293. [PMID: 35323591 PMCID: PMC8950664 DOI: 10.3390/insects13030293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Hoverflies and bees play a key role in plant pollination. The increasing concern about pollinator reduction forces the planning of a sampling monitoring scheme to evaluate the change in the populations of these important insects. The present research provides baseline data about the distribution of hoverflies and bees in the Dolomiti Bellunesi National Park (Northeastern Italy). The hoverfly community shows a unimodal distribution with peak at middle elevation, while bees display a linear reduction in richness and abundance with increasing altitude. Both hoverfly and bee β-diversity at high altitude is dominated by species turnover more than by nestedness. Abstract Hoverflies (Diptera: Syrphidae) and bees (Hymenoptera: Anthophila) are two key taxa for plant pollination. In the present research, the altitudinal distribution of these taxa was studied along two gradients (elevation range: 780–2130 m) in the Dolomiti Bellunesi National Park (Northeastern Italy). Pan traps were used as a sampling device to collect both hoverflies and bees. Other than altitude, the effect of landscape complexity and plant diversity were considered as potential predictors of hoverfly and bee richness and abundance along the two gradients. A total of 68 species of hoverflies and 67 of bees were collected during one sampling year, confirming the efficacy of pan traps as a sampling device to study these taxa. Altitude was the main variable affecting both hoverfly and bee distribution. The two taxa show different distribution patterns: hoverflies have a unimodal distribution (richness and abundance) with peak at middle altitude (1500 m), while bees have a monotonic decline (richness and abundance) with increasing altitude. Both hoverfly and bee populations change with the increasing altitude, but the change in hoverflies is more pronounced than in bees. Species turnover dominates the β-diversity both for hoverflies and bees; therefore, the hoverfly and bee communities at higher altitudes are not subsamples of species at lower altitude but are characterized by different species. This poses important conservation consequences. Some rare species, typical of an alpine habitat were recorded; the present research represents important baseline data to plan a monitoring scheme aimed at evaluating the effect of climate change on pollinators in these fragile habitats.
Collapse
|
23
|
Lowe A, Jones L, Brennan G, Creer S, Vere N. Seasonal progression and differences in major floral resource use by bees and hoverflies in a diverse horticultural and agricultural landscape revealed by
DNA
metabarcoding. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abigail Lowe
- National Botanic Garden of Wales, Llanarthne UK
- Molecular Ecology and Evolution Group, School of Natural Sciences Bangor University Bangor UK
| | - Laura Jones
- National Botanic Garden of Wales, Llanarthne UK
| | | | - Simon Creer
- Molecular Ecology and Evolution Group, School of Natural Sciences Bangor University Bangor UK
| | - Natasha Vere
- Natural History Museum of Denmark University of Copenhagen Denmark
| |
Collapse
|
24
|
Wang L, Yang Y, Duan Y. Pollinator individual-based networks reveal the specialized plant-pollinator mutualism in two biodiverse communities. Ecol Evol 2021; 11:17509-17518. [PMID: 34938525 PMCID: PMC8668776 DOI: 10.1002/ece3.8384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Generalization of pollination systems is widely accepted by ecologists in the studies of plant-pollinator interaction networks at the community level, but the degree of generalization of pollination networks remains largely unknown at the individual pollinator level. Using potential legitimate pollinators that were constantly visiting flowers in two alpine meadow communities, we analyzed the differences in the pollination network structure between the pollinator individual level and species level. The results showed that compared to the pollinator species-based networks, the linkage density, interaction diversity, interaction evenness, the average plant linkage level, and interaction diversity increased, but connectance, degree of nestedness, the average of pollinator linkage level, and interaction diversity decreased in the pollinator individual-based networks, indicating that pollinator individuals had a narrower food niche than their counterpart species. Pollination networks at the pollinator individual level were more specialized at the network level (H'2) and the plant species node level (d') than at the pollinator species-level networks, reducing the chance of underestimating levels of specialization in pollination systems. The results emphasize that research into pollinator individual-based pollination networks will improve our understanding of the pollination networks at the pollinator species level and the coevolution of flowering plants and pollinators.
Collapse
Affiliation(s)
- Lin‐Lin Wang
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Ping Yang
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Institute of Tibetan Plateau Research at KunmingKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Yuan‐Wen Duan
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Institute of Tibetan Plateau Research at KunmingKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| |
Collapse
|
25
|
Jaimes-Dueñez J, Leal-Rueda DA, Jaimes-Dueñez JD, Cáceres-Rivera DI, Castillo-Castañeda A, Ramírez JD. Human urogenital myiasis caused by the 'rat-tailed' larvae of Palpada scutellaris (Fabricius, 1805) in Santander, eastern Colombia: A case report. Parasitol Int 2021; 87:102496. [PMID: 34758388 DOI: 10.1016/j.parint.2021.102496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022]
Abstract
The Palpada genus, which belongs to the Diptera order (family, Syrphidae), has been rarely reported to cause accidental myiasis in humans. Herein, we report the first case of genitourinary myiasis caused by a larva of the Palpada genus in a 9-year-old girl from Colombia. The girl, who resided in a rural area in the municipality of Floridablanca, Santander, near Bucaramanga city, in eastern Colombia, presented with lower abdominal pain accompanied by oliguria, followed by the subsequent elimination of a larva through the urine. The next day, the patient visited a primary healthcare centre, and no signs or symptoms were observed on clinical examination. Haematological analysis showed high plateletcrit levels and platelet large cell counts. The results of the urine test revealed a decrease in specific gravity and a slight increase in bacterial content and mucus. DNA barcoding analyses showed that the etiological agent corresponded to a third instar larva of the Palpada scutellaris species. This is the first case to report genitourinary myiasis caused by larvae of the genus Palpada in humans. However, we believe that additional cases might be accurately detected if adequate tests are performed to confirm the clinical and molecular features associated with this infection.
Collapse
Affiliation(s)
- Jeiczon Jaimes-Dueñez
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia.
| | - Diego Andrés Leal-Rueda
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Juan David Jaimes-Dueñez
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Diana Isabel Cáceres-Rivera
- Grupo de Investigación para el fortalecimiento de la salud y el bienestar GIFOSABI, Facultad de Enfermería, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Adriana Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
26
|
Paula DP. Next-Generation Sequencing and Its Impacts on Entomological Research in Ecology and Evolution. NEOTROPICAL ENTOMOLOGY 2021; 50:679-696. [PMID: 34374956 DOI: 10.1007/s13744-021-00895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The advent of NGS-based methods has been profoundly transforming entomological research. Through continual development and improvement of different methods and sequencing platforms, NGS has promoted mass elucidation of partial or whole genetic materials associated with beneficial insects, pests (of agriculture, forestry and animal, and human health), and species of conservation concern, helping to unravel ecological and evolutionary mechanisms and characterizing survival, trophic interactions, and dispersal. It is shifting the scale of biodiversity and environmental analyses from individuals and biodiversity indicator species to the large-scale study of communities and ecosystems using bulk samples of species or a mixed "soup" of environmental DNA. As the NGS-based methods have become more affordable, complexity demystified, and specificity and sensitivity proven, their use in entomological research has spread widely. This article presents several examples on how NGS-based methods have been used in entomology to provide incentives to apply them when appropriate and to open our minds to the expected advances in entomology that are yet to come.
Collapse
|
27
|
Harnessing the Power of Metabarcoding in the Ecological Interpretation of Plant-Pollinator DNA Data: Strategies and Consequences of Filtering Approaches. DIVERSITY 2021. [DOI: 10.3390/d13090437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although DNA metabarcoding of pollen mixtures has been increasingly used in the field of pollination biology, methodological and interpretation issues arise due to its high sensitivity. Filtering or maintaining false positives, contaminants, and rare taxa or molecular features could lead to different ecological results. Here, we reviewed how this choice has been addressed in 43 studies featuring pollen DNA metabarcoding, which highlighted a very high heterogeneity of filtering methods. We assessed how these strategies shaped pollen assemblage composition, species richness, and interaction networks. To do so, we compared four processing methods: unfiltering, filtering with a proportional 1% of sample reads, a fixed threshold of 100 reads, and the ROC approach (Receiver Operator Characteristic). The results indicated that filtering impacted species composition and reduced species richness, with ROC emerging as a conservative approach. Moreover, in contrast to unfiltered networks, filtering decreased network Connectance and Entropy, and it increased Modularity and Connectivity, indicating that using cut-off thresholds better describes interactions. Overall, unfiltering might compromise reliable ecological interpretations, unless a study targets rare species. We discuss the suitability of each filtering type, plead for justifying filtering strategies on biological or methodological bases and for developing shared approaches to make future studies more comparable.
Collapse
|
28
|
Lu H, Dou F, Hao Y, Li Y, Zhang K, Zhang H, Zhou Z, Zhu C, Huang D, Luo A. Metabarcoding Analysis of Pollen Species Foraged by Osmia excavata Alfken (Hymenoptera: Megachilidae) in China. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.730549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To meet the pollination need of economic crops, Osmia excavata has been successfully used to improve the pollination efficiency of Rosaceae and Brassicaceae plants. As a widely used pollinator of economic crops, a systematic study of flower-visiting species and diversities of O. excavata stocked in China was not found. To investigate the foraging pollen species and diversities of O. excavata, beebread from 20 experimental plots in China was collected by the trap-nesting method and analyzed by DNA metabarcoding technology. A total of 26 pollen plants in 14 genera and nine families were identified. A further analysis showed that the richness and abundance of the wild flowering plants in orchards and farmlands were lower than those in the nearby semi-natural habitats. The favorite pollen comes from economic crops apple and rape and wild flowering plants Juncus interior, Rosa gymnocarpa, and Rosa laevigata. Through a diversity index analysis, it was found that the Anhui region has the highest pollen plant diversity, while the Liaoning region has the lowest. Our results can provide a basis for flower-visiting species and diversities of O. excavata.
Collapse
|
29
|
Arstingstall KA, DeBano SJ, Li X, Wooster DE, Rowland MM, Burrows S, Frost K. Capabilities and limitations of using DNA metabarcoding to study plant-pollinator interactions. Mol Ecol 2021; 30:5266-5297. [PMID: 34390062 DOI: 10.1111/mec.16112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Many pollinator populations are experiencing declines, emphasizing the need for a better understanding of the complex relationship between bees and flowering plants. Using DNA metabarcoding to describe plant-pollinator interactions eliminates many challenges associated with traditional methods and has the potential to reveal a more comprehensive understanding of foraging behavior and pollinator life history. Here we use DNA metabarcoding of ITS2 and rbcL gene regions to identify plant species present in pollen loads of 404 bees from three habitats in eastern Oregon. Our specific objectives were to 1) determine whether plant species identified using DNA metabarcoding are consistent with plant species identified using observations, 2) compare characterizations of diet breadth derived from foraging observations to those based on plant species assignments obtained using DNA metabarcoding, and 3) compare plant species assignments produced by DNA metabarcoding using a "regional" reference database to those produced using a "local" database. At the three locations, 31-86% of foraging observations were consistent with DNA metabarcoding data, 8-50% of diet breadth characterizations based on observations differed from those based on DNA metabarcoding data, and 22-25% of plant species detected using the regional database were not known to occur in the study area in question. Plant-pollinator networks produced from DNA metabarcoding data had higher sampling completeness and significantly lower specialization than networks based on observations. Here, we examine some strengths and limitations of using DNA metabarcoding to identify plant species present in bee pollen loads, make ecological inferences about foraging behavior, and provide guidance for future research.
Collapse
Affiliation(s)
| | - Sandra J DeBano
- Department of Fisheries and Wildlife, Oregon State University, Corvallis.,Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston
| | - Xiaoping Li
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston
| | - David E Wooster
- Department of Fisheries and Wildlife, Oregon State University, Corvallis.,Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston
| | - Mary M Rowland
- United States Forest Service, Pacific Northwest Research Station, La Grande
| | - Skyler Burrows
- Bee Biology and Systematics Lab, Utah State University, Logan
| | - Kenneth Frost
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston.,Department of Botany and Plant Pathology, Oregon State University, Corvallis
| |
Collapse
|
30
|
James ARM, Geber MA, Toews DPL. Molecular assays of pollen use consistently reflect pollinator visitation patterns in a system of flowering plants. Mol Ecol Resour 2021; 22:361-374. [PMID: 34260821 DOI: 10.1111/1755-0998.13468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022]
Abstract
Determining how pollinators visit plants vs. how they carry and transfer pollen is an ongoing project in pollination ecology. The current tools for identifying the pollens that bees carry have different strengths and weaknesses when used for ecological inference. In this study we use three methods to better understand a system of congeneric, coflowering plants in the genus Clarkia and their bee pollinators: observations of plant-pollinator contact in the field, and two different molecular methods to estimate the relative abundance of each Clarkia pollen in samples collected from pollinators. We use these methods to investigate if observations of plant-pollinator contact in the field correspond to the pollen bees carry; if individual bees carry Clarkia pollens in predictable ways, based on previous knowledge of their foraging behaviors; and how the three approaches differ for understanding plant-pollinator interactions. We find that observations of plant-pollinator contact are generally predictive of the pollens that bees carry while foraging, and network topologies using the three different methods are statistically indistinguishable from each other. Results from molecular pollen analysis also show that while bees can carry multiple species of Clarkia at the same time, they often carry one species of pollen. Our work contributes to the growing body of literature aimed at resolving how pollinators use floral resources. We suggest our novel relative amplicon quantification method as another tool in the developing molecular ecology and pollination biology toolbox.
Collapse
Affiliation(s)
- Aubrie R M James
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - David P L Toews
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
31
|
Cullen N, Xia J, Wei N, Kaczorowski R, Arceo-Gómez G, O'Neill E, Hayes R, Ashman TL. Diversity and composition of pollen loads carried by pollinators are primarily driven by insect traits, not floral community characteristics. Oecologia 2021; 196:131-143. [PMID: 33839922 DOI: 10.1007/s00442-021-04911-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
Flowering plants require conspecific pollen to reproduce but they often also receive heterospecific pollen, suggesting that pollinators carry mixed pollen loads. However, little is known about drivers of abundance, diversity or composition of pollen carried by pollinators. Are insect-carried pollen loads shaped by pollinator traits, or do they reflect available floral resources? We quantified pollen on 251 individual bees and 95 flies in a florally diverse community. We scored taxonomic order, sex, body size, hairiness and ecological specialization of pollinators, and recorded composition of available flowers. We used phylogenetically controlled model selection to compare relative influences of pollinator traits and floral resources on abundance, diversity and composition of insect-carried pollen. We tested congruence between composition of pollen loads and available flowers. Pollinator size, specialization and type (female bee, male bee, or fly) described pollen abundance, diversity and composition better than floral diversity. Pollen loads varied widely among insects (10-80,000,000 grains, 1-16 species). Pollen loads of male bees were smaller, but vastly more diverse than those of female bees, and equivalent in size but modestly more diverse than those of flies. Pollen load size and diversity were positively correlated with body size but negatively correlated with insect ecological specialization. These traits also drove variation in taxonomic and phylogenetic composition of insect-carried pollen loads, but composition was only weakly congruent with available floral resources. Qualities of pollinators best predict abundance and diversity of carried pollen indicating that functional composition of pollinator communities may be important to structuring heterospecific pollen transfer among plants.
Collapse
Affiliation(s)
- Nevin Cullen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jing Xia
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Na Wei
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- The Holden Arboretum, Kirtland, OH, 44094, USA
| | - Rainee Kaczorowski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gerardo Arceo-Gómez
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Biological Sciences, East Tennessee State University, Johnson, TN, 37614, USA
| | - Elizabeth O'Neill
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rebecca Hayes
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
32
|
Hazlehurst J, Rankin D, Clark C, McFrederick Q, Wilson-Rankin E. Macroecological patterns of resource use in resident and migratory hummingbirds. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Elliott B, Wilson R, Shapcott A, Keller A, Newis R, Cannizzaro C, Burwell C, Smith T, Leonhardt SD, Kämper W, Wallace HM. Pollen diets and niche overlap of honey bees and native bees in protected areas. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Doyle T, Hawkes WLS, Massy R, Powney GD, Menz MHM, Wotton KR. Pollination by hoverflies in the Anthropocene. Proc Biol Sci 2020; 287:20200508. [PMID: 32429807 PMCID: PMC7287354 DOI: 10.1098/rspb.2020.0508] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022] Open
Abstract
Pollinator declines, changes in land use and climate-induced shifts in phenology have the potential to seriously affect ecosystem function and food security by disrupting pollination services provided by insects. Much of the current research focuses on bees, or groups other insects together as 'non-bee pollinators', obscuring the relative contribution of this diverse group of organisms. Prominent among the 'non-bee pollinators' are the hoverflies, known to visit at least 72% of global food crops, which we estimate to be worth around US$300 billion per year, together with over 70% of animal pollinated wildflowers. In addition, hoverflies provide ecosystem functions not seen in bees, such as crop protection from pests, recycling of organic matter and long-distance pollen transfer. Migratory species, in particular, can be hugely abundant and unlike many insect pollinators, do not yet appear to be in serious decline. In this review, we contrast the roles of hoverflies and bees as pollinators, discuss the need for research and monitoring of different pollinator responses to anthropogenic change and examine emerging research into large populations of migratory hoverflies, the threats they face and how they might be used to improve sustainable agriculture.
Collapse
Affiliation(s)
- Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Will L. S. Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Richard Massy
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Gary D. Powney
- UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
- Oxford Martin School and School of Geography and Environment, University of Oxford, Oxford, OX1 3BD, UK
| | - Myles H. M. Menz
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| |
Collapse
|
35
|
Kelly T, Elle E. Effects of community composition on plant-pollinator interaction networks across a spatial gradient of oak-savanna habitats. Oecologia 2020; 193:211-223. [PMID: 32405931 DOI: 10.1007/s00442-020-04661-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/02/2020] [Indexed: 11/29/2022]
Abstract
Distance between habitats may impact the composition and corresponding interactions between trophic levels. Mutualistic networks, such as those of plants and pollinators tend to have a core set of properties that often relate to the resilience of the community, or the ability of the community to retain function and structure after a disturbance. Furthermore, network structure is highly dependent on the number of specialists and generalists; however, it is unclear how different groups of species with various life-history strategies influence network structure. In this study, we evaluated how the composition of plants and pollinators within 16 oak-savanna sites changed across a latitudinal gradient. In addition, we evaluated how the abundance of different groups of plants and pollinators affected network metrics related to resilience. We found that the composition of plants and pollinators varied between ecoregions, while pollinator composition further varied with habitat characteristics. Network metrics displayed no spatial pattern but were related to the abundance of several pollinator groups. Above-ground nesting insects had a positive relationship with nestedness and a negative relationship with modularity, while predatory larvae had a negative relationship with modularity. Thus, above-ground nesting insects and predatory larvae could be expected to increase network resilience. This study emphasizes how spatial scales can influence species compositions, which in turn affects the structure of interactions in the community with implications for resilience.
Collapse
Affiliation(s)
- Tyler Kelly
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada.
| | - Elizabeth Elle
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| |
Collapse
|
36
|
de Manincor N, Hautekèete N, Mazoyer C, Moreau P, Piquot Y, Schatz B, Schmitt E, Zélazny M, Massol F. How biased is our perception of plant-pollinator networks? A comparison of visit- and pollen-based representations of the same networks. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2020. [DOI: 10.1016/j.actao.2020.103551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Evans DM, Kitson JJ. Molecular ecology as a tool for understanding pollination and other plant-insect interactions. CURRENT OPINION IN INSECT SCIENCE 2020; 38:26-33. [PMID: 32087411 DOI: 10.1016/j.cois.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Advances in molecular ecology offer unprecedented opportunities to understand the ecology and evolution of insects, the complex ways in which they interact and their role in ecosystem functioning. Rapidly developing DNA sequencing technologies are resolving previously intractable questions in taxonomic and functional biodiversity and provide significant potential to determine formerly difficult to observe plant-insect interactions. We provide an overview of the state-of-the-art and critically appraise the range of molecular approaches currently available for the study of insect pollination, host-parasitoid interactions and/or wider food-web studies. Species-interaction data are increasingly being incorporated into ecological network analyses. DNA metabarcoding offers opportunities to scale-up efforts to create large, highly resolved, phylogenetically structured networks within an exciting framework to study pressing questions in ecology and evolution.
Collapse
Affiliation(s)
- Darren M Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom.
| | - James Jn Kitson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
38
|
Baksay S, Pornon A, Burrus M, Mariette J, Andalo C, Escaravage N. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci Rep 2020; 10:4202. [PMID: 32144370 PMCID: PMC7060345 DOI: 10.1038/s41598-020-61198-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Although the use of metabarcoding to identify taxa in DNA mixtures is widely approved, its reliability in quantifying taxon abundance is still the subject of debate. In this study we investigated the relationships between the amount of pollen grains in mock solutions and the abundance of high-throughput sequence reads and how the relationship was affected by the pollen counting methodology, the number of PCR cycles, the type of markers and plant species whose pollen grains have different characteristics. We found a significant positive relationship between the number of DNA sequences and the number of pollen grains in the mock solutions. However, better relationships were obtained with light microscopy as a pollen grain counting method compared with flow cytometry, with the chloroplastic trnL marker compared with ribosomal ITS1 and with 30 when compared with 25 or 35 PCR cycles. We provide a list of recommendations to improve pollen quantification.
Collapse
Affiliation(s)
- Sandra Baksay
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France.
| | - André Pornon
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| | - Monique Burrus
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| | - Jérôme Mariette
- Plate-forme Bio-informatique Genotoul, Mathématiques et Informatique Appliqués INRA, UR875, Toulouse, F-31320, Castanet-Tolosan, France
| | - Christophe Andalo
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| | - Nathalie Escaravage
- Laboratoire Evolution and Diversité Biologique EDB, CNRS, UMR 5174, Université Toulouse III Paul Sabatier, F-31062, Toulouse, France
| |
Collapse
|
39
|
de Manincor N, Hautekeete N, Piquot Y, Schatz B, Vanappelghem C, Massol F. Does phenology explain plant–pollinator interactions at different latitudes? An assessment of its explanatory power in plant–hoverfly networks in French calcareous grasslands. OIKOS 2020. [DOI: 10.1111/oik.07259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nina Hautekeete
- Univ. Lille, CNRS, UMR 8198 – Evo‐Eco‐Paleo FR‐59000 Lille France
| | - Yves Piquot
- Univ. Lille, CNRS, UMR 8198 – Evo‐Eco‐Paleo FR‐59000 Lille France
| | - Bertrand Schatz
- CEFE, EPHE‐PSL, CNRS, Univ. of Montpellier, Univ. of Paul Valéry Montpellier Montpellier France
| | - Cédric Vanappelghem
- Univ. Lille, CNRS, UMR 8198 – Evo‐Eco‐Paleo FR‐59000 Lille France
- Conservatoire d'espaces naturels Nord et du Pas‐de‐Calais Lillers France
| | - François Massol
- Univ. Lille, CNRS, UMR 8198 – Evo‐Eco‐Paleo FR‐59000 Lille France
- Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, Univ. Lille, CNRS Lille France
| |
Collapse
|
40
|
Pornon A, Baksay S, Escaravage N, Burrus M, Andalo C. Pollinator specialization increases with a decrease in a mass-flowering plant in networks inferred from DNA metabarcoding. Ecol Evol 2019; 9:13650-13662. [PMID: 31938472 PMCID: PMC6953672 DOI: 10.1002/ece3.5531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 01/03/2023] Open
Abstract
How native mass-flowering plants affect the specialization of insects at individual and species levels and the consequences for pollination networks have received much less attention than for mass-flowering crops or alien species and basically remain unexplored.Using existing DNA metabarcoding data on the pollen loads of 402 flower-visiting insects, we assessed the effects of a native mass-flowering plant of high reward quality, the shrub Rhododendron ferrugineum, on pollination networks by investigating: (a) the food niches of individual pollinators and pollinator species and (b) the structure of individual and species networks in subalpine heathland patches with extremely contrasted densities of R. ferrugineum.Relative to its high abundance in high-density patches, the shrub was greatly underrepresented and did not dominate individual's or species' generalized networks, rather individual and species specialization increased with a decrease in R. ferrugineum density. Furthermore, individuals of the more generalist dipteran Empididae species tended to extend exclusive interactions with rare plant species in low-density networks. The same trend was observed in the more specialist Apidea but toward rare species in high-density networks. Our results reveal a quite paradoxical view of pollination and a functional complementarity within networks. Niche and network indices mostly based on the occurrence of links showed that individual pollinators and pollinator species and networks were highly generalized, whereas indices of link strength revealed that species and above all individuals behave as quite strict specialists. Synthesis. Our study provides insights into the status of a native mass-flowering plant in individual's and insect species' food niches and pollination networks. It revealed that a generalist pollinator species can be highly specialized at the individual level and how rare plant species coexisting with mass-flowering plants may nevertheless be visited.
Collapse
Affiliation(s)
- André Pornon
- Laboratoire Evolution et Diversité BiologiqueUMR 5174CNRSIRDUniversité Toulouse III Paul SabatierToulouseFrance
| | - Sandra Baksay
- Laboratoire Evolution et Diversité BiologiqueUMR 5174CNRSIRDUniversité Toulouse III Paul SabatierToulouseFrance
| | - Nathalie Escaravage
- Laboratoire Evolution et Diversité BiologiqueUMR 5174CNRSIRDUniversité Toulouse III Paul SabatierToulouseFrance
| | - Monique Burrus
- Laboratoire Evolution et Diversité BiologiqueUMR 5174CNRSIRDUniversité Toulouse III Paul SabatierToulouseFrance
| | - Christophe Andalo
- Laboratoire Evolution et Diversité BiologiqueUMR 5174CNRSIRDUniversité Toulouse III Paul SabatierToulouseFrance
| |
Collapse
|
41
|
Peel N, Dicks LV, Clark MD, Heavens D, Percival‐Alwyn L, Cooper C, Davies RG, Leggett RM, Yu DW. Semi‐quantitative characterisation of mixed pollen samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ned Peel
- Earlham Institute Norwich UK
- University of East Anglia Norwich UK
| | | | | | | | | | | | | | | | - Douglas W. Yu
- University of East Anglia Norwich UK
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology, Chinese Academy of Sciences Kunming China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
42
|
Smith C, Weinman L, Gibbs J, Winfree R. Specialist foragers in forest bee communities are small, social or emerge early. J Anim Ecol 2019; 88:1158-1167. [PMID: 31063228 DOI: 10.1111/1365-2656.13003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/02/2019] [Indexed: 12/01/2022]
Abstract
Individual pollinators that specialize on one plant species within a foraging bout transfer more conspecific and less heterospecific pollen, positively affecting plant reproduction. However, we know much less about pollinator specialization at the scale of a foraging bout compared to specialization by pollinator species. In this study, we measured the diversity of pollen carried by individual bees foraging in forest plant communities in the mid-Atlantic United States. We found that individuals frequently carried low-diversity pollen loads, suggesting that specialization at the scale of the foraging bout is common. Individuals of solitary bee species carried higher diversity pollen loads than did individuals of social bee species; the latter have been better studied with respect to foraging bout specialization, but account for a small minority of the world's bee species. Bee body size was positively correlated with pollen load diversity, and individuals of polylectic (but not oligolectic) species carried increasingly diverse pollen loads as the season progressed, likely reflecting an increase in the diversity of flowers in bloom. Furthermore, the seasonal increase in pollen load diversity was stronger for bees visiting trees and shrubs than for bees visiting herbaceous plants. Overall, our results showed that both plant and pollinator species' traits as well as community-level patterns of flowering phenology are likely to be important determinants of individual-level interactions in plant-pollinator communities.
Collapse
Affiliation(s)
- Colleen Smith
- Graduate Program in Ecology & Evolution, Rutgers University, New Brunswick, New Jersey.,Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey
| | - Lucia Weinman
- Graduate Program in Ecology & Evolution, Rutgers University, New Brunswick, New Jersey.,Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey
| | - Jason Gibbs
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachael Winfree
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
43
|
Hannah L, Dyer AG, Garcia JE, Dorin A, Burd M. Psychophysics of the hoverfly: categorical or continuous color discrimination? Curr Zool 2019; 65:483-492. [PMID: 31413720 PMCID: PMC6688577 DOI: 10.1093/cz/zoz008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
There is increasing interest in flies as potentially important pollinators. Flies are known to have a complex visual system, including 4 spectral classes of photoreceptors that contribute to the perception of color. Our current understanding of how color signals are perceived by flies is based on data for the blowfly Lucilia sp., which after being conditioned to rewarded monochromatic light stimuli, showed evidence of a categorical color visual system. The resulting opponent fly color space has 4 distinct categories, and has been used to interpret how some fly pollinators may perceive flower colors. However, formal proof that flower flies (Syrphidae) only use a simple, categorical color process remains outstanding. In free-flying experiments, we tested the hoverfly Eristalis tenax, a Batesian mimic of the honeybee, that receives its nutrition by visiting flowers. Using a range of broadband similar–dissimilar color stimuli previously used to test color perception in pollinating hymenopteran species, we evaluated if there are steep changes in behavioral choices with continuously increasing color differences as might be expected by categorical color processing. Our data revealed that color choices by the hoverfly are mediated by a continuous monotonic function. Thus, these flies did not use a categorical processing, but showed evidence of a color discrimination function similar to that observed in several bee species. We therefore empirically provide data for the minimum color distance that can be discriminated by hoverflies in fly color space, enabling an improved understanding of plant–pollinator interactions with a non-model insect species.
Collapse
Affiliation(s)
- Lea Hannah
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales 2753, Australia
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, Victoria 3001, Australia.,Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jair E Garcia
- School of Media and Communication, RMIT University, Melbourne, Victoria 3001, Australia
| | - Alan Dorin
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - Martin Burd
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
44
|
Potter C, de Vere N, Jones LE, Ford CR, Hegarty MJ, Hodder KH, Diaz A, Franklin EL. Pollen metabarcoding reveals broad and species-specific resource use by urban bees. PeerJ 2019; 7:e5999. [PMID: 30809427 PMCID: PMC6385686 DOI: 10.7717/peerj.5999] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Bee populations are currently undergoing severe global declines driven by the interactive effects of a number of factors. Ongoing urbanisation has the potential to exacerbate bee declines, unless steps are taken to ensure appropriate floral resources are available. Sown wildflower strips are one way in which floral resources can be provided to urban bees. However, the use of these strips by pollinators in urban environments remains little studied. Here, we employ pollen metabarcoding of the rbcL gene to compare the foraging patterns of different bee species observed using urban sown wildflower strips in July 2016, with a goal of identifying which plant species are most important for bees. We also demonstrate the use of a non-destructive method of pollen collection. Bees were found to forage on a wide variety of plant genera and families, including a diverse range of plants from outside the wildflower plots, suggesting that foragers visiting sown wildflower strips also utilize other urban habitats. Particular plants within the wildflower strips dominated metabarcoding data, particularly Papaver rhoeas and Phacelia tanacetifolia. Overall, we demonstrate that pollinators observed in sown wildflower strips use certain sown foodplants as part of a larger urban matrix.
Collapse
Affiliation(s)
- Caitlin Potter
- IBERS, Aberystwyth University, Aberystwyth, Ceredigion, UK
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Natasha de Vere
- IBERS, Aberystwyth University, Aberystwyth, Ceredigion, UK
- National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK
| | - Laura E. Jones
- National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK
- Molecular Ecology and Fisheries Genetics Laboratory, Bangor University, Bangor, Gwynedd, UK
| | - Col R. Ford
- National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK
| | | | - Kathy H. Hodder
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Anita Diaz
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Elizabeth L. Franklin
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
45
|
Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00547] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Klecka J, Hadrava J, Biella P, Akter A. Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network. PeerJ 2018; 6:e6025. [PMID: 30533311 PMCID: PMC6282941 DOI: 10.7717/peerj.6025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/25/2018] [Indexed: 11/20/2022] Open
Abstract
Hoverflies (Diptera: Syrphidae) are among the most important pollinators, although they attract less attention than bees. They are usually thought to be rather opportunistic flower visitors, although previous studied demonstrated that they show colour preferences and their nectar feeding is affected by morphological constraints related to flower morphology. Despite the growing appreciation of hoverflies and other non-bee insects as pollinators, there is a lack of community-wide studies of flower visitation by syrphids. The aim of this paper is to provide a detailed analysis of flower visitation patterns in a species rich community of syrphids in a Central European grassland and to evaluate how species traits shape the structure of the plant-hoverfly flower visitation network. We found that different species varied in the level of specialisation, and while some species visited a similar spectre of flowers, others partitioned resources more strongly. There was a consistent difference in both specialisation and flower preferences between three syrphid subfamilies. Eristalinae and Pipizinae were more specialised than Syrphinae. Trait-based analyses showed that relative flower visitation (i) increased with plant height, but most strongly in Eristalinae; (ii) increased with inflorescence size in small species from all three subfamilies, but was independent of inflorescence size in large species of Eristalinae and Syrphinae; and (iii) depended on flower colour, but in a subfamily-specific way. Eristalinae showed the strongest flower colour preferences for white flowers, Pipizinae visited mostly white and yellow flowers, while Syrphinae were less affected by flower colour. Exploration of the structure of the plant-hoverfly flower visitation network showed that the network was both modular and nested. We also found that there were almost no differences in specialisation and relative visitation frequency between males and females. Overall, we showed that flower visitation in syrphids was affected by phylogenetic relatedness, body size of syrphids and several plant traits.
Collapse
Affiliation(s)
- Jan Klecka
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Jiří Hadrava
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Paolo Biella
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Asma Akter
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
47
|
Suchan T, Talavera G, Sáez L, Ronikier M, Vila R. Pollen metabarcoding as a tool for tracking long-distance insect migrations. Mol Ecol Resour 2018; 19:149-162. [PMID: 30267472 DOI: 10.1111/1755-0998.12948] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022]
Abstract
Insects account for a large portion of Earth's biodiversity and are key players for ecosystems, notably as pollinators. While insect migration is suspected to represent a natural phenomenon of major importance, remarkably little is known about it, except for a few flagship species. The reason for this situation is mainly due to technical limitations in the study of insect movement. Here, we propose using metabarcoding of pollen carried by insects as a method for tracking their migrations. We developed a flexible and simple protocol allowing efficient multiplexing and not requiring DNA extraction, one of the most time-consuming part of metabarcoding protocols, and apply this method to the study of the long-distance migration of the butterfly Vanessa cardui, an emerging model for insect migration. We collected 47 butterfly samples along the Mediterranean coast of Spain in spring and performed metabarcoding of pollen collected from their bodies to test for potential arrivals from the African continent. In total, we detected 157 plant species from 23 orders, most of which (82.8%) were insect-pollinated. Taxa present in Africa-Arabia represented 73.2% of our data set, and 19.1% were endemic to this region, strongly supporting the hypothesis that migratory butterflies colonize southern Europe from Africa in spring. Moreover, our data suggest that a northwards trans-Saharan migration in spring is plausible for early arrivals (February) into Europe, as shown by the presence of Saharan floristic elements. Our results demonstrate the possibility of regular insect-mediated transcontinental pollination, with potential implications for ecosystem functioning, agriculture and plant phylogeography.
Collapse
Affiliation(s)
- Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts
| | - Llorenç Sáez
- Systematics and Evolution of Vascular Plants, Associated Unit to CSIC, Unitat de Botànica, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Michał Ronikier
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
48
|
Lucas A, Bodger O, Brosi BJ, Ford CR, Forman DW, Greig C, Hegarty M, Neyland PJ, de Vere N, Sanders N. Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA metabarcoding. J Anim Ecol 2018; 87:1008-1021. [PMID: 29658115 PMCID: PMC6032873 DOI: 10.1111/1365-2656.12828] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/19/2018] [Indexed: 11/29/2022]
Abstract
Pollination by insects is a key ecosystem service and important to wider ecosystem function. Most species-level pollination networks studied have a generalised structure, with plants having several potential pollinators, and pollinators in turn visiting a number of different plant species. This is in apparent contrast to a plant's need for efficient conspecific pollen transfer. The aim of this study was to investigate the structure of pollen transport networks at three levels of biological hierarchy: community, species and individual. We did this using hoverflies in the genus Eristalis, a key group of non-Hymenopteran pollinators. We constructed pollen transport networks using DNA metabarcoding to identify pollen. We captured hoverflies in conservation grasslands in west Wales, UK, removed external pollen loads, sequenced the pollen DNA on the Illumina MiSeq platform using the standard plant barcode rbcL, and matched sequences using a pre-existing plant DNA barcode reference library. We found that Eristalis hoverflies transport pollen from 65 plant taxa, more than previously appreciated. Networks were generalised at the site and species level, suggesting some degree of functional redundancy, and were more generalised in late summer compared to early summer. In contrast, pollen transport at the individual level showed some degree of specialisation. Hoverflies defined as "single-plant visitors" varied from 40% of those captured in early summer to 24% in late summer. Individual hoverflies became more generalised in late summer, possibly in response to an increase in floral resources. Rubus fruticosus agg. and Succisa pratensis were key plant species for hoverflies at our sites Our results contribute to resolving the apparent paradox of how generalised pollinator networks can provide efficient pollination to plant species. Generalised hoverfly pollen transport networks may result from a varied range of short-term specialised feeding bouts by individual insects. The generalisation and functional redundancy of Eristalis pollen transport networks may increase the stability of the pollination service they deliver.
Collapse
Affiliation(s)
- Andrew Lucas
- Department of BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Owen Bodger
- School of MedicineInstitute of Life ScienceSwansea UniversitySwanseaUK
| | - Berry J. Brosi
- Department of Environmental SciencesEmory UniversityAtlantaGAUSA
| | - Col R. Ford
- National Botanic Garden of WalesLlanarthneUK
| | - Dan W. Forman
- Department of BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Carolyn Greig
- School of MedicineInstitute of Life ScienceSwansea UniversitySwanseaUK
| | | | | | - Natasha de Vere
- National Botanic Garden of WalesLlanarthneUK
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | |
Collapse
|