1
|
Lawrence-Paul EH, Poethig RS, Lasky JR. Vegetative phase change causes age-dependent changes in phenotypic plasticity. THE NEW PHYTOLOGIST 2023; 240:613-625. [PMID: 37571856 PMCID: PMC10551844 DOI: 10.1111/nph.19174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
Phenotypic plasticity allows organisms to optimize traits for their environment. As organisms age, they experience diverse environments that benefit from varying degrees of phenotypic plasticity. Developmental transitions can control these age-dependent changes in plasticity, and as such, the timing of these transitions can determine when plasticity changes in an organism. Here, we investigate how the transition from juvenile-to adult-vegetative development known as vegetative phase change (VPC) contributes to age-dependent changes in phenotypic plasticity and how the timing of this transition responds to environment using both natural accessions and mutant lines in the model plant Arabidopsis thaliana. We found that the adult phase of vegetative development has greater plasticity in leaf morphology than the juvenile phase and confirmed that this difference in plasticity is caused by VPC using mutant lines. Furthermore, we found that the timing of VPC, and therefore the time when increased plasticity is acquired, varies significantly across genotypes and environments. The consistent age-dependent changes in plasticity caused by VPC suggest that VPC may be adaptive. This genetic and environmental variation in the timing of VPC indicates the potential for population-level adaptive evolution of VPC.
Collapse
Affiliation(s)
- Erica H. Lawrence-Paul
- Pennsylvania State University, Department of Biology, University Park, PA 16802
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104
| | - R. Scott Poethig
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104
| | - Jesse R. Lasky
- Pennsylvania State University, Department of Biology, University Park, PA 16802
| |
Collapse
|
2
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
3
|
Boutry J, Buysse M, Tissot S, Cazevielle C, Hamede R, Dujon AM, Ujvari B, Giraudeau M, Klimovich A, Thomas F, Tökölyi J. Spontaneously occurring tumors in different wild-derived strains of hydra. Sci Rep 2023; 13:7449. [PMID: 37156860 PMCID: PMC10167321 DOI: 10.1038/s41598-023-34656-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Hydras are freshwater cnidarians widely used as a biological model to study different questions such as senescence or phenotypic plasticity but also tumoral development. The spontaneous tumors found in these organisms have been so far described in two female lab strains domesticated years ago (Hydra oligactis and Pelmatohydra robusta) and the extent to which these tumors can be representative of tumors within the diversity of wild hydras is completely unknown. In this study, we examined individuals isolated from recently sampled wild strains of different sex and geographical origin, which have developed outgrowths looking like tumors. These tumefactions have common features with the tumors previously described in lab strains: are composed of an accumulation of abnormal cells, resulting in a similar enlargement of the tissue layers. However, we also found diversity within these new types of tumors. Indeed, not only females, but also males seem prone to form these tumors. Finally, the microbiota associated to these tumors is different from the one involved in the previous lineages exhibiting tumors. We found that tumorous individuals hosted yet undescribed Chlamydiales vacuoles. This study brings new insights into the understanding of tumor susceptibility and diversity in brown hydras from different origins.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France.
| | - Marie Buysse
- MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Chantal Cazevielle
- Institut des Neurosciences de Montpellier: Electronic Microscopy Facilities, INSERM U 1298, Université Montpellier, Montpellier, France
| | - Rodrigo Hamede
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Antoine M Dujon
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Beata Ujvari
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Mathieu Giraudeau
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 223 Rue Olympe de Gouges, 17000, La Rochelle, France
| | | | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Jácint Tökölyi
- MTA-DE "Momentum" Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
4
|
Boutry J, Tissot S, Mekaoui N, Dujon A, Meliani J, Hamede R, Ujvari B, Roche B, Nedelcu AM, Tokolyi J, Thomas F. Tumors alter life-history traits in the freshwater cnidarian, Hydra oligactis. iScience 2022; 25:105034. [PMID: 36147948 PMCID: PMC9485901 DOI: 10.1016/j.isci.2022.105034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Although tumors can occur during the lifetime of most multicellular organisms and have the potential to influence health, how they alter life-history traits in tumor-bearing individuals remains poorly documented. This question was explored using the freshwater cnidarian Hydra oligactis, a species sometimes affected by vertically transmitted tumors. We found that tumorous polyps have a reduced survival compared to healthy ones. However, they also displayed higher asexual reproductive effort, by producing more often multiple buds than healthy ones. A similar acceleration is observed for the sexual reproduction (estimated through gamete production). Because tumoral cells are not transmitted through this reproductive mode, this finding suggests that hosts may adaptively respond to tumors, compensating the expected fitness losses by increasing their immediate reproductive effort. This study supports the hypothesis that tumorigenesis has the potential to influence the biology, ecology, and evolution of multicellular species, and thus should be considered more by evolutionary ecologists. Vertically transmitted tumors influence the life history traits of hydras Tumor-bearing hydras have a reduced survival rate Tumorous hydras show increased early reproductive effort (asexual and sexual) Changes in sexual reproduction pattern can be a compensatory response of the host
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Corresponding author
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Corresponding author
| | - Narimène Mekaoui
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Antoine Dujon
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Beata Ujvari
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Benjamin Roche
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Aurora M. Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Jácint Tokolyi
- MTA-DE “Momentum” Ecology, Evolution and Developmental Biology Research Group, Department of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Hungary
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Metabolic cost of development, regeneration, and reproduction in the planarian Schmidtea mediterranea. Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111127. [PMID: 34968657 DOI: 10.1016/j.cbpa.2021.111127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Planaria are known for their ability to completely regenerate upon fissioning or experimental amputation. Yet, metabolic costs of regeneration have not been directly measured in planaria. Our goal was to establish the relationships between oxygen consumption (V̇O2), regeneration, and reproductive mode for asexual and sexual strains of Schmidtea mediterranea. We hypothesized that V̇O2 would vary by regeneration day for both sexual and asexual S. mediterranea, reflecting different costs of tissue reconstruction, but with an additional cost for regenerating sexual organs. Testes regeneration and body mass, as indicators of regeneration progress, and routine mass-specific V̇O2 as a function of maturity, regeneration, and reproductive mode, were measured over a 22-day regeneration period. Testes growth was highest in sexually mature adults, ~1/2 that in 14-day post-amputation sexual adults, and not detectable in juveniles and hatchlings. Mass-specific routine V̇O2 in sexuals was highest in mature controls at ~23 μl O2/g/h, but only half that in juveniles, hatchlings, and 14 day post-amputation adults. Both intact and 14-day post-amputation asexuals had a mass-specific routine V̇O2 of ~10-12 μl O2/g/h. The sum of V̇O2 of all amputated sections was ~100% higher than pre-amputation levels in the first 6 days of regeneration in asexuals, but not sexuals. There was no significant difference in V̇O2 of head, middle, and tail sections during regeneration. Overall, the highest metabolic costs associated with regeneration occurred during the initial 1-6 days of regeneration in both strains, but regeneration costs for sexual structures were not reflected in major V̇O2 differences between sexual and asexual strains.
Collapse
|
6
|
Tökölyi J, Gergely R, Miklós M. Seasonal variation in sexual readiness in a facultatively sexual freshwater cnidarian with diapausing eggs. Ecosphere 2021. [DOI: 10.1002/ecs2.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jácint Tökölyi
- MTA‐DE Behavioral Ecology Research Group Department of Evolutionary Zoology University of Debrecen Egyetem tér 1 Debrecen 4032 Hungary
| | - Réka Gergely
- MTA‐DE Behavioral Ecology Research Group Department of Evolutionary Zoology University of Debrecen Egyetem tér 1 Debrecen 4032 Hungary
| | - Máté Miklós
- MTA‐DE Behavioral Ecology Research Group Department of Evolutionary Zoology University of Debrecen Egyetem tér 1 Debrecen 4032 Hungary
| |
Collapse
|
7
|
Ngo KS, R-Almási B, Barta Z, Tökölyi J. Experimental manipulation of body size alters life history in hydra. Ecol Lett 2021; 24:728-738. [PMID: 33606896 DOI: 10.1111/ele.13698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
Body size has fundamental impacts on animal ecology and physiology but has been strongly influenced by recent climate change and human activities, such as size-selective harvesting. Understanding the ecological and life history consequences of body size has proved difficult due to the inseparability of direct effects of body size from processes connected to it (such as growth rate and individual condition). Here, we used the cnidarian Hydra oligactis to directly manipulate body size and understand its causal effects on reproduction and senescence. We found that experimentally reducing size delayed sexual development and lowered fecundity, while post-reproductive survival increased, implying that smaller individuals can physiologically detect their reduced size and adjust life history decisions to achieve higher survival. Our experiment suggests that ecological or human-induced changes in body size will have immediate effects on life history and population dynamics through a growth-independent link between body size, reproduction and senescence.
Collapse
Affiliation(s)
- Kha Sach Ngo
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, Univ. of Debrecen, Debrecen, Hungary
| | - Berta R-Almási
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, Univ. of Debrecen, Debrecen, Hungary
| | - Zoltán Barta
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, Univ. of Debrecen, Debrecen, Hungary
| | - Jácint Tökölyi
- MTA-DE Behavioral Ecology Research Group, Department of Evolutionary Zoology, Univ. of Debrecen, Debrecen, Hungary
| |
Collapse
|