1
|
Salazar SM, Hlebowicz K, Komdeur J, Korsten P. Repeatable parental risk taking across manipulated levels of predation threat: no individual variation in plasticity. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Mohring B, Angelier F, Jaatinen K, Steele B, Lönnberg E, Öst M. Drivers of within- and among-individual variation in risk-taking behaviour during reproduction in a long-lived bird. Proc Biol Sci 2022; 289:20221338. [PMID: 36126681 PMCID: PMC9489283 DOI: 10.1098/rspb.2022.1338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/30/2022] [Indexed: 01/17/2023] Open
Abstract
Plastic and selective mechanisms govern parental investment adjustments to predation threat. We investigated the relative importance of plasticity and selection in risk-taking propensity of incubating female common eiders Somateria mollissima facing unprecedented predation in SW Finland, Baltic Sea. Using a 12-year individual-based dataset, we examined within- and among-individual variation in flight initiation distance (FID), in relation to predation risk, nest detectability, individual traits and reproductive investment (NFID = 1009; Nindividual = 559). We expected females nesting in riskier environments (higher predation risk, lower nest concealment) to mitigate environmentally imposed risk by exhibiting longer FIDs, and females investing more in current reproduction (older, in better condition or laying larger clutches) to display shorter FIDs. The target of predation-adult or offspring-affected the mechanisms adapting risk-taking propensity; females plastically increased their FID under higher adult predation risk, while risk-avoiding breeders were predominant on islands with higher nest predation risk. Risk-taking females selected thicker nest cover, consistent with personality-matching habitat choice. Females plastically attenuated their anti-predator response (shorter FIDs) with advancing age, and females in better body condition were more risk-taking, a result explained by selection processes. Future research should consider predator type when investigating the fitness consequences of risk-taking strategies.
Collapse
Affiliation(s)
- Bertille Mohring
- Environmental and Marine Biology, Åbo Akademi University, 20500 Turku, Finland
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS – La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS – La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Kim Jaatinen
- Nature and Game Management Trust Finland, 10160 Degerby, Finland
| | - Ben Steele
- School of Arts and Sciences, Colby-Sawyer College, New London, NH 03257, USA
| | | | - Markus Öst
- Environmental and Marine Biology, Åbo Akademi University, 20500 Turku, Finland
- Novia University of Applied Sciences, 10600 Ekenäs, Finland
| |
Collapse
|
3
|
Nicolaus M, Wang X, Lamers KP, Ubels R, Both C. Unravelling the causes and consequences of dispersal syndromes in a wild passerine. Proc Biol Sci 2022; 289:20220068. [PMID: 35506227 PMCID: PMC9065973 DOI: 10.1098/rspb.2022.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Evidence accumulates that dispersal is correlated with individual behavioural phenotype (dispersal syndrome). The evolutionary causes and consequences of such covariation depend on the degree of plasticity versus inheritance of the traits, which requires challenging experiments to implement in mobile organisms. Here, we combine a forced dispersal experiment, natural colonization and longitudinal data to establish if dispersal and aggression levels are integrated and to test their adaptive nature in pied flycatchers (Ficedula hypoleuca). We found that (forced) dispersers behaved more aggressively in their first breeding year after dispersal and decreased their aggression in following years. Strength of dispersal syndrome and direction of fecundity selection on aggression in newly colonized areas varied between years. We propose that the net benefits of aggression for dispersers increase under harsh conditions (e.g. low food abundance). This hypothesis now warrants further testing. Overall, this study provides unprecedented experimental evidence that dispersal syndromes can be remodelled via adaptive plasticity depending on the individuals' local breeding experience and/or year-specific ecological conditions. It highlights the importance of individual behavioural variation in population dynamics.
Collapse
Affiliation(s)
- Marion Nicolaus
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Xuelai Wang
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Koosje P. Lamers
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Richard Ubels
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Christiaan Both
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| |
Collapse
|
4
|
Tolman D, Campobello D, Rönkä K, Kluen E, Thorogood R. Reed Warbler Hosts Do Not Fine-Tune Mobbing Defenses During the Breeding Season, Even When Cuckoos Are Rare. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.725467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hosts of brood parasitic cuckoos often employ mobbing attacks to defend their nests and, when mobbing is costly, hosts are predicted to adjust their mobbing to match parasitism risk. While evidence exists for fine-tuned plasticity, it remains unclear why mobbing does not track larger seasonal changes in parasitism risk. Here we test a possible explanation from parental investment theory: parents should defend their current brood more intensively as the opportunity to replace it declines (re-nesting potential), and therefore “counteract” any apparent seasonal decline to match parasitism risk. We take advantage of mobbing experiments conducted at two sites where reed warblers (Acrocephalus scirpaceus) experience (in Italy), or do not experience (in Finland), brood parasitism. We predicted that mobbing of cuckoos should be higher overall in Italy, but remain constant over the season as in other parasitised sites, whereas in Finland where cuckoos do not pose a local threat, we predicted that mobbing should be low at the beginning of the season but increase as re-nesting potential declined. However, while cuckoos were more likely to be mobbed in Italy, we found little evidence that mobbing changed over the season at either the parasitized or non-parasitized sites. This suggests that re-nesting potential has either little influence on mobbing behavior, or that its effects are obscured by other seasonal differences in ecology or experience of hosts.
Collapse
|
5
|
Male aggressiveness and risk-taking during reproduction are repeatable but not correlated in a wild bird population. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The existence of among-individual variation in behaviour within populations is poorly understood. Recent theory suggests that fine-scale individual differences in investment into current versus future reproduction may lead to a ‘slow-fast’-pace-of-life continuum, also referred to as the ‘pace-of-life-syndrome’ (POLS) hypothesis. According to this idea, individuals are predicted to differ in their level of risk-taking, which may drive among-individual variation and covariation of behaviours. Consistent individual differences in aggression, an ecologically relevant and potentially risky behaviour, have been reported across the animal kingdom. Here we test whether such individual differences in aggression are a manifestation of underlying differences in risk-taking. In a wild blue tit (Cyanistes caeruleus) population, we used standard behavioural tests to investigate if male territorial aggressiveness and risk-taking during breeding are positively related. At the start of breeding, we simulated conspecific territorial intrusions to obtain repeated measures of male aggressiveness. Subsequently, we measured male risk-taking as their latency to resume brood provisioning after presenting two different predators at their nest: human and sparrowhawk, a common predator of adult songbirds. First, we found substantial repeatability for male aggressiveness (R = 0.56 ± 0.08 SE). Second, while males took longer to resume provisioning after presentation of a sparrowhawk mount as compared to a human observer, risk-taking was repeatable across these two predator contexts (R = 0.51 ± 0.13 SE). Finally, we found no evidence for a correlation between male aggressiveness and risk-taking, thereby providing little support to a main prediction of the POLS hypothesis.
Significance statement
Consistent, and often correlated, individual differences in basal behaviours, such as aggression, exploration and sociability, are found across the animal kingdom. Why individuals consistently differ in their behaviour is poorly understood, as behavioural traits would seem inherently flexible. The ‘pace-of-life syndrome’ (POLS) hypothesis proposes observed behavioural variation to reflect differences in risk-taking associated with individual reproductive strategies. We tested this idea in a wild blue tit population by investigating whether individual males that were more aggressive toward territorial intruders also took more risk when provisioning their nestlings under a threat of predation. While we found consistent individual differences in both aggressiveness and risk-taking, these behaviours were not significantly correlated. Therefore, our study demonstrates among-individual variation in ecologically relevant behaviours in wild blue tits but provides little support for the POLS hypothesis.
Collapse
|
6
|
de Jong ME, Nicolaus M, Fokkema RW, Loonen MJJE. State dependence explains individual variation in nest defence behaviour in a long-lived bird. J Anim Ecol 2021; 90:809-819. [PMID: 33340107 PMCID: PMC8048547 DOI: 10.1111/1365-2656.13411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
Parental care, such as nest or offspring defence, is crucial for offspring survival in many species. Yet, despite its obvious fitness benefits, the level of defence can consistently vary between individuals of the same species. One prominent adaptive explanation for consistent individual differences in behaviours involves state dependency: relatively stable differences in individual state should lead to the emergence of repeatable behavioural variation whereas changes in state should lead to a readjustment of behaviour. Therefore, empirical testing of adaptive state dependence requires longitudinal data where behaviour and state of individuals of the same population are repeatedly measured. Here, we test if variation in states predicts nest defence behaviour (a ‘risky’ behaviour) in a long‐lived species, the barnacle goose Branta leucopsis. Adaptive models have predicted that an individual's residual reproductive value or ‘asset’ is an important state variable underlying variation in risk‐taking behaviour. Hence, we investigate how nest defence varies as a function of time of the season and individual age, two state variables that can vary between and within individuals and determine asset. Repeated measures of nest defence towards a human intruder (flight initiation distance or FID) of females of known age were collected during 15 breeding seasons. Increasing values of FID represent increasing shyness. We found that females strongly and consistently differed in FID within‐ and between‐years. As predicted by theory, females adjusted their behaviour to state by decreasing their FID with season and age. Decomposing these population patterns into within‐ and between‐individual effects showed that the state‐dependent change in FID was driven by individual plasticity in FID and that bolder females were more plastic than shyer females. This study shows that nest defence behaviour differs consistently among individuals and is adjusted to individual state in a direction predicted by adaptive personality theory.
Collapse
Affiliation(s)
- Margje E de Jong
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria.,Arctic Centre, University of Groningen, Groningen, The Netherlands
| | - Marion Nicolaus
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Science (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Rienk W Fokkema
- Arctic Centre, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|