1
|
Maia KP, Guimarães PR. The Hierarchical Coevolutionary Units of Ecological Networks. Ecol Lett 2024; 27:e14501. [PMID: 39354909 DOI: 10.1111/ele.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/03/2024]
Abstract
In ecological networks, cohesive groups of species may shape the evolution of interactions, serving as coevolutionary units. Ranging across network scales, from motifs to isolated components, elucidating which cohesive groups are more determinant for coevolution remains a challenge in ecology. We address this challenge by integrating 376 empirical mutualistic and antagonistic networks and coevolutionary models. We identified cohesive groups at four network scales containing a significant proportion of potential direct coevolutionary effects. Cohesive groups displayed hierarchical organisation, and potential coevolutionary effects overflowing lower-scale groups were contained by higher-scale groups, underscoring the hierarchy's impact. However, indirect coevolutionary effects blurred group boundaries and hierarchy, particularly under strong selection from ecological interactions. Thus, under strong selection, indirect effects render networks themselves, and not cohesive groups, as the likely coevolutionary units of ecological systems. We hypothesise hierarchical cohesive groups to also shape how other forms of direct and indirect effects propagate in ecological systems.
Collapse
Affiliation(s)
- Kate Pereira Maia
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paulo Roberto Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Lampo A, Palazzi MJ, Borge-Holthoefer J, Solé-Ribalta A. Structural dynamics of plant-pollinator mutualistic networks. PNAS NEXUS 2024; 3:pgae209. [PMID: 38881844 PMCID: PMC11177885 DOI: 10.1093/pnasnexus/pgae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
The discourse surrounding the structural organization of mutualistic interactions mostly revolves around modularity and nestedness. The former is known to enhance the stability of communities, while the latter is related to their feasibility, albeit compromising the stability. However, it has recently been shown that the joint emergence of these structures poses challenges that can eventually lead to limitations in the dynamic properties of mutualistic communities. We hypothesize that considering compound arrangements-modules with internal nested organization-can offer valuable insights in this debate. We analyze the temporal structural dynamics of 20 plant-pollinator interaction networks and observe large structural variability throughout the year. Compound structures are particularly prevalent during the peak of the pollination season, often coexisting with nested and modular arrangements in varying degrees. Motivated by these empirical findings, we synthetically investigate the dynamics of the structural patterns across two control parameters-community size and connectance levels-mimicking the progression of the pollination season. Our analysis reveals contrasting impacts on the stability and feasibility of these mutualistic communities. We characterize the consistent relationship between network structure and stability, which follows a monotonic pattern. But, in terms of feasibility, we observe nonlinear relationships. Compound structures exhibit a favorable balance between stability and feasibility, particularly in mid-sized ecological communities, suggesting they may effectively navigate the simultaneous requirements of stability and feasibility. These findings may indicate that the assembly process of mutualistic communities is driven by a delicate balance among multiple properties, rather than the dominance of a single one.
Collapse
Affiliation(s)
- Aniello Lampo
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Universidad Carlos III de Madrid, Av. Universidad, 30 (edificio Sabatini), 28911 Leganés (Madrid), Spain
| | - María J Palazzi
- Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Rambla del Poblenou, 154 08018, Barcelona, Catalonia, Spain
| | - Javier Borge-Holthoefer
- Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Rambla del Poblenou, 154 08018, Barcelona, Catalonia, Spain
| | - Albert Solé-Ribalta
- Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Rambla del Poblenou, 154 08018, Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Sano NY, Herrera HM, Porfirio GEDO, de Macedo GC, Santos FM. Exploring interactions between parasites and their hosts in the Pantanal floodplain using an ecological network approach. Parasitol Res 2024; 123:128. [PMID: 38332167 DOI: 10.1007/s00436-024-08140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The study of host-parasite interactions is essential to understand the role of each host species in the parasitic transmission cycles in a given community. The use of ecological network highlights the patterns of interactions between hosts and parasites, allowing us to evaluate the underlying structural features and epidemiological roles of different species within this context. Through network analysis, we aimed to understand the epidemiological roles of mammalian hosts species (n = 67) and their parasites (n = 257) in the Pantanal biome. Our analysis revealed a modular pattern within the network, characterized by 14 distinct modules, as well as nestedness patterns within these modules. Some key nodes, such as the multi-host parasites Trypanosoma cruzi and T. evansi, connect different modules and species. These central nodes showed us that various hosts species, including those with high local abundances, contribute to parasite maintenance. Ectoparasites, such as ticks and fleas, exhibit connections that reflect their roles as vectors of certain parasites. Overall, our findings contribute to a comprehensive understanding of the structure of host-parasite interactions in the Pantanal ecosystem, highlighting the importance of network analysis as a tool to identifying the main transmission routes and maintenance of parasites pathways. Such insights are valuable for parasitic disease control and prevention strategies and shed light on the broader complexities of ecological communities.
Collapse
Affiliation(s)
- Nayara Yoshie Sano
- Programa de Pós-Graduação Em Ciências Ambientais E Sustentabilidade Agropecuária, Interface Between Animal, Environmental, and Human Health Research Group, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Jardim Seminário, Campo Grande, Mato Grosso Do Sul, 79117-900, Brazil.
- Programa de Pós-Graduação Em Ecologia E Conservação, Universidade Federal Do Mato Grosso Do Sul, INBIO - Cidade Universitária, Av. Costa E Silva - Pioneiros, MS, Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil.
- LAMP LAB - LAMP Diagnostico LTDA, Av. Tamandaré, 6000, Jardim Seminário, Campo Grande, Mato Grosso Do Sul, 79117-900, Brazil.
| | - Heitor Miraglia Herrera
- Programa de Pós-Graduação Em Ciências Ambientais E Sustentabilidade Agropecuária, Interface Between Animal, Environmental, and Human Health Research Group, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Jardim Seminário, Campo Grande, Mato Grosso Do Sul, 79117-900, Brazil
- Programa de Pós-Graduação Em Ecologia E Conservação, Universidade Federal Do Mato Grosso Do Sul, INBIO - Cidade Universitária, Av. Costa E Silva - Pioneiros, MS, Campo Grande, Mato Grosso Do Sul, 79070-900, Brazil
| | | | - Gabriel Carvalho de Macedo
- Programa de Pós-Graduação Em Ciências Ambientais E Sustentabilidade Agropecuária, Interface Between Animal, Environmental, and Human Health Research Group, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Jardim Seminário, Campo Grande, Mato Grosso Do Sul, 79117-900, Brazil
| | - Filipe Martins Santos
- Programa de Pós-Graduação Em Ciências Ambientais E Sustentabilidade Agropecuária, Interface Between Animal, Environmental, and Human Health Research Group, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Jardim Seminário, Campo Grande, Mato Grosso Do Sul, 79117-900, Brazil
- LAMP LAB - LAMP Diagnostico LTDA, Av. Tamandaré, 6000, Jardim Seminário, Campo Grande, Mato Grosso Do Sul, 79117-900, Brazil
| |
Collapse
|
4
|
Pinheiro RBP, Felix GMF, Lewinsohn TM. Hierarchical compound topology uncovers complex structure of species interaction networks. J Anim Ecol 2022; 91:2248-2260. [DOI: 10.1111/1365-2656.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Rafael B. P. Pinheiro
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas Campinas SP Brazil
| | - Gabriel M. F. Felix
- Graduate Program in Ecology, Instituto de Biologia, Universidade Estadual de Campinas Campinas SP Brazil
| | - Thomas M. Lewinsohn
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas Campinas SP Brazil
| |
Collapse
|