1
|
Newman Thacker FE, Uyttewaal K, Quiñones T, Leemans R, Hannah B, Stoof CR. In this current wildfire crisis, acknowledge widespread suffering. AMBIO 2025:10.1007/s13280-024-02105-5. [PMID: 39873895 DOI: 10.1007/s13280-024-02105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/12/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
With climate change causing more extreme weather events globally, climate scientists have argued that societies have three options: mitigation, adaptation or suffering. In recent years, devastating wildfires have caused significant suffering, yet the extent of this suffering has not been defined. To encapsulate this suffering, we determined impacts and effects of extreme wildfires through two systematic literature reviews. Six common themes of wildfire suffering emerged: environmental, social, physical, mental, cultural and resource suffering. These themes varied in scale: from local to regional; from individuals to communities; and from ecosystems to landscapes. We then applied these themes in the Las Maquinas (Chile) and Fort McMurray (Canada) wildfires. This highlighted several adaptation strategies that can reduce suffering, however our exploration indicates these strategies must address social and ecological factors. This analysis concludes that suffering from wildfires is diverse and widespread, and that significant engagement with adaptation strategies is needed if this is going to decrease.
Collapse
Affiliation(s)
- Fiona E Newman Thacker
- Soil Physics and Land Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands.
| | - Kathleen Uyttewaal
- Earth Systems and Global Change Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Tomás Quiñones
- Research and Development Department, Technosylva, Parque Tecnológico de León, C/ Nicostrato Vela, Edificio Technosylva, 24009, León, Spain
| | - Rik Leemans
- Earth Systems and Global Change Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Bethany Hannah
- American Wildfire Experience, PO Box 24, Kyburz, CA, 95720, USA
| | - Cathelijne R Stoof
- Soil Physics and Land Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
2
|
Jones GM, Goldberg JF, Wilcox TM, Buckley LB, Parr CL, Linck EB, Fountain ED, Schwartz MK. Fire-driven animal evolution in the Pyrocene. Trends Ecol Evol 2023; 38:1072-1084. [PMID: 37479555 DOI: 10.1016/j.tree.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023]
Abstract
Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa, and linking fire-adapted phenotypes to their underlying genetic basis. A better understanding of evolutionary responses to fire has the potential to positively influence conservation strategies that embrace evolutionary resilience to fire in the Pyrocene.
Collapse
Affiliation(s)
- Gavin M Jones
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 87102, USA.
| | - Joshua F Goldberg
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 87102, USA
| | - Taylor M Wilcox
- National Genomics Center for Fish and Wildlife Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Catherine L Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L3 5TR, UK; Department of Zoology and Entomology, University of Pretoria, Pretoria 0028, South Africa; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Ethan B Linck
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Emily D Fountain
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA
| | - Michael K Schwartz
- National Genomics Center for Fish and Wildlife Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| |
Collapse
|
3
|
Nolan N, Hayward MW, Klop-Toker K, Mahony M, Lemckert F, Callen A. Complex Organisms Must Deal with Complex Threats: How Does Amphibian Conservation Deal with Biphasic Life Cycles? Animals (Basel) 2023; 13:1634. [PMID: 37238064 PMCID: PMC10215276 DOI: 10.3390/ani13101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The unprecedented rate of global amphibian decline is attributed to The Anthropocene, with human actions triggering the Sixth Mass Extinction Event. Amphibians have suffered some of the most extreme declines, and their lack of response to conservation actions may reflect challenges faced by taxa that exhibit biphasic life histories. There is an urgent need to ensure that conservation measures are cost-effective and yield positive outcomes. Many conservation actions have failed to meet their intended goals of bolstering populations to ensure the persistence of species into the future. We suggest that past conservation efforts have not considered how different threats influence multiple life stages of amphibians, potentially leading to suboptimal outcomes for their conservation. Our review highlights the multitude of threats amphibians face at each life stage and the conservation actions used to mitigate these threats. We also draw attention to the paucity of studies that have employed multiple actions across more than one life stage. Conservation programs for biphasic amphibians, and the research that guides them, lack a multi-pronged approach to deal with multiple threats across the lifecycle. Conservation management programs must recognise the changing threat landscape for biphasic amphibians to reduce their notoriety as the most threatened vertebrate taxa globally.
Collapse
Affiliation(s)
- Nadine Nolan
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Matthew W. Hayward
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Kaya Klop-Toker
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Michael Mahony
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| | - Frank Lemckert
- Eco Logical Australia Pty Ltd., Perth, WA 6000, Australia;
| | - Alex Callen
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; (M.W.H.); (K.K.-T.); (M.M.); (A.C.)
| |
Collapse
|
4
|
Heard GW, Bolitho LJ, Newell D, Hines HB, Norman P, Willacy RJ, Scheele BC. Drought, fire, and rainforest endemics: A case study of two threatened frogs impacted by Australia's "Black Summer". Ecol Evol 2023; 13:e10069. [PMID: 37214614 PMCID: PMC10197140 DOI: 10.1002/ece3.10069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Deepening droughts and unprecedented wildfires are at the leading edge of climate change. Such events pose an emerging threat to species maladapted to these perturbations, with the potential for steeper declines than may be inferred from the gradual erosion of their climatic niche. This study focused on two species of amphibians-Philoria kundagungan and Philoria richmondensis (Limnodynastidae)-from the Gondwanan rainforests of eastern Australia that were extensively affected by the "Black Summer" megafires of 2019/2020 and the severe drought associated with them. We sought to assess the impact of these perturbations by quantifying the extent of habitat affected by fire, assessing patterns of occurrence and abundance of calling males post-fire, and comparing post-fire occurrence and abundance with that observed pre-fire. Some 30% of potentially suitable habitat for P. kundagungan was fire affected, and 12% for P. richmondensis. Field surveys revealed persistence in some burnt rainforest; however, both species were detected at a higher proportion of unburnt sites. There was a clear negative effect of fire on the probability of site occupancy, abundance and the probability of persistence for P. kundagungan. For P. richmondensis, effects of fire were less evident due to the limited penetration of fire into core habitat; however, occupancy rates and abundance of calling males were depressed during the severe drought that prevailed just prior to the fires, with the reappearance of calling males linked to the degree of rehydration of breeding habitat post-fire. Our results highlight the possibility that severe negative impacts of climate change for montane rainforest endemics may be felt much sooner than commonly anticipated under a scenario of gradual (decadal-scale) changes in mean climatic conditions. Instead, the increased rate of severe stochastic events places these narrow range species at a heightened risk of extinction in the near-term.
Collapse
Affiliation(s)
- Geoffrey W. Heard
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Terrestrial Ecosystem Research NetworkUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Biodiversity and Conservation ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Liam J. Bolitho
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - David Newell
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Harry B. Hines
- Department of Environment and ScienceQueensland Parks and Wildlife Service and PartnershipsBellbowrieQueenslandAustralia
- Queensland MuseumSouth BrisbaneQueenslandAustralia
| | - Patrick Norman
- Climate Action BeaconGriffith UniversityGold CoastQueenslandAustralia
| | - Rosalie J. Willacy
- Centre for Biodiversity and Conservation ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Ben C. Scheele
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
5
|
Conservation genomics of an endangered arboreal mammal following the 2019-2020 Australian megafire. Sci Rep 2023; 13:480. [PMID: 36627361 PMCID: PMC9831986 DOI: 10.1038/s41598-023-27587-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The impacts of a changing climate threaten species, populations and ecosystems. Despite these significant and large-scale impacts on threatened species, many remain understudied and have little to no genetic information available. The greater glider, Petauroides volans, is an endangered species highly sensitive to the predicted changes in temperature under a changing climate and was recently severely impacted by a megafire natural disaster (85% estimated population loss). Baseline genetic data is essential for conservation management and for detecting detrimental changes in fire-effected populations. We collected genetic samples within 2 years post the 2019-2020 catastrophic Australian bushfires to examine adaptive potential, baseline genetic diversity and population structure, across their southern range in the state of New South Wales. Population genomic analyses were conducted using 8493 genome-wide SNPs for 86 greater glider individuals across 14 geographic locations. Substantial genetic structure was detected across locations, with low genetic diversity and effective population sizes observed in isolated areas. Additionally, we found signals of putative adaptation in response to temperature in greater gliders using a genotype-environment association analysis. These findings have important implications for the management of greater glider populations by identifying at-risk populations and identifying adaptive potential. We demonstrate the importance of baseline genetic information for endangered species as a practical approach to conservation. This is particularly important given the threat that changes in temperatures and megafire events, as predicted under a changing climate, poses for this species.
Collapse
|
6
|
Bosse M, van Loon S. Challenges in quantifying genome erosion for conservation. Front Genet 2022; 13:960958. [PMID: 36226192 PMCID: PMC9549127 DOI: 10.3389/fgene.2022.960958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Massive defaunation and high extinction rates have become characteristic of the Anthropocene. Genetic effects of population decline can lead populations into an extinction vortex, where declining populations show lower genetic fitness, in turn leading to lower populations still. The lower genetic fitness in a declining population due to a shrinking gene pool is known as genetic erosion. Three different types of genetic erosion are highlighted in this review: overall homozygosity, genetic load and runs of homozygosity (ROH), which are indicative of inbreeding. The ability to quantify genetic erosion could be a very helpful tool for conservationists, as it can provide them with an objective, quantifiable measure to use in the assessment of species at risk of extinction. The link between conservation status and genetic erosion should become more apparent. Currently, no clear correlation can be observed between the current conservation status and genetic erosion. However, the high quantities of genetic erosion in wild populations, especially in those species dealing with habitat fragmentation and habitat decline, may be early signs of deteriorating populations. Whole genome sequencing data is the way forward to quantify genetic erosion. Extra screening steps for genetic load and hybridization can be included, since they could potentially have great impact on population fitness. This way, the information yielded from genetic sequence data can provide conservationists with an objective genetic method in the assessment of species at risk of extinction. However, the great complexity of genome erosion quantification asks for consensus and bridging science and its applications, which remains challenging.
Collapse
Affiliation(s)
- Mirte Bosse
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Sam van Loon
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Jensen EL, Leigh DM. Using temporal genomics to understand contemporary climate change responses in wildlife. Ecol Evol 2022; 12:e9340. [PMID: 36177124 PMCID: PMC9481866 DOI: 10.1002/ece3.9340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/02/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Monitoring the evolutionary responses of species to ongoing global climate change is critical for informing conservation. Population genomic studies that use samples from multiple time points ("temporal genomics") are uniquely able to make direct observations of change over time. Consequently, only temporal studies can show genetic erosion or spatiotemporal changes in population structure. Temporal genomic studies directly examining climate change effects are currently rare but will likely increase in the coming years due to their high conservation value. Here, we highlight four key genetic indicators that can be monitored using temporal genomics to understand how species are responding to climate change. All indicators crucially rely on having a suitable baseline that accurately represents the past condition of the population, and we discuss aspects of study design that must be considered to achieve this.
Collapse
Affiliation(s)
- Evelyn L. Jensen
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle Upon TyneUK
| | | |
Collapse
|
8
|
A decade of genetic monitoring reveals increased inbreeding for the Endangered western leopard toad, Sclerophrys pantherina. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Hohwieler KR, Villiers DL, Cristescu RH, Frere CH. Genetic erosion detected in a specialist mammal living in a fast‐developing environment. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Katrin R. Hohwieler
- Global Change Ecology Research Group University of the Sunshine Coast, School of Science, Technology and Engineering Sippy Down Queensland Australia
| | | | - Romane H. Cristescu
- Global Change Ecology Research Group University of the Sunshine Coast, School of Science, Technology and Engineering Sippy Down Queensland Australia
| | - Celine H. Frere
- School of Biological Sciences University of Queensland St Lucia QLD Australia
| |
Collapse
|
10
|
Beranek CT, Sanders S, Clulow J, Mahony M. Factors influencing persistence of a threatened amphibian in restored wetlands despite severe population decline during climate change driven weather extremes. BIODIVERSITY AND CONSERVATION 2022; 31:1267-1287. [PMID: 35261489 PMCID: PMC8893051 DOI: 10.1007/s10531-022-02387-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Biodiversity is in global decline during the Anthropocene. Declines have been caused by multiple factors, such as habitat removal, invasive species, and disease, which are often targets for conservation management. However, conservation interventions are under threat from climate change induced weather extremes. Weather extremes are becoming more frequent and devastating and an example of this was the 2019/2020 Australian drought and mega-fires. We provide a case study the impacts of these extreme weather events had on a population of the threatened frog Litoria aurea that occurs in a constructed habitat which was designed to reduce the impact of introduced fish and chytrid-induced disease. We aimed to determine what factors influenced persistence so that the design of wetlands can be further optimised to future-proof threatened amphibians. We achieved this with 4 years (2016-2020) of intensive capture-recapture surveys during austral spring and summer across nine wetlands (n = 94 repeat surveys). As hypothesized, drought caused a sharp reduction in population size, but persistence was achieved. The most parsimonious predictor of survival was an interaction between maximum air temperature and rainfall, indicating that weather extremes likely caused the decline. Survival was positively correlated with wetland vegetation coverage, positing this is an important feature to target to enhance resilience in wetland restoration programs. Additionally, the benefits obtained from measures to reduce chytrid prevalence were not compromised during drought, as there was a positive correlation between salinity and survival. We emphasize that many species may not be able to persist under worse extreme weather scenarios. Despite the potential for habitat augmentation to buffer effects of extreme weather, global action on climate change is needed to reduce extinction risk. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10531-022-02387-9.
Collapse
Affiliation(s)
- Chad T. Beranek
- Conservation Science Research Group, School of Environmental and life Sciences, Biology Building, University of Newcastle, University Drive, 2308 Callaghan, NSW Australia
- FAUNA Research Alliance, PO Box 5092, 2290 Kahibah, NSW Australia
| | - Samantha Sanders
- Conservation Science Research Group, School of Environmental and life Sciences, Biology Building, University of Newcastle, University Drive, 2308 Callaghan, NSW Australia
| | - John Clulow
- Conservation Science Research Group, School of Environmental and life Sciences, Biology Building, University of Newcastle, University Drive, 2308 Callaghan, NSW Australia
- FAUNA Research Alliance, PO Box 5092, 2290 Kahibah, NSW Australia
| | - Michael Mahony
- Conservation Science Research Group, School of Environmental and life Sciences, Biology Building, University of Newcastle, University Drive, 2308 Callaghan, NSW Australia
| |
Collapse
|
11
|
Dorey JB, Rebola CM, Davies OK, Prendergast KS, Parslow BA, Hogendoorn K, Leijs R, Hearn LR, Leitch EJ, O'Reilly RL, Marsh J, Woinarski JCZ, Caddy-Retalic S. Continental risk assessment for understudied taxa post-catastrophic wildfire indicates severe impacts on the Australian bee fauna. GLOBAL CHANGE BIOLOGY 2021; 27:6551-6567. [PMID: 34592040 DOI: 10.1111/gcb.15879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The 2019-2020 Australian Black Summer wildfires demonstrated that single events can have widespread and catastrophic impacts on biodiversity, causing a sudden and marked reduction in population size for many species. In such circumstances, there is a need for conservation managers to respond rapidly to implement priority remedial management actions for the most-affected species to help prevent extinctions. To date, priority responses have been biased towards high-profile taxa with substantial information bases. Here, we demonstrate that sufficient data are available to model the extinction risk for many less well-known species, which could inform much broader and more effective ecological disaster responses. Using publicly available collection and GIS datasets, combined with life-history data, we modelled the extinction risk from the 2019-2020 catastrophic Australian wildfires for 553 Australian native bee species (33% of all described Australian bee taxa). We suggest that two species are now eligible for listing as Endangered and nine are eligible for listing as Vulnerable under IUCN criteria, on the basis of fire overlap, intensity, frequency, and life-history traits: this tally far exceeds the three Australian bee species listed as threatened prior to the wildfire. We demonstrate how to undertake a wide-scale assessment of wildfire impact on a poorly understood group to help to focus surveys and recovery efforts. We also provide the methods and the script required to make similar assessments for other taxa or in other regions.
Collapse
Affiliation(s)
- James B Dorey
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Earth and Biological Sciences, South Australian Museum, Adelaide, SA, Australia
| | - Celina M Rebola
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Olivia K Davies
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Kit S Prendergast
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Ben A Parslow
- Earth and Biological Sciences, South Australian Museum, Adelaide, SA, Australia
| | - Katja Hogendoorn
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Remko Leijs
- Earth and Biological Sciences, South Australian Museum, Adelaide, SA, Australia
| | - Lucas R Hearn
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Emrys J Leitch
- School of Biological Sciences and Environment Institute, University of Adelaide, North Terrace, SA, Australia
| | - Robert L O'Reilly
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jessica Marsh
- Earth and Biological Sciences, South Australian Museum, Adelaide, SA, Australia
- Harry Butler Research Institute, Murdoch University, Murdoch, WA, Australia
| | - John C Z Woinarski
- National Environmental Science Program Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Vic., Australia
| | - Stefan Caddy-Retalic
- School of Biological Sciences and Environment Institute, University of Adelaide, North Terrace, SA, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Foster E, Watson J, Lemay MA, Tinker MT, Estes JA, Piercey R, Henson L, Ritland C, Miscampbell A, Nichol L, Hessing-Lewis M, Salomon AK, Darimont CT. Physical disturbance by recovering sea otter populations increases eelgrass genetic diversity. Science 2021; 374:333-336. [PMID: 34648338 DOI: 10.1126/science.abf2343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Erin Foster
- Hakai Institute, Heriot Bay, BC V0P 1H0, Canada.,Department of Geography, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jane Watson
- Department of Biology, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| | | | - M Tim Tinker
- Nhydra Ecological Consulting, St. Margaret's Bay, NS B3Z 2G6, Canada.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - James A Estes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | | | - Lauren Henson
- Department of Geography, University of Victoria, Victoria, BC V8W 2Y2, Canada.,Raincoast Conservation Foundation, Bella Bella, BC V0T 1Z0, Canada
| | - Carol Ritland
- Genetic Data Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Allyson Miscampbell
- Genetic Data Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Linda Nichol
- Cetacean Research Program, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | | | - Anne K Salomon
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Chris T Darimont
- Hakai Institute, Heriot Bay, BC V0P 1H0, Canada.,Department of Geography, University of Victoria, Victoria, BC V8W 2Y2, Canada.,Raincoast Conservation Foundation, Bella Bella, BC V0T 1Z0, Canada
| |
Collapse
|
13
|
Driscoll DA, Armenteras D, Bennett AF, Brotons L, Clarke MF, Doherty TS, Haslem A, Kelly LT, Sato CF, Sitters H, Aquilué N, Bell K, Chadid M, Duane A, Meza-Elizalde MC, Giljohann KM, González TM, Jambhekar R, Lazzari J, Morán-Ordóñez A, Wevill T. How fire interacts with habitat loss and fragmentation. Biol Rev Camb Philos Soc 2021; 96:976-998. [PMID: 33561321 DOI: 10.1111/brv.12687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Biodiversity faces many threats and these can interact to produce outcomes that may not be predicted by considering their effects in isolation. Habitat loss and fragmentation (hereafter 'fragmentation') and altered fire regimes are important threats to biodiversity, but their interactions have not been systematically evaluated across the globe. In this comprehensive synthesis, including 162 papers which provided 274 cases, we offer a framework for understanding how fire interacts with fragmentation. Fire and fragmentation interact in three main ways: (i) fire influences fragmentation (59% of 274 cases), where fire either destroys and fragments habitat or creates and connects habitat; (ii) fragmentation influences fire (25% of cases) where, after habitat is reduced in area and fragmented, fire in the landscape is subsequently altered because people suppress or ignite fires, or there is increased edge flammability or increased obstruction to fire spread; and (iii) where the two do not influence each other, but fire interacts with fragmentation to affect responses like species richness, abundance and extinction risk (16% of cases). Where fire and fragmentation do influence each other, feedback loops are possible that can lead to ecosystem conversion (e.g. forest to grassland). This is a well-documented threat in the tropics but with potential also to be important elsewhere. Fire interacts with fragmentation through scale-specific mechanisms: fire creates edges and drives edge effects; fire alters patch quality; and fire alters landscape-scale connectivity. We found only 12 cases in which studies reported the four essential strata for testing a full interaction, which were fragmented and unfragmented landscapes that both span contrasting fire histories, such as recently burnt and long unburnt vegetation. Simulation and empirical studies show that fire and fragmentation can interact synergistically, multiplicatively, antagonistically or additively. These cases highlight a key reason why understanding interactions is so important: when fire and fragmentation act together they can cause local extinctions, even when their separate effects are neutral. Whether fire-fragmentation interactions benefit or disadvantage species is often determined by the species' preferred successional stage. Adding fire to landscapes generally benefits early-successional plant and animal species, whereas it is detrimental to late-successional species. However, when fire interacts with fragmentation, the direction of effect of fire on a species could be reversed from the effect expected by successional preferences. Adding fire to fragmented landscapes can be detrimental for species that would normally co-exist with fire, because species may no longer be able to disperse to their preferred successional stage. Further, animals may be attracted to particular successional stages leading to unexpected responses to fragmentation, such as higher abundance in more isolated unburnt patches. Growing human populations and increasing resource consumption suggest that fragmentation trends will worsen over coming years. Combined with increasing alteration of fire regimes due to climate change and human-caused ignitions, interactions of fire with fragmentation are likely to become more common. Our new framework paves the way for developing a better understanding of how fire interacts with fragmentation, and for conserving biodiversity in the face of these emerging challenges.
Collapse
Affiliation(s)
- Don A Driscoll
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Dolors Armenteras
- Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Edificio 421, Oficina 223, Cra. 30 # 45-03, Bogotá, 111321, Colombia
| | - Andrew F Bennett
- Research Centre for Future Landscapes, Department Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lluís Brotons
- InForest JRU (CTFC-CREAF), Carretera vella de Sant Llorenç de Morunys km. 2, Solsona, 25280, Spain.,CREAF, Bellaterra, Barcelona, 08193, Spain.,CSIC, Bellaterra, Barcelona, 08193, Spain
| | - Michael F Clarke
- Research Centre for Future Landscapes, Department Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Tim S Doherty
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Angie Haslem
- Research Centre for Future Landscapes, Department Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Luke T Kelly
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chloe F Sato
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Holly Sitters
- School of Ecosystem and Forest Sciences, University of Melbourne, 4 Water Street, Creswick, VIC, 3363, Australia
| | - Núria Aquilué
- InForest JRU (CTFC-CREAF), Carretera vella de Sant Llorenç de Morunys km. 2, Solsona, 25280, Spain
| | - Kristian Bell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Maria Chadid
- Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Edificio 421, Oficina 223, Cra. 30 # 45-03, Bogotá, 111321, Colombia
| | - Andrea Duane
- InForest JRU (CTFC-CREAF), Carretera vella de Sant Llorenç de Morunys km. 2, Solsona, 25280, Spain
| | - María C Meza-Elizalde
- Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Edificio 421, Oficina 223, Cra. 30 # 45-03, Bogotá, 111321, Colombia
| | | | - Tania Marisol González
- Laboratorio de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Edificio 421, Oficina 223, Cra. 30 # 45-03, Bogotá, 111321, Colombia
| | - Ravi Jambhekar
- Azim Premji University, PES Campus, Pixel Park, B Block, Hosur Road, beside NICE Road, Electronic City, Bengaluru, Karnataka, 560100, India
| | - Juliana Lazzari
- Fenner School of Environment and Society, Australian National University, Building 141, Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Alejandra Morán-Ordóñez
- InForest JRU (CTFC-CREAF), Carretera vella de Sant Llorenç de Morunys km. 2, Solsona, 25280, Spain
| | - Tricia Wevill
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
14
|
Density Dependence and Adult Survival Drive Dynamics in Two High Elevation Amphibian Populations. DIVERSITY 2020. [DOI: 10.3390/d12120478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amphibian conservation has progressed from the identification of declines to mitigation, but efforts are hampered by the lack of nuanced information about the effects of environmental characteristics and stressors on mechanistic processes of population regulation. Challenges include a paucity of long-term data and scant information about the relative roles of extrinsic (e.g., weather) and intrinsic (e.g., density dependence) factors. We used a Bayesian formulation of an open population capture-recapture model and >30 years of data to examine intrinsic and extrinsic factors regulating two adult boreal chorus frogs (Pseudacris maculata) populations. We modelled population growth rate and apparent survival directly, assessed their temporal variability, and derived estimates of recruitment. Populations were relatively stable (geometric mean population growth rate >1) and regulated by negative density dependence (i.e., higher population sizes reduced population growth rate). In the smaller population, density dependence also acted on adult survival. In the larger population, higher population growth was associated with warmer autumns. Survival estimates ranged from 0.30–0.87, per-capita recruitment was <1 in most years, and mean seniority probability was >0.50, suggesting adult survival is more important to population growth than recruitment. Our analysis indicates density dependence is a primary driver of population dynamics for P. maculata adults.
Collapse
|
15
|
McGregor DC, Padovan A, Georges A, Krockenberger A, Yoon HJ, Youngentob KN. Genetic evidence supports three previously described species of greater glider, Petauroides volans, P. minor, and P. armillatus. Sci Rep 2020; 10:19284. [PMID: 33159131 PMCID: PMC7648813 DOI: 10.1038/s41598-020-76364-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022] Open
Abstract
The identification and classification of species are essential for effective conservation management. This year, Australia experienced a bushfire season of unprecedented severity, resulting in widespread habitat loss and mortality. As a result, there has been an increased focus on understanding genetic diversity and structure across the range of individual species to protect resilience in the face of climate change. The greater glider (Petauroides volans) is a large, gliding eucalypt folivore. This nocturnal arboreal marsupial has a wide distribution across eastern Australia and is considered the sole extant member of the genus Petauroides. Differences in morphology have led to suggestions that the one accepted species is actually three. This would have substantial impacts on conservation management, particularly given a recent history of declining populations, coupled with extensive wildfires. Until now, genetic evidence to support multiple species has been lacking. For the first time, we used DArT sequencing on greater glider tissue samples from multiple regions and found evidence of three operational taxonomic units (OTUs) representing northern, central and southern groups. The three OTUs were also supported by our morphological data. These findings have important implications for greater glider management and highlight the role of genetics in helping to assess conservation status.
Collapse
Affiliation(s)
- Denise C McGregor
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| | - Amanda Padovan
- CSIRO Black Mountain Science and Innovation Park, Canberra, ACT, 2601, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Andrew Krockenberger
- Division of Research and Innovation, James Cook University, Cairns, QLD, 4878, Australia
| | - Hwan-Jin Yoon
- Statistical Consulting Unit, Australian National University, Canberra, ACT, 2601, Australia
| | - Kara N Youngentob
- Research School of Biology, Australian National University, Robertson Building, 46 Sullivan's Creek Road, Canberra, ACT, 2601, Australia.
| |
Collapse
|
16
|
Rowley JJL, Callaghan CT, Cornwell WK. Widespread short‐term persistence of frog species after the 2019–2020 bushfires in eastern Australia revealed by citizen science. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jodi J. L. Rowley
- Australian Museum Research Institute; Australian Museum Sydney New South Wales Australia
- Centre for Ecosystem Science; School of Biological, Earth and Environmental Sciences, UNSW Sydney Sydney New South Wales Australia
| | - Corey T. Callaghan
- Centre for Ecosystem Science; School of Biological, Earth and Environmental Sciences, UNSW Sydney Sydney New South Wales Australia
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney Sydney New South Wales Australia
| | - William K. Cornwell
- Centre for Ecosystem Science; School of Biological, Earth and Environmental Sciences, UNSW Sydney Sydney New South Wales Australia
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
17
|
Blanchet S, Prunier JG, Paz‐Vinas I, Saint‐Pé K, Rey O, Raffard A, Mathieu‐Bégné E, Loot G, Fourtune L, Dubut V. A river runs through it: The causes, consequences, and management of intraspecific diversity in river networks. Evol Appl 2020; 13:1195-1213. [PMID: 32684955 PMCID: PMC7359825 DOI: 10.1111/eva.12941] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
Rivers are fascinating ecosystems in which the eco-evolutionary dynamics of organisms are constrained by particular features, and biologists have developed a wealth of knowledge about freshwater biodiversity patterns. Over the last 10 years, our group used a holistic approach to contribute to this knowledge by focusing on the causes and consequences of intraspecific diversity in rivers. We conducted empirical works on temperate permanent rivers from southern France, and we broadened the scope of our findings using experiments, meta-analyses, and simulations. We demonstrated that intraspecific (genetic) diversity follows a spatial pattern (downstream increase in diversity) that is repeatable across taxa (from plants to vertebrates) and river systems. This pattern can result from interactive processes that we teased apart using appropriate simulation approaches. We further experimentally showed that intraspecific diversity matters for the functioning of river ecosystems. It indeed affects not only community dynamics, but also key ecosystem functions such as litter degradation. This means that losing intraspecific diversity in rivers can yield major ecological effects. Our work on the impact of multiple human stressors on intraspecific diversity revealed that-in the studied river systems-stocking of domestic (fish) strains strongly and consistently alters natural spatial patterns of diversity. It also highlighted the need for specific analytical tools to tease apart spurious from actual relationships in the wild. Finally, we developed original conservation strategies at the basin scale based on the systematic conservation planning framework that appeared pertinent for preserving intraspecific diversity in rivers. We identified several important research avenues that should further facilitate our understanding of patterns of local adaptation in rivers, the identification of processes sustaining intraspecific biodiversity-ecosystem function relationships, and the setting of reliable conservation plans.
Collapse
Affiliation(s)
- Simon Blanchet
- Centre National pour la Recherche ScientifiqueStation d'Écologie Théorique et Expérimentale du CNRS à MoulisUniversité Toulouse III Paul SabatierUMR‐5321MoulisFrance
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
| | - Jérôme G. Prunier
- Centre National pour la Recherche ScientifiqueStation d'Écologie Théorique et Expérimentale du CNRS à MoulisUniversité Toulouse III Paul SabatierUMR‐5321MoulisFrance
| | - Ivan Paz‐Vinas
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
- Laboratoire Ecologie Fonctionnelle et EnvironnementUniversité de ToulouseUPSCNRSINPUMR‐5245 ECOLABToulouseFrance
| | - Keoni Saint‐Pé
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
| | - Olivier Rey
- IHPEUniv. MontpellierCNRSIfremerUniv. Perpignan Via DomitiaPerpignanFrance
| | - Allan Raffard
- Centre National pour la Recherche ScientifiqueStation d'Écologie Théorique et Expérimentale du CNRS à MoulisUniversité Toulouse III Paul SabatierUMR‐5321MoulisFrance
| | - Eglantine Mathieu‐Bégné
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
- IHPEUniv. MontpellierCNRSIfremerUniv. Perpignan Via DomitiaPerpignanFrance
| | - Géraldine Loot
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
| | - Lisa Fourtune
- Centre National pour la Recherche ScientifiqueLaboratoire Evolution & Diversité BiologiqueInstitut de Recherche pour le DéveloppementUniversité Toulouse III Paul SabatierUMR‐5174 EDBToulouseFrance
- PEIRENEEA 7500Université de LimogesLimogesFrance
| | - Vincent Dubut
- Aix Marseille UniversitéCNRSIRDAvignon UniversitéIMBEMarseilleFrance
| |
Collapse
|
18
|
Sitters H, Di Stefano J. Integrating functional connectivity and fire management for better conservation outcomes. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:550-560. [PMID: 31777984 DOI: 10.1111/cobi.13446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Globally, the mean abundance of terrestrial animals has fallen by 50% since 1970, and populations face ongoing threats associated with habitat loss, fragmentation, climate change, and disturbance. Climate change can influence the quality of remaining habitat directly and indirectly by precipitating increases in the extent, frequency, and severity of natural disturbances, such as fire. Species face the combined threats of habitat clearance, changing climates, and altered disturbance regimes, each of which may interact and have cascading impacts on animal populations. Typically, conservation agencies are limited in their capacity to mitigate rates of habitat clearance, habitat fragmentation, or climate change, yet fire management is increasingly used worldwide to reduce wildfire risk and achieve conservation outcomes. A popular approach to ecological fire management involves the creation of fire mosaics to promote animal diversity. However, this strategy has 2 fundamental limitations: the effect of fire on animal movement within or among habitat patches is not considered and the implications of the current fire regime for long-term population persistence are overlooked. Spatial and temporal patterns in fire history can influence animal movement, which is essential to the survival of individual animals, maintenance of genetic diversity, and persistence of populations, species, and ecosystems. We argue that there is rich potential for fire managers to manipulate animal movement patterns; enhance functional connectivity, gene flow, and genetic diversity; and increase the capacity of populations to persist under shifting environmental conditions. Recent methodological advances, such as spatiotemporal connectivity modeling, spatially explicit individual-based simulation, and fire-regime modeling can be integrated to achieve better outcomes for biodiversity in human-modified, fire-prone landscapes. Article impact statement: Land managers may conserve populations by using fire to sustain or enhance functional connectivity.
Collapse
Affiliation(s)
- Holly Sitters
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, 3363, Australia
| | - Julian Di Stefano
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, 3363, Australia
| |
Collapse
|
19
|
Gurgel CFD, Camacho O, Minne AJP, Wernberg T, Coleman MA. Marine Heatwave Drives Cryptic Loss of Genetic Diversity in Underwater Forests. Curr Biol 2020; 30:1199-1206.e2. [PMID: 32109397 DOI: 10.1016/j.cub.2020.01.051] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 11/19/2022]
Abstract
Extreme events have profound ecological impacts on species and ecosystems, including range contractions and collapse of entire ecosystems. Although theory predicts that extreme events cause loss of genetic diversity, empirical demonstrations are rare, obscuring implications for future adaptive capacity of species and populations. Here, we use rare genetic data from before an extreme event to empirically demonstrate massive and cryptic loss of genetic diversity across ∼800 km of underwater forests following the most severe marine heatwave on record. Two forest-forming seaweeds (Sargassum fallax and Scytothalia dorycarpa) lost ∼30%-65% of average genetic diversity within the 800-km footprint of the heatwave and up to 100% of diversity at some sites. Populations became dominated by single haplotypes that were often not dominant or present prior to the heatwave. Strikingly, these impacts were cryptic and not reflected in measures of forest cover used to determine ecological impact of the heatwave. Our results show that marine heatwaves can drive strong loss of genetic diversity, which may compromise adaptability to future climatic change.
Collapse
Affiliation(s)
- Carlos Frederico Deluqui Gurgel
- Centro de Ciências Biológicas, Departamento de Botânica, Laboratório de Ficologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 99040-900, Brazil; State Herbarium of South Australia, Department for Environment and Natural Resources, SA State Government, GPO Box 1047, Adelaide, SA 5001, Australia.
| | - Olga Camacho
- Centro de Ciências Biológicas, Departamento de Botânica, Laboratório de Ficologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 99040-900, Brazil
| | - Antoine J P Minne
- Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; New South Wales Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
| | - Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Melinda A Coleman
- Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; New South Wales Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia; Southern Cross University, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia.
| |
Collapse
|
20
|
Starns HD, Fuhlendorf SD, Elmore RD, Twidwell D, Thacker ET, Hovick TJ, Luttbeg B. Recoupling fire and grazing reduces wildland fuel loads on rangelands. Ecosphere 2019. [DOI: 10.1002/ecs2.2578] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Heath D. Starns
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma 74078 USA
| | - Samuel D. Fuhlendorf
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma 74078 USA
| | - R. Dwayne Elmore
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma 74078 USA
| | - Dirac Twidwell
- Department of Agronomy and Horticulture University of Nebraska‐Lincoln Lincoln Nebraska 68583 USA
| | - Eric T. Thacker
- S.J. and Jessie E. Quinney College of Natural Resources Utah State University Logan Utah 84341 USA
| | - Torre J. Hovick
- School of Natural Resource Sciences North Dakota State University Fargo North Dakota 58108 USA
| | - Barney Luttbeg
- Department of Integrative Biology Oklahoma State University Stillwater Oklahoma 74078 USA
| |
Collapse
|
21
|
Mathieu-Bégné E, Loot G, Chevalier M, Paz-Vinas I, Blanchet S. Demographic and genetic collapses in spatially structured populations: insights from a long-term survey in wild fish metapopulations. OIKOS 2018. [DOI: 10.1111/oik.05511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eglantine Mathieu-Bégné
- Centre National de la Recherche Scientifique (CNRS), Univ. Paul Sabatier (UPS), Inst. de Recherche pour le Développement (IRD), Ecole Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA); UMR5174, Evolution et Diversité Biologique, 118 route de Narbonne; FR-31062 Toulouse France
| | - Géraldine Loot
- Centre National de la Recherche Scientifique (CNRS), Univ. Paul Sabatier (UPS), Inst. de Recherche pour le Développement (IRD), Ecole Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA); UMR5174, Evolution et Diversité Biologique, 118 route de Narbonne; FR-31062 Toulouse France
- Inst. Universitaire de France; Paris France
| | - Mathieu Chevalier
- Centre National de la Recherche Scientifique (CNRS), Univ. Paul Sabatier (UPS), Inst. de Recherche pour le Développement (IRD), Ecole Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA); UMR5174, Evolution et Diversité Biologique, 118 route de Narbonne; FR-31062 Toulouse France
| | - Ivan Paz-Vinas
- Univ. de Lyon, Ecole Nationale des Travaux Publics de l'Etat (ENTPE), CNRS; UMR5023, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés; Villeurbanne France
- UPS, INP, CNRS, Univ. de Toulouse, UMR 5245 Laboratoire Écologie Fonctionnelle et Environnement; Ecolab Toulouse France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Univ. Paul Sabatier (UPS), Inst. de Recherche pour le Développement (IRD), Ecole Nationale Supérieure de Formation de l'Enseignement Agricole (ENSFEA); UMR5174, Evolution et Diversité Biologique, 118 route de Narbonne; FR-31062 Toulouse France
- CNRS, UPS; UMR5321, Station d'Ecologie Théorique et Expérimentale; Moulis France
| |
Collapse
|
22
|
Robertson JM, Fitzpatrick SW, Rothermel BB, Chan LM. Fire Does Not Strongly Affect Genetic Diversity or Structure of a Common Treefrog in the Endangered Florida Scrub. J Hered 2017; 109:243-252. [DOI: 10.1093/jhered/esx088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/06/2017] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jeanne M Robertson
- Department of Biology, California State University, Northridge, Northridge, CA
| | - Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI
| | | | - Lauren M Chan
- Department of Biology, Pacific University, Forest Grove, OR
| |
Collapse
|
23
|
da Silva JM, Tolley KA. Conservation genetics of an endemic and threatened amphibian (Capensibufo rosei): a leap towards establishing a genetic monitoring framework. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1008-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|