1
|
Hernández-Rivera Á, Dáttilo W, Montoya B, Villegas-Patraca R, González-Tokman D. Effects of urbanization on orchid bee diversity and orchid pollination: From neotropical cloud forests to urban cores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176553. [PMID: 39353495 DOI: 10.1016/j.scitotenv.2024.176553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Urbanization is a significant driver of land use change, profoundly impacting biodiversity and ecosystem services worldwide. However, its effects in the tropics, which host some of the planet's highest biodiversity, remain inadequately understood. Orchid bees (Apidae: Euglossini) are key pollinators in Neotropical ecosystems, playing crucial roles in maintaining floral diversity and reproductive success of orchids and other plant families. Yet, little is known about how urbanization influences their diversity and pollination. In this study, we analyzed the diversity and composition or orchid bee communities along an urbanization gradient which extends from the city center to the surrounding cloud forests, which bear high orchid endemism while being highly threatened. Along the same gradient, we further evaluated pollination of a model native orchid, Gongora galeata, which is exclusively pollinated by the bee Euglossa obrima. As expected, increasing urbanization led to a decrease in orchid bee diversity, as well as a clear separation in species composition between urban and non-urban sites and a reduction in G. galeata pollination (i.e. fruit production). However, contrary to our expectations, orchid pollination also decreased with environmental heterogeneity and the abundance of its specific pollinator. Despite urban areas still hosting orchid bee species, our results reveal clear negative effects of urbanization not only on diversity, but also on the ecosystem function of a highly threatened group of bees. This study highlights the importance of considering local factors of urban landscapes for preserving not only biodiversity, but also fundamental ecological processes in cities.
Collapse
Affiliation(s)
- Álvaro Hernández-Rivera
- Red de Ecoetología, Instituto de Ecología A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa, Veracruz 91073, Mexico
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa, Veracruz 91073, Mexico
| | - Bibiana Montoya
- Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Mexico
| | - Rafael Villegas-Patraca
- Unidad de Servicios Profesionales Altamente Especializados, Instituto de Ecología, A.C., Xalapa, Veracruz 91073, Mexico
| | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
2
|
Martínez-Núñez C, Casanelles Abella J, Frey D, Zanetta A, Moretti M. Local and landscape factors shape alpha and beta trophic interaction diversity in urban gardens. Proc Biol Sci 2024; 291:20232501. [PMID: 38772421 DOI: 10.1098/rspb.2023.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Promoting urban green spaces is an effective strategy to increase biodiversity in cities. However, our understanding of how local and landscape factors influence trophic interactions in these urban contexts remains limited. Here, we sampled cavity-nesting bees and wasps and their natural enemies within 85 urban gardens in Zurich (Switzerland) to identify factors associated with the diversity and dissimilarity of antagonistic interactions in these communities. The proportions of built-up area and urban green area at small landscape scales (50 m radius), as well as the management intensity, sun exposure, plant richness and proportion of agricultural land at the landscape scale (250 m radius), were key drivers of interaction diversity. This increased interaction diversity resulted not only from the higher richness of host and natural enemy species, but also from species participating in more interactions. Furthermore, dissimilarity in community structure and interactions across gardens (beta-diversity) were primarily influenced by differences in built-up areas and urban green areas at the landscape scale, as well as by management intensity. Our study offers crucial insights for urban planning and conservation strategies, supporting sustainability goals by helping to understand the factors that shape insect communities and their trophic interactions in urban gardens.
Collapse
Affiliation(s)
- Carlos Martínez-Núñez
- Department of Ecology and Evolution, Estación Biológica de Doñana EBD (CSIC), Calle Avenida Américo Vespucio, 26 , Sevilla 41092, Spain
| | - Joan Casanelles Abella
- Swiss Federal Institute of Aquatic Science and Technology EAWAG, Ueberlandstrasse 133 , Dübendorf, Switzerland
- Urban Productive Ecosystems, TUM School of Life Sciences, Hans Carl-von-Carlowitz-Platz 2 , Feising 85354, Germany
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111 , Birmensdorf 8903, Switzerland
| | - David Frey
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111 , Birmensdorf 8903, Switzerland
| | - Andrea Zanetta
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111 , Birmensdorf 8903, Switzerland
| | - Marco Moretti
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111 , Birmensdorf 8903, Switzerland
| |
Collapse
|
3
|
Ferrari A, Tacconi G, Polidori C. Subtle morphological changes in the visual and antennal sensory system of bees and wasps across an urbanisation gradient. Sci Rep 2024; 14:8960. [PMID: 38637599 PMCID: PMC11026482 DOI: 10.1038/s41598-024-58804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Increased temperature and fragmentation of green spaces in urban areas could drive variations in functional traits of insects. Such morphological shifts may occur for sensory systems, which were previously reported to be prone to change with habitat characteristics in non-urban contexts. Here, we measured traits related to the visual and antennal sensory systems in the bees Halictus scabiosae and Osmia cornuta and the wasp Polistes dominula along an urbanisation gradient within Milan (Italy). We hypothesised that fragmentation could filter for better visual properties, and that higher temperature could filter for fewer thermoreceptors and more olfactory hairs. While controlling for body size, results show subtle but appreciable responses to urbanisation in one or more traits in all species, though not always supporting our hypotheses. O. cornuta shows marginally higher ommatidia density and smaller ommatidia diameter (associated with better visual resolution) in more fragmented sites, as well as marginally fewer thermoreceptors in hotter sites, in agreement with our two predictions. On the other hand, H. scabiosae has marginally smaller antennae and P. dominula has smaller eyes at warmer locations, and the wasp also has smaller antennae and 9th flagellomeres in more fragmented areas. Perhaps higher temperatures accelerate development of sensory system at higher speed than the rest of body in these two species. Our results represent the first evidence of urbanisation effects on the visual and antennal sensory systems of bees and wasps and underline how such effects may involve a much broader bouquet of traits then previously observed.
Collapse
Affiliation(s)
- Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 26, 20133, Milan, Italy.
| | - Greta Tacconi
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
4
|
Pioltelli E, Guzzetti L, Larbi MO, Celano R, Piccinelli AL, Galimberti A, Biella P, Labra M. Land use influences the nutrient concentration and composition of pollen and nectar rewards of wildflowers in human-dominated landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168130. [PMID: 37907100 DOI: 10.1016/j.scitotenv.2023.168130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Plant biodiversity is crucial to satisfy the trophic needs of pollinators, mainly through nectar and pollen rewards. However, a few studies have been directed to ascertain the intraspecific variation of chemical features and the nutritional value of nectar and pollen floral rewards in relation to the alteration of landscapes due to human activities. In this study, by using an existing scenario of land use gradients as an open air laboratory, we tested the variation in pollen and nectar nutrient profiles along gradients of urbanization and agriculture intensity, by focusing on sugar, aminoacids of nectar and phytochemicals of pollen from local wild plants. We also highlighted bioactive compounds from plants primary and secondary metabolism due to their importance for insect wellbeing and pollinator health. We surveyed 7 different meadow species foraged by pollinators and common in the main land uses studied. The results indicated that significant variations of nutritional components occur in relation to different land uses, and specifically that the agricultural intensification decreases the sugars and increases the antioxidant content of flower rewards, while the urbanization is positively associated with the total flavonoid content in pollen. These effects are more evident in some species than in others, such as Lotus corniculatus L. (Fabaceae) and Malva sylvestris L. (Malvaceae), as shown by the untargeted metabolomic investigation. This study is crucial for understanding the nutritional landscape quality for pollinators in association to different land uses and sets a base for landscape management and planning of pollinator-friendly strategies by improving the quality of plant rewards to provide benefits to pollinator health in various environmental contexts.
Collapse
Affiliation(s)
- Emiliano Pioltelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Lorenzo Guzzetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Malika Ouled Larbi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Rita Celano
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Salerno, Italy
| | - Anna Lisa Piccinelli
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Salerno, Italy
| | - Andrea Galimberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
5
|
Bergamo PJ, Rito KF, Viana BF, Garcia E, Lughadha EN, Maués MM, Rech AR, Silva FD, Varassin IG, Agostini K, Marques MC, Maruyama PK, Ravena N, Garibaldi LA, Knight TM, Oliveira PEM, Oppata AK, Saraiva AM, Tambosi LR, Tsukahara RY, Freitas L, Wolowski M. Integrating public engagement to intensify pollination services through ecological restoration. iScience 2023; 26:107276. [PMID: 37559905 PMCID: PMC10407755 DOI: 10.1016/j.isci.2023.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Globally, human activities impose threats to nature and the provision of ecosystem services, such as pollination. In this context, ecological restoration provides opportunities to create managed landscapes that maximize biodiversity conservation and sustainable agriculture, e.g., via provision of pollination services. Managing pollination services and restoration opportunities requires the engagement of distinct stakeholders embedded in diverse social institutions. Nevertheless, frameworks toward sustainable agriculture often overlook how stakeholders interact and access power in social arenas. We present a perspective integrating pollination services, ecological restoration, and public engagement for biodiversity conservation and agricultural production. We highlight the importance of a comprehensive assessment of pollination services, restoration opportunities identification, and a public engagement strategy anchored in institutional analysis of the social arenas involved in restoration efforts. Our perspective can therefore guide the implementation of practices from local to country scales to enhance biodiversity conservation and sustainable agriculture.
Collapse
Affiliation(s)
- Pedro J. Bergamo
- Rio de Janeiro Botanical Garden, Rio de Janeiro 22460-030, Brazil
| | - Kátia F. Rito
- Rio de Janeiro Botanical Garden, Rio de Janeiro 22460-030, Brazil
| | - Blandina F. Viana
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution, Institute of Biology, Federal University of Bahia, Salvador 40170-210, Brazil
| | - Edenise Garcia
- Instituto de Conservação Ambiental the Nature Conservancy Brasil, São Paulo 01311-936, Brazil
| | - Eimear Nic Lughadha
- Conservation Science Department, Royal Botanic Gardens, Kew, Richmond TW9 9AE, UK
| | - Márcia M. Maués
- Laboratory of Entomology, Embrapa Eastern Amazon, Belém 66095-903, Brazil
| | - André R. Rech
- Centre of Advanced Studies on Functioning of Ecological Systems and Interactions (CAFESIN-MULTIFLOR), Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina 39100-000, Brazil
| | | | - Isabela G. Varassin
- Laboratório de Interações e Biologia Reprodutiva, Federal University of Paraná, Curitiba 81531-980, Brazil
| | - Kayna Agostini
- Department of Natural Science, Mathematics and Education, Federal University of São Carlos, Araras 13600-970, Brazil
| | | | - Pietro K. Maruyama
- Centre for Ecological Synthesis and Conservation, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Nirvia Ravena
- Centre of Amazonian Studies, Federal University of Pará, de Altos Estudos Amazônicos, Belém 66075-110, Brazil
| | - Lucas A. Garibaldi
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Universidad Nacional de Río Negro, San Carlos de Bariloche 8400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones em Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche 8400, Argentina
| | - Tiffany M. Knight
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig 04103 Germany
- Community Ecology Department, Helmholtz Centre for Environmental Research, UFZ, Halle 06120, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle 06099, Germany
| | | | | | - Antônio M. Saraiva
- Polythecnic School, University of São Paulo, São Paulo 05508-010, Brazil
| | | | | | - Leandro Freitas
- Rio de Janeiro Botanical Garden, Rio de Janeiro 22460-030, Brazil
| | - Marina Wolowski
- Institute of Natural Sciences, Federal University of Alfenas, Alfenas 37130-001, Brazil
| |
Collapse
|
6
|
Tommasi N, Colombo B, Pioltelli E, Biella P, Casiraghi M, Galimberti A. Urban habitat fragmentation and floral resources shape the occurrence of gut parasites in two bumblebee species. Ecol Evol 2023; 13:e10299. [PMID: 37456076 PMCID: PMC10338672 DOI: 10.1002/ece3.10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Urbanization and the expansion of human activities foster radical ecosystem changes with cascading effects also involving host-pathogen interactions. Urban pollinator insects face several stressors related to landscape and local scale features such as green habitat loss, fragmentation and availability reduction of floral resources with unpredictable effects on parasite transmission. Furthermore, beekeeping may contribute to the spread of parasites to wild pollinators by increasing the number of parasite hosts. Here we used DNA-based diagnostics tools to evaluate how the occurrence of parasites, namely microsporidians (Nosema spp.), trypanosomatids (Crithidia spp.) and neogregarines (Apicystis bombi), is shaped by the above-mentioned stressors in two bumblebee species (i.e. Bombus terrestris and Bombus pascuorum). Infection rates of the two species were different and generally higher in B. terrestris. Moreover, they showed different responses towards the same ecological variables, possibly due to differences in body size and foraging habits supposed to affect their susceptibility to parasite infection. The probability of infection was found to be reduced in B. pascuorum by green habitat fragmentation, while increased along with floral resource availability. Unexpectedly, B. terrestris had a lower parasite richness nearby apiaries maybe due to the fact that parasites are prone to be transmitted among the most abundant species. Our finding supports the need to design proper conservation measures based on species-specific knowledge, as suggested by the variation in the parasite occurrence of the two species. Moreover, conservation policies aiming at safeguarding pollinators through flower planting should consider the indirect effects of these measures for parasite transmission together with pollinator biodiversity issues.
Collapse
Affiliation(s)
- Nicola Tommasi
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Beatrice Colombo
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Emiliano Pioltelli
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Paolo Biella
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Maurizio Casiraghi
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Andrea Galimberti
- ZooplantLab, Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| |
Collapse
|
7
|
Chatelain M, Rüdisser J, Traugott M. Urban-driven decrease in arthropod richness and diversity associated with group-specific changes in arthropod abundance. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.980387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Habitat loss and fragmentation caused by land-use changes in urbanised landscapes are main drivers of biodiversity loss and changes in species assemblages. While the effects of urbanisation on arthropods has received increasing attention in the last decade, most of the studies were taxon-specific, limited in time and/or covering only part of the habitats along the rural-urban gradient. To comprehensively assess the effects of urbanisation on arthropod communities, here, we sampled arthropods at 180 sites within an urban mosaic in the city of Innsbruck (Austria) using a systematic grid. At each site, arthropods were collected in three micro-habitats: the canopy, the bush layer and tree bark. They were identified to the family, infra-order or order level, depending on the taxonomic group. Urbanisation level was estimated by five different proxies extracted from land use/land cover data (e.g., impervious surface cover), all of them calculated in a 100, 500, and 1,000 m radius around the sampling points, and three indexes based on distance to settlements. We tested for the effects of different levels of urbanisation on (i) overall arthropod abundance, richness and diversity and (ii) community composition using redundancy analyses. In the canopy and the bush layer, arthropod richness and diversity decreased with increasing urbanisation level, suggesting that urbanisation acts as a filter on taxonomic groups. Our data on arthropod abundance further support this hypothesis and suggest that urbanisation disfavours wingless groups, particularly so on trees. Indeed, urbanisation was correlated to lower abundances of spiders and springtails, but higher abundances of aphids, barklice and flies. Arthropod community composition was better explained by a set of urbanisation proxies, especially impervious surface cover measured in a 100, 500, and 1,000 m radius. Arthropods are key elements of food webs and their availability in urban environments is expected to have bottom-up effects, thus shaping foraging behaviour, distribution, and/or success of species at higher trophic levels. Studying ecological networks in urban ecosystems is the next step that will allow to understand how urbanisation alters biodiversity.
Collapse
|
8
|
Biella P, Tommasi N, Guzzetti L, Pioltelli E, Labra M, Galimberti A. City climate and landscape structure shape pollinators, nectar and transported pollen along a gradient of urbanization. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Paolo Biella
- ZooPlantLab, Department of Biotechnology and Biosciences University of Milano‐Bicocca Milan Italy
| | - Nicola Tommasi
- ZooPlantLab, Department of Biotechnology and Biosciences University of Milano‐Bicocca Milan Italy
- Istituto Nazionale di Fisica Nucleare ‐ Sez. Milano Bicocca Milan Italy
| | - Lorenzo Guzzetti
- ZooPlantLab, Department of Biotechnology and Biosciences University of Milano‐Bicocca Milan Italy
| | - Emiliano Pioltelli
- ZooPlantLab, Department of Biotechnology and Biosciences University of Milano‐Bicocca Milan Italy
| | - Massimo Labra
- ZooPlantLab, Department of Biotechnology and Biosciences University of Milano‐Bicocca Milan Italy
- Istituto Nazionale di Fisica Nucleare ‐ Sez. Milano Bicocca Milan Italy
| | - Andrea Galimberti
- ZooPlantLab, Department of Biotechnology and Biosciences University of Milano‐Bicocca Milan Italy
- Istituto Nazionale di Fisica Nucleare ‐ Sez. Milano Bicocca Milan Italy
| |
Collapse
|