1
|
Hassan MH, Saadeldin AA, Alsagheer G, Desoky T, Hasan AS. Biochemical and Pharmacological Assessments of Tramadol Abuse on Human Male Fertility: Relation to Seminal Plasma 8-Hydroxyguanosine and Zinc. Indian J Clin Biochem 2024; 39:489-505. [PMID: 39346718 PMCID: PMC11436548 DOI: 10.1007/s12291-023-01141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/09/2023] [Indexed: 10/01/2024]
Abstract
Tramadol is a pain killing drug highly used worldwide. There is a knowledge gap for fertility consequences of analgesic addiction in men. In this observational study, we investigated the hazards of tramadol abuse on human male reproductive function. A total of 30 tramadol addicts and 30 healthy controls have participated in the study. History and clinical examination of the included subjects were performed. Biochemical and molecular assays were measured in all participants include serum reproductive hormones (calculated free testosterone, FSH, LH, prolactin and estradiol) using ELISA techniques, semen analysis, seminal plasma zinc and selenium assays using colorimetric kits, seminal plasma tramadol concentrations using Gas Chromatography-Mass Spectrometry (GC-MS), and seminal plasma 8-hydroxyguanosine (8-OHG) using high performance liquid chromatography were measured. Tramadol abuse significantly decreased semen parameters quality. Additionally, tramadol abuse significantly decreased testosterone (P = 0.001) and increased prolactin serum levels (P = 0.000). Tramadol abusers showed significantly higher levels of 8-OHG (P < 0.0001) with significantly lower levels of zinc and selenium in their seminal plasma compared with the controls (P < 0.0001, and 0.0002 respectively). Also, tramadol addicts displayed positive correlations between seminal plasma levels of 8-OHG (r = 0.905, P = 0.00) and sperm abnormal forms (r = 0.610, P = 0.000) with seminal plasma tramadol levels. Seminal plasma levels of zinc (r = - 0.815, P = 0.00), sperm motility (r = - 0.484, P = 0.007), and vitality (r = - 0.430, P = 0.018) were negatively correlated with seminal plasma levels of tramadol. Our data suggest that tramadol abuse may impair male fertility by increasing oxidative damage of sperms and reducing testosterone and the antioxidants trace elements in testicular tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-023-01141-4.
Collapse
Affiliation(s)
- Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, 83523 Egypt
| | - Aya A Saadeldin
- Department of Medical Pharmacology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Gamal Alsagheer
- Department of Urology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Tarek Desoky
- Department of Neuropsychiatry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Al Shaimaa Hasan
- Department of Medical Pharmacology, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
2
|
Ajayi AF, Ogundipe OO, Hamed MA, Oluwole DT. Skoochies and its component substances induced testicular damage and impaired sperm function via increased generation of reactive oxygen species and impairment of the glutathione system in rats. F&S SCIENCE 2024:S2666-335X(24)00040-5. [PMID: 39004305 DOI: 10.1016/j.xfss.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE To examine the effect of skoochies, an illicit cocktail drink, on testicular and sperm function in male rats. DESIGN Twenty-five adult male Wistar rats were assigned randomly into five groups (n = 5) as follows: normal saline; skoochies; Cannabis sativa; codeine; and tramadol. The cocktail (skoochies) used in this study was formulated with the following composition: codeine (5 mg/kg); tramadol (20 mg/kg); and cannabis extract (2 mg/kg). These doses are as previously reported. Administration was performed once daily for 28 days. SETTING University. ANIMAL(S) Twenty-five (25) male Wistar rats. INTERVENTION(S) Skoochies, tramadol, Codeiene, Cannabis. MAIN OUTCOME MEASURE(S) Skoochies and its components induced testicular and sperm damage via increased generation of reactive oxygen species and impairment of glutathione system in rats. RESULT(S) Skoochies increased reactive oxygen species generation and impaired the antioxidant system resulting in inflammation that eventually damaged the testicular tissue. Skoochies caused oxidoinflammatory injury to this tissue, leading to impaired testicular function. This was evident by the distorted cytoarchitecture, reduced sperm count and motility, and impaired testicular deoxyribonucleic acid integrity. CONCLUSION(S) Thus, our results infer that skoochies impaired the testicular and sperm function through the increased generation of reactive oxygen species and impairment of the glutathione system.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Adeleke University, Ede, Oyo State, Nigeria; Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | | | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria; Research Unit, The Brainwill Laboratory, Osogbo, Oyo State, Nigeria
| | - David Tolulope Oluwole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Crescent University, Abeokuta, Oyo State, Nigeria.
| |
Collapse
|
3
|
Bhattacharya I, Sharma SS, Majumdar SS. Etiology of Male Infertility: an Update. Reprod Sci 2024; 31:942-965. [PMID: 38036863 DOI: 10.1007/s43032-023-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Spermatogenesis is a complex process of germ cell division and differentiation that involves extensive cross-talk between the developing germ cells and the somatic testicular cells. Defective endocrine signaling and/or intrinsic defects within the testes can adversely affect spermatogenic progression, leading to subfertility/infertility. In recent years, male infertility has been recognized as a global public health concern, and research over the last few decades has elucidated the complex etiology of male infertility. Congenital reproductive abnormalities, genetic mutations, and endocrine/metabolic dysfunction have been demonstrated to be involved in infertility/subfertility in males. Furthermore, acquired factors like exposure to environmental toxicants and lifestyle-related disorders such as illicit use of psychoactive drugs have been shown to adversely affect spermatogenesis. Despite the large body of available scientific literature on the etiology of male infertility, a substantial proportion of infertility cases are idiopathic in nature, with no known cause. The inability to treat such idiopathic cases stems from poor knowledge about the complex regulation of spermatogenesis. Emerging scientific evidence indicates that defective functioning of testicular Sertoli cells (Sc) may be an underlying cause of infertility/subfertility in males. Sc plays an indispensable role in regulating spermatogenesis, and impaired functional maturation of Sc has been shown to affect fertility in animal models as well as humans, suggesting abnormal Sc as a potential underlying cause of reproductive insufficiency/failure in such cases of unexplained infertility. This review summarizes the major causes of infertility/subfertility in males, with an emphasis on infertility due to dysregulated Sc function.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, Central University of Kerala, Periye Campus, Kasaragod, 671320, Kerala, India.
| | - Souvik Sen Sharma
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India.
- Gujarat Biotechnology University, Gandhinagar, GIFT City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
4
|
Zhuang Y, Liu W, Chen F, Xie M, Zhang H, Huang Z, Zhang X, Liu J, Ma K, Feng H, Ruan S, He J, Zhang W, Zou F, Kang X, Fan Y, Zhang G, Chen Z. Nitric oxide-induced lipophagic defects contribute to testosterone deficiency in rats with spinal cord injury. Front Endocrinol (Lausanne) 2024; 15:1360499. [PMID: 38455652 PMCID: PMC10918589 DOI: 10.3389/fendo.2024.1360499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Males with acute spinal cord injury (SCI) frequently exhibit testosterone deficiency and reproductive dysfunction. While such incidence rates are high in chronic patients, the underlying mechanisms remain elusive. Methods and results Herein, we generated a rat SCI model, which recapitulated complications in human males, including low testosterone levels and spermatogenic disorders. Proteomics analyses showed that the differentially expressed proteins were mostly enriched in lipid metabolism and steroid metabolism and biosynthesis. In SCI rats, we observed that testicular nitric oxide (NO) levels were elevated and lipid droplet-autophagosome co-localization in testicular interstitial cells was decreased. We hypothesized that NO impaired lipophagy in Leydig cells (LCs) to disrupt testosterone biosynthesis and spermatogenesis. As postulated, exogenous NO donor (S-nitroso-N-acetylpenicillamine (SNAP)) treatment markedly raised NO levels and disturbed lipophagy via the AMPK/mTOR/ULK1 pathway, and ultimately impaired testosterone production in mouse LCs. However, such alterations were not fully observed when cells were treated with an endogenous NO donor (L-arginine), suggesting that mouse LCs were devoid of an endogenous NO-production system. Alternatively, activated (M1) macrophages were predominant NO sources, as inducible NO synthase inhibition attenuated lipophagic defects and testosterone insufficiency in LCs in a macrophage-LC co-culture system. In scavenging NO (2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO)) we effectively restored lipophagy and testosterone levels both in vitro and in vivo, and importantly, spermatogenesis in vivo. Autophagy activation by LYN-1604 also promoted lipid degradation and testosterone synthesis. Discussion In summary, we showed that NO-disrupted-lipophagy caused testosterone deficiency following SCI, and NO clearance or autophagy activation could be effective in preventing reproductive dysfunction in males with SCI.
Collapse
Affiliation(s)
- Yuge Zhuang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenyuan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Feilong Chen
- Department of Pathology, Panyu Maternal and Child Care Service Centre of Guangzhou, Guangzhou, Guangdong, China
| | - Minyu Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hanbin Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zicong Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyuan Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinsheng Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Ma
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongrui Feng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shipeng Ruan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wansong Zhang
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Feng Zou
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guofei Zhang
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Zhenguo Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Lv Y, Dong Y, Su M, Lin H, Zhu Q, Li H. Morphine compromises androgen biosynthesis by immature Leydig cells from pubertal rat testes in vitro. Toxicol Res (Camb) 2024; 13:tfae001. [PMID: 38283823 PMCID: PMC10811522 DOI: 10.1093/toxres/tfae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/18/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024] Open
Abstract
Morphine is an analgesic in the opiate family, isolated from many plants. It can inhibit androgen biosynthesis by Leydig cells. Whether morphine directly inhibits androgen biosynthesis and underlying mechanism remains unclear. To investigate the influence of morphine on androgen secretion by rat immature Leydig cells (ILCs) and possible mechanism. Rat ILCs were treated with 0.5-50 μM morphine for 3 h in vitro. Morphine at ≥0.5 μM significantly reduced total androgen secretion. Morphine at 50 μM also compromised luteinizing hormone (LH, 10 mg/kg), 8Br-cAMP (1 mM), and 22R-hydroxycholesterol (20 μM) stimulated total androgen, androstanediol, and testosterone secretion, without affecting pregnenolone, progesterone, androstenedione mediated androgen secretion and testosterone and dihydrotestosterone mediated androstanediol secretion. Further analysis revealed that morphine at ≥0.5 μM downregulated Star expression and at ≥5 μM downregulated Cyp11a1 expression. Morphine also significantly reduced STAR (≥0.5 μM) and reduced CYP11A1 (≥5 μM) levels. 0.5 μM naloxone significantly antagonized morphine-mediated action. In conclusion, morphine might cause side effects by suppressing androgen biosynthesis via u opioid receptor.
Collapse
Affiliation(s)
- Yao Lv
- Department of Pharmacy, Ningbo Medical Center Lihuili Hospital, Zhejiang, Ningbo 315100, China
| | - Yaoyao Dong
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
| | - Hang Lin
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
| | - Qiqi Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou 325000, China
| |
Collapse
|
6
|
Ekpono EU, Eze ED, Adam AM, Ibiam UA, Obasi OU, Ifie JE, Ekpono EU, Alum EU, Noreen S, Awuchi CG, Aja PM. Ameliorative Potential of Pumpkin Seed Oil ( Cucurbita pepo L.) Against Tramadol-Induced Oxidative Stress. Dose Response 2024; 22:15593258241226913. [PMID: 38234695 PMCID: PMC10793191 DOI: 10.1177/15593258241226913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Background of the Study The increase in the therapeutic use of tramadol in the management of moderate to severe pains in some disease conditions and its unregulated access has led to its associated toxicity and there is little or no information on the protection against its associated toxicity. Aim of the Study Considering the medicinal value of pumpkin seed oil, its availability, and neglected use, it becomes necessary to evaluate the possible potential of the seed oil in tramadol-induced oxidative stress in Wister Albino rats. Methods of the Study This study used fifty-six (56) albino rats to determine the impact of Cucurbita pepo seed oil (CPSO) on tramadol-induced oxidative stress. The rats were grouped into 7. After a week of acclimatization, rats in group 1 (normal control) had access to water and food, while rats in group 2 received 5 mL/Kg (b.w) of normal saline. 100 mg/kg of tramadol (TM) was delivered to groups 3-6 to induce toxicity. The third group (TM control) received no treatment, whilst the other 3 groups (TM-CPSO treatment groups) received 5, 2.5, and 1.5 mL/Kg of CPSO, respectively. Group 7 received only 5 mL/kg CPSO (CPSO group). Similarly, groups 2 through 7 had unrestricted access to food and water for 42 days and received treatments via oral intubation once per day. Indicators of oxidative stress were discovered in the brain homogenate. Results TM toxicity was demonstrated by a considerable increase (P < .05) in the brain MDA level and a significant drop (P < .05) in the brain GSH level, as well as a significant reduction (P < .05) in GPx, catalase, SOD, GST, and quinone reductase activities. Conclusion The dose-dependent delivery of CPSO was able to restore not only the activity but also the concentrations of the altered markers.
Collapse
Affiliation(s)
- Ezebuilo U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Science Laboratory Technology, Federal Polytechnique, Oko, Nigeria
| | - Ejike D. Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Afodun M Adam
- Department of Medical Imaging Science, School of Health Sciences, University of Rwanda, Rwanda
| | - Udu A. Ibiam
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Orji U. Obasi
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Josiah E. Ifie
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| | - Ejike U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Esther U. Alum
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Research Publication and Extensions, Kampala International University, Kampala, Uganda
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, University of Lahore, Lahore, Pakistan
| | - Chinaza G. Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| | - Patrick M. Aja
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| |
Collapse
|
7
|
Mehranpour M, Moghaddam MH, Abdollahifar MA, Salehi M, Aliaghaei A. Tramadol induces apoptosis, inflammation, and oxidative stress in rat choroid plexus. Metab Brain Dis 2023; 38:2679-2690. [PMID: 37831362 DOI: 10.1007/s11011-023-01307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The choroid plexus (CP) is the principal source of cerebrospinal fluid (CSF). It can produce and release a wide range of materials, including growth and neurotrophic factors which have a crucial role in the maintenance and proper functioning of the brain. Tramadol is a synthetic analog of codeine, mainly prescribed to alleviate mild to moderate pains. Nevertheless, it causes several side effects, such as emotional instability and anxiety. METHODS In this study, we focused on alterations in the expression of inflammatory and apoptotic genes in the CP under chronic tramadol exposure. Herein, rats were treated daily with tramadol at 50 mg/kg doses for three weeks. CSF samples were collected, with superoxide dismutase (SOD) and glutathione (GSH) measured in the CSF. RESULTS We found that tramadol reduced the SOD and GSH levels in the CSF. Furthermore, the stereological analysis revealed a significant increase in the CP volume, epithelial cells, and capillary number upon tramadol administration. Tramadol elevated the number of blob mitochondria in CP. Also, we observed the upregulation of inflammatory and apoptosis genes following tramadol administration in the CP. CONCLUSIONS Our findings indicate that tramadol induces neurotoxicity in the CP via apoptosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Maryam Mehranpour
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Salehi
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ghorab D, Abu-El-Rub EM, Gharaibeh MH, Khasawneh RR, Almazari RA, Al-Emam A, Helaly AM. The toxic profile of tramadol combined with nicotine on the liver and testicles: evidence from endoplasmic reticulum stress. Mol Biol Rep 2023; 50:9887-9895. [PMID: 37864661 DOI: 10.1007/s11033-023-08903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Tramadol is one of the most commonly abused substances in the Middle East. Furthermore, smoking is extremely common among the population. METHODS An experimental study was performed on Sprague-Dawley rats to explore the effects of both nicotine and tramadol on the liver and testes. The tramadol was administered at 10 and 20 mg/kg, respectively, while the nicotine was administered at 125 mg/kg. Histological examination and androgen receptor ELISA assay showed mild effects on the liver and proofed safety on the testis. Western blot analysis of BIP (immunoglobulin heavy-chain binding protein) and CHOP (CCAAT-enhancer-binding protein homologous protein) revealed that fewer problems were induced by adding nicotine to tramadol. Autophagy marker LCIII and apoptosis marker caspase-8 showed similar effects to CHOP and BIP on liver samples. The real-time PCR of BIP expression showed similar but not identical results. CONCLUSIONS The results showed mild endoplasmic reticulum stress, autophagy, and apoptosis in the liver samples. Histological examination revealed stable spermatogenesis with average androgen receptor blood levels in the different groups.
Collapse
Affiliation(s)
- Doaa Ghorab
- Basic Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ejlal M Abu-El-Rub
- Basic Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamed Hamdi Gharaibeh
- Basic Veterinary Department, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, Jordan
| | - Ramada R Khasawneh
- Basic Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Rawan A Almazari
- Basic Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ahmed Al-Emam
- Pathology Department, Medical School, King Khaled University, Abha, Kingdom of Saudi Arabia
- Forensic and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Mohamed Helaly
- Clinical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan.
- Forensic and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
9
|
Hamed MA, Ekundina VO, Akhigbe RE. Psychoactive drugs and male fertility: impacts and mechanisms. Reprod Biol Endocrinol 2023; 21:69. [PMID: 37507788 PMCID: PMC10375764 DOI: 10.1186/s12958-023-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/03/2023] [Indexed: 07/30/2023] Open
Abstract
Although psychoactive drugs have their therapeutic values, they have been implicated in the pathogenesis of male infertility. This study highlights psychoactive drugs reported to impair male fertility, their impacts, and associated mechanisms. Published data from scholarly peer-reviewed journals were used for the present study. Papers were assessed through AJOL, DOAJ, Google Scholar, PubMed/PubMed Central, and Scopus using Medical Subjects Heading (MeSH) indexes and relevant keywords. Psychoactive drugs negatively affect male reproductive functions, including sexual urge, androgen synthesis, spermatogenesis, and sperm quality. These drugs directly induce testicular toxicity by promoting ROS-dependent testicular and sperm oxidative damage, inflammation, and apoptosis, and they also suppress the hypothalamic-pituitary-testicular axis. This results in the suppression of circulating androgen, impaired spermatogenesis, and reduced sperm quality. In conclusion, psychoactive drug abuse not only harms male sexual and erectile function as well as testicular functions, viz., testosterone concentration, spermatogenesis, and sperm quality, but it also alters testicular histoarchitecture through a cascade of events via multiple pathways. Therefore, offering adequate and effective measures against psychoactive drug-induced male infertility remains pertinent.
Collapse
Affiliation(s)
- Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| | | | - Roland Eghoghosoa Akhigbe
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
10
|
Rizwan A, Ijaz MU, Hamza A, Anwar H. Attenuative effect of astilbin on polystyrene microplastics induced testicular damage: Biochemical, spermatological and histopathological-based evidences. Toxicol Appl Pharmacol 2023; 471:116559. [PMID: 37217007 DOI: 10.1016/j.taap.2023.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Polystyrene microplastics (PS-MPs) are the potential environmental pollutants that possess the ability to induce testicular damage. Astilbin (ASB) is a dihydroflavonol, abundantly reported in multiple plants that has various pharmacological properties. This research elucidated the mitigative potential of ASB against PS-MPs-instigated testicular toxicity. 48 adult male rats (200 ± 10 g) were distributed into 4 groups (n = 12): control, PS-MPs received (0.01 mg/kg), PS-MPs + ASB received (0.01 mg/kg + 20 mg/kg) and ASB supplemented group (20 mg/kg). After 56th day of the trial, animals were sacrificed and testes were harvested for the estimation of biochemical, hormonal, spermatogenic, steroidogenic, apoptotic and histological profiles. PS-MPs intoxication significantly (P < 0.05) lowered glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione reductase (GSR) as well as catalase (CAT) activities, whereas elevated MDA as well as ROS levels. Besides, the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), nuclear factor kappa-B (NF-κB) along with cyclooxygenase-2 (COX-2) activity were raised. PS-MPs treatment reduced luteinizing hormone (LH), plasma testosterone and follicle-stimulating hormone (FSH) level besides decreased epididymal sperm number, viability, motility as well as the count of HOS coil-tailed spermatozoa and increased sperm morphological irregularities. PS-MPs exposure lowered steroidogenic enzymes (17β-HSD, 3β-HSD and StAR protein along with Bcl-2 expression, besides increasing Caspase-3 and Bax expressions and histopathological alterations in testicular tissues. However, ASB treatment significantly reversed PS-MPs mediated damage. In conclusion, ASB administration is protective against PS-MPs-instigated testicular damage owing to its anti-inflammatory, anti-apoptotic, antioxidant and androgenic nature.
Collapse
Affiliation(s)
- Arooj Rizwan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
11
|
Coimbra JLP, Dantas GDPF, de Andrade LM, Brener MRG, Viana PIM, Lopes RA, O G Gontijo D, Ervilha LOG, Assis MQ, Barcelos LS, E Szawka R, Damasceno DC, Machado-Neves M, Mota AP, Costa GMJ. Gold nanoparticle intratesticular injections as a potential animal sterilization tool: Long-term reproductive and toxicological implications. Toxicology 2023; 492:153543. [PMID: 37150288 DOI: 10.1016/j.tox.2023.153543] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
This study aimed to evaluate the gold nanoparticles (AuNPs) animal sterilizing potential after intratesticular injections and long-term adverse reproductive and systemic effects. Adult male Wistar rats were divided into control and gold nanoparticle (AuNPs) groups. The rats received 200µL of saline or AuNPs solution (16µg/mL) on experimental days 1 and 7 (ED1 and ED7). After 150 days, the testicular blood flow was measured, and the rats were mated with females. After mating, male animals were euthanized for histological, cellular, and molecular evaluations. The female fertility indices and fetal development were also recorded. The results indicated increased blood flow in the testes of treated animals. Testes from treated rats had histological abnormalities, shorter seminiferous epithelia, and oxidative stress. Although the sperm concentration was lower in the AuNP-treated rats, there were no alterations in sperm morphology. Animals exposed to AuNPs had decreased male fertility indices, and their offspring had lighter and less efficient placentas. Additionally, the anogenital distance was longer in female fetuses. There were no changes in the histology of the kidney and liver, the lipid profile, and the serum levels of LH, testosterone, AST, ALT, ALP, albumin, and creatinine. The primary systemic effect was an increase in MDA levels in the liver and kidney, with only the liver experiencing an increase in CAT activity. In conclusion, AuNPs have a long-term impact on reproduction with very slight alterations in animal health. The development of reproductive biotechnologies that eliminate germ cells or treat local cancers can benefit from using AuNPs.
Collapse
Affiliation(s)
- John L P Coimbra
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Graziela de P F Dantas
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lídia M de Andrade
- Laboratory of Nanomaterials, ICEX/UFMG, Nanobiomedical Research Group, Belo Horizonte, MG, Brazil
| | - Marcos R G Brener
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro I M Viana
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberta A Lopes
- Laboratory of Endocrinology and Metabolism, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniele O G Gontijo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz O G Ervilha
- Laboratory of Animal Reproduction and Toxicology, Department of General Biology, Viçosa, MG, Brazil
| | - Mirian Q Assis
- Laboratory of Animal Reproduction and Toxicology, Department of General Biology, Viçosa, MG, Brazil
| | - Luciola S Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Laboratory of Endocrinology and Metabolism, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Débora C Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course of Tocogynecology, Botucatu Medical School, Unesp
| | - Mariana Machado-Neves
- Laboratory of Animal Reproduction and Toxicology, Department of General Biology, Viçosa, MG, Brazil
| | - Ana P Mota
- Clinical Hematology Laboratory, Faculty of Pharmacy, Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
Anwar MM, Laila IMI. Protective and restorative potency of diosmin natural flavonoid compound against tramadol-induced testicular damage and infertility in male rats. Nat Prod Res 2023; 37:847-851. [PMID: 35730634 DOI: 10.1080/14786419.2022.2090937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Flavonoids are polyphenolic natural compounds with various biological actions and limited toxicity including diosmin (DM) which is considered a safe flavonoid natural type with anti-inflammatory and antioxidant activities. Tramadol (TM) is a centrally long-acting analgesic class of opioids extensively being used among the population. It was reported that long-term exposure to TM triggers the releases of oxidative stress, inflammatory factors, and nitric oxides resulting in organs damage. This study aimed to investigate the possible ameliorative and restorative actions of DM against tramadol-induced testicular damage. Rats were divided into: GI: control; GII: Rats received TM, GIII: Rats received DM, GIV: Rats received TM + DM; GV: Rats received DM + TM. Rat's testicular tissue and blood samples were collected. A relevant improvement in all examined parameters was observed among GIV and GV groups. Thereby, it was highlighted that diosmin has beneficial natural actions against tramadol-induced testicular injury via suppressing triggered oxidative stress, and inflammatory factors.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Ibrahim M Ibrahim Laila
- Department of Biotechnology & Molecular Drug Evaluation, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
13
|
Fayaz F, Zarban A, Aschner M, Aramjoo H, Roshanravan B, Foadodini M, Abderam A, Samarghandian S, Farkhondeh T. Buprenorphine administration during gestation induces hepatotoxicity in the rat fetus. Can J Physiol Pharmacol 2023; 101:74-79. [PMID: 36621961 DOI: 10.1139/cjpp-2022-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study investigated the effect of buprenorphine (BUP) on the livers of pups exposed to this drug during the fetal stage. BUP decreased the activities of serum liver enzymes in exposed animals versus the controls. BUP (0.5 mg/kg) decreased malondialdehyde levels and increased the glutathione levels in the liver of animals versus other groups. The superoxide dismutase activity was elevated in the BUP 0.5 mg/kg group versus the control group. BUP (1 mg/kg) induced histopathological changes in the livers of pups. In conclusion, BUP may induce hepatotoxicity in pups exposed to this drug during the fetal stage.
Collapse
Affiliation(s)
- Farshid Fayaz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, 9717853577, Iran
| | - Asghar Zarban
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, 9717853577, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences, Birjand, 9717853577, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, 9717853577, Iran
| | - Mohsen Foadodini
- Department of Physiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, 9717853577, Iran
| | - Amir Abderam
- Student Research Committee, Birjand University of Medical Sciences, Birjand, 9717853577, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, 9717853577, Iran
| |
Collapse
|
14
|
Elghait ATA, Mostafa TM, Gameaa FK, Mohammed GK, Meligy FY, Sayed MM. Comparative Histological Study on the Effect of Tramadol Abuse on the Testis of Juvenile and Adult Male Albino Mice. Anat Cell Biol 2022; 55:341-355. [PMID: 36008129 PMCID: PMC9519760 DOI: 10.5115/acb.22.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
As a synthetic analog of codeine, tramadol is often prescribed to treat mild to moderate pains. This study was designed to estimate and compare the histological effect of tramadol on testes of both juvenile and adult male albino mice. A total number of 40 healthy male albino mice were classified into two main groups as follows: group I (juvenile group, includes 20 mice aged three weeks) subdivided equally into group Ia (control group received isotonic saline) and group Ib (tramadol-treated group received 40 mg/kg/d tramadol orally for 30 days); group II (adult group, includes 20 mice aged two months) subdivided equally into group IIa (control group received isotonic saline) and group IIb (tramadol-treated group). Juvenile and adult tramadol-treated groups showed numerous testicular changes, including blood vessels congestion, widening of intercellular spaces, vacuolization in interstitial tissues, luminal germ cells exfoliation, and increased expression of caspase-3 that indicated cellular apoptosis. In the ultrastructural examination, spermatogenic cells degenerated with the frequent appearance of apoptotic cells. Sertoli cells showed vacuolations, large lipid droplets, and disrupted intercellular cell junctions. These observed testicular changes were markedly observed in the juvenile group. Testicular abnormalities and apoptotic changes can be caused by tramadol administration. These abnormalities are more common in juvenile mice.
Collapse
Affiliation(s)
- Amal T. Abou Elghait
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Histology and Cell Biology, Sphinx University, New Assiut City, Assiut, Egypt
| | - Tarek. M. Mostafa
- Department of Anatomy and Embriology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma K. Gameaa
- Department of Histology and Cell Biology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Gamal K. Mohammed
- Department of Histology and Cell Biology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Fatma Y. Meligy
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M. Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Exercise training amplifies SIRT1/Nrf2/antioxidant/testosterone pathway after long-time tramadol toxicity in rat testicles; insights into miR-126-3p and miR-181a induced roles. Biomed Pharmacother 2022; 153:113332. [DOI: 10.1016/j.biopha.2022.113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
|
16
|
Sheweita SA, El-Dafrawi YA, El-Ghalid OA, Ghoneim AA, Wahid A. Antioxidants (selenium and garlic) alleviated the adverse effects of tramadol on the reproductive system and oxidative stress markers in male rabbits. Sci Rep 2022; 12:13958. [PMID: 35978015 PMCID: PMC9385640 DOI: 10.1038/s41598-022-16862-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Tramadol has been used by millions of patients as an analgesic drug to relief the severe pain caused by cancers and other diseases. The current study aimed to investigate the protective effects of antioxidants (garlic and selenium) against the toxic effects of tramadol on semen characteristics, steroid hormones, the protein expressions of different cytochrome P450 isozymes [CYP 21A2, CYP 19, and 11A1], and on antioxidant enzyme activities in testes of rabbits. Western immunoblotting, spectrophotometric, and histological methods were used in this study. Tramadol (1.5 mg/kg body weight) was administered orally to male rabbits for up to three months (three times/week), and after pretreatment of rabbits with garlic (800 mg/kg) and/or selenium (1 mg/kg body weight) by 2 h. The present study showed that motilities, semen volumes, morphologies, sperm counts, testosterone, and estrogen levels were significantly decreased after 4, 8, and 12 weeks of tramadol treatment. In addition, the protein expressions of CYP 21A2, CYP 19, and 11A1 were down-regulated in the testes of the tramadol-treated rabbits. On the other hand, pretreatment of rabbits with garlic, selenium, and/or garlic-selenium for 2 h before administration of tramadol restored the downregulated CYP 21A2 and 11A1 to their normal levels after 12 weeks of tramadol treatment. Activities of antioxidant enzymes including glutathione reductase, glutathione peroxidase, glutathione S-transferase, catalase, superoxide dismutase, and levels of glutathione were inhibited in the testes of tramadol-treated rabbits. On the other hand, free radical levels were significantly increased in the testes of tramadol-treated rabbits for 12 weeks. Interestingly, such changes in the activities of antioxidant enzymes as well as free radical levels caused by tramadol were restored to their normal levels in the rabbits pretreated with either selenium, garlic, and/or their combination. Histopathological investigations showed that tramadol caused substantial vacuolization with the presence of damaged immature spermatozoid in the testes. However, selenium and garlic treatments showed an increase in healthy sperm production with normal mitotic and meiotic divisions. The present study illustrated for the first time the mechanisms of low steroid hormone levels in the testes of tramadol-treated rabbits which could be due to the downregulation of CYPs proteins, induction of oxidative stress, and inhibition of antioxidant enzyme activities. In addition, the present data showed that such toxic effects of tramadol were attenuated and restored to their normal levels after pretreatment of rabbits with garlic, selenium, and/or their combination. This finding may pave the way for a new approach to reducing the toxicity of tramadol.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, P.O.Box: 960, Abha, 61421, Kingdom of Saudi Arabia.
- Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt.
| | - Yassmin A El-Dafrawi
- Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Osama A El-Ghalid
- Poultry Physiology Department, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
| | - Alaa A Ghoneim
- Department of Anaesthesia and Pain Management, Medical Research Institute, Alexandra University, Alexandria, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Li L, Marozoff S, Lu N, Xie H, Kopec JA, Cibere J, Esdaile JM, Aviña-Zubieta JA. Association of tramadol with all-cause mortality, cardiovascular diseases, venous thromboembolism, and hip fractures among patients with osteoarthritis: a population-based study. Arthritis Res Ther 2022; 24:85. [PMID: 35410440 PMCID: PMC8996663 DOI: 10.1186/s13075-022-02764-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background The use of tramadol among osteoarthritis (OA) patients has been increasing rapidly around the world, but population-based studies on its safety profile among OA patients are scarce. We sought to determine if tramadol use in OA patients is associated with increased risks of all-cause mortality, cardiovascular diseases (CVD), venous thromboembolism (VTE), and hip fractures compared with commonly prescribed nonsteroidal anti-inflammatory drugs (NSAIDs) or codeine. Methods Using administrative health datasets from British Columbia, Canada, we conducted a sequential propensity score-matched cohort study among all OA patients between 2005 and 2013. The tramadol cohort (i.e., tramadol initiation) was matched with four comparator cohorts (i.e., initiation of naproxen, diclofenac, cyclooxygenase-2 [Cox-2] inhibitors, or codeine). Outcomes are all-cause mortality, first-ever CVD, VTE, and hip fractures within the year after the treatment initiation. Patients were followed until they either experienced an event, left the province, or the 1-year follow-up period ended, whichever occurred first. Cox proportional hazard models were used to estimate hazard ratios after adjusting for competing risk of death. Results Overall, 100,358 OA patients were included (mean age: 68 years, 63% females). All-cause mortality was higher for tramadol compared to NSAIDs with rate differences (RDs/1000 person-years, 95% CI) ranging from 3.3 (0.0–6.7) to 8.1 (4.9–11.4) and hazard ratios (HRs, 95% CI) ranging from 1.2 (1.0–1.4) to 1.5 (1.3–1.8). For CVD, no differences were observed between tramadol and NSAIDs. Tramadol had a higher risk of VTE compared to diclofenac, with RD/1000 person-years (95% CI) of 2.2 (0.7–3.7) and HR (95% CI) of 1.7 (1.3–2.2). Tramadol also had a higher risk of hip fractures compared to diclofenac and Cox-2 inhibitors with RDs/1000 person-years (95% CI) of 1.9 (0.4–3.4) and 1.7 (0.2–3.3), respectively, and HRs (95% CI) of 1.6 (1.2–2.0) and 1.4 (1.1–1.9), respectively. No differences were observed between tramadol and NSAIDs for all events. Conclusions OA patients initiating tramadol have an increased risk of mortality, VTE, and hip fractures within 1 year compared with commonly prescribed NSAIDs, but not with codeine. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02764-3.
Collapse
Affiliation(s)
- Lingyi Li
- Arthritis Research Canada, 230-2238 Yukon Street, Vancouver, BC, V5Y 3P2, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shelby Marozoff
- Arthritis Research Canada, 230-2238 Yukon Street, Vancouver, BC, V5Y 3P2, Canada
| | - Na Lu
- Arthritis Research Canada, 230-2238 Yukon Street, Vancouver, BC, V5Y 3P2, Canada
| | - Hui Xie
- Arthritis Research Canada, 230-2238 Yukon Street, Vancouver, BC, V5Y 3P2, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Jacek A Kopec
- Arthritis Research Canada, 230-2238 Yukon Street, Vancouver, BC, V5Y 3P2, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Jolanda Cibere
- Arthritis Research Canada, 230-2238 Yukon Street, Vancouver, BC, V5Y 3P2, Canada.,Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - John M Esdaile
- Arthritis Research Canada, 230-2238 Yukon Street, Vancouver, BC, V5Y 3P2, Canada.,Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - J Antonio Aviña-Zubieta
- Arthritis Research Canada, 230-2238 Yukon Street, Vancouver, BC, V5Y 3P2, Canada. .,Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
18
|
Aramjoo H, Yousefizadeh S, Aschner M, Roshanravan B, Farkhondeh T, Samarghandian S. Oxidative Stress Indices Changes in the Hearts of Rat Pups in Response to Maternal Buprenorphine Treatment during Gestation and Lactation. Cardiovasc Toxicol 2022; 22:29-34. [PMID: 34599474 DOI: 10.1007/s12012-021-09686-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to assess the effects of Buprenorphine (BUP) on oxidative parameters in pups born to mothers exposed to the drug during gestation and lactation. Pregnant and lactating rats received BUP, 0.5 or 0.1 mg/kg subcutaneously for 21 and 28 days, respectively. At the end of the study, the pups were anesthetized, and the hearts were dissected out to measure oxidative stress indices, including the levels of Malondialdehyde (MDA), Nitric oxide (NO), Glutathione (GSH), and the activity of Superoxide dismutase (SOD). Our findings indicated that BUP did not alter MDA, NO, GSH levels, nor SOD activity in the cardiac tissue of pups exposed to this drug during the fetal period and through breast milk. We suggest performing additional studies to determine the association between BUP and oxidative modifications in cardiac tissues of pups born to mothers under BUP therapy during gestation and lactation.
Collapse
Affiliation(s)
- Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahnaz Yousefizadeh
- Department of Laboratory and Clinical Sciences, Faculty of Para-Veterinary, Ilam University, Ilam, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
19
|
Mohammadnejad L, Soltaninejad K, Seyedabadi M, Ghasem Pouri SK, Shokrzadeh M, Mohammadi H. Evaluation of mitochondrial dysfunction due to oxidative stress in therapeutic, toxic and lethal concentrations of tramadol. Toxicol Res (Camb) 2021; 10:1162-1170. [PMID: 34956619 DOI: 10.1093/toxres/tfab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tramadol (TR) is a centrally acting analgesic drug that is used to relieve pain. The therapeutic (0.1-0.8 mg/l), toxic (1-2 mg/l) and lethal (>2 mg/l) ranges were reported for TR. The present study was designed to evaluate which doses of TR can induce liver mitochondrial toxicity. Mitochondria were isolated from the five rats' liver and were incubated with therapeutic to lethal concentrations (1.7-600 μM) of TR. Biomarkers of oxidative stress including: reactive oxygen species (ROS), lipid peroxidation (LPO), protein carbonyl content, glutathione (GSH) content, mitochondrial function, mitochondrial membrane potential (MMP) and mitochondrial swelling were assessed. Our results showed that ROS and LPO at 100 μM and protein carbonylation at 600 μM concentrations of TR were significantly increased. GSH was decreased specifically at 600 μM concentration. Mitochondrial function, MMP and mitochondrial swelling decreased in isolated rat liver mitochondria after exposure to 100 and 300 μM, respectively. This study suggested that TR at therapeutic and toxic levels by single exposure could not induce mitochondrial toxicity. But, in lethal concentration (≥100 μM), TR induced oxidative damage and mitochondria dysfunction. This study suggested that ROS overproduction by increasing of TR concentration induced mitochondrial dysfunction and caused mitochondrial damage via Complex II and membrane permeability transition pores disorders, MMP collapse and mitochondria swelling.
Collapse
Affiliation(s)
- Leila Mohammadnejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Kambiz Soltaninejad
- Department of Forensic Toxicology, Legal Medicine Research Center, Legal Medicine Organization, Tehran 48157-33971, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Seyed Khosro Ghasem Pouri
- Department of Emergency Medicine, School of Medicine, Antimicrobial Resistance Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| |
Collapse
|
20
|
Soliman T, Shaher H, Mohey A, El-Shae W, Sebaey A. Gonadotoxic effect of tramadol administration: A prospective controlled study. Arab J Urol 2021; 20:54-60. [PMID: 35223111 PMCID: PMC8881065 DOI: 10.1080/2090598x.2021.2002634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective To detect the possible gonadotoxic effects of tramadol dependence on seminal fluid parameters, and prolactin and testosterone hormone levels. Patients, Subjects, and Methods There were 94 participants who were divided into a tramadol-dependent group (T-group; 56 patients) and a control group (C-group; 38 healthy volunteers). The following variables were evaluated: testosterone level, prolactin level, erectile function, libido, semen parameters, and effect of tramadol dose and dependence duration. Results There was a significant increase in erectile dysfunction (ED) and decreased libido in the T-group vs C-group. Also, the serum testosterone level was lower in the T-group vs the C-group, while the serum prolactin level was significantly higher in the T-group vs the C-group. All semen parameters were low in the T-group except for abnormal forms, which were high. As the dose of tramadol increased there was a more negative effect on the previous parameter, while ED, libido, semen volume and concentration showed no significant changes. When comparing tramadol doses of 400–1000 mg/day to >1000 mg/day, the tramadol blood level increased with high doses, while serum testosterone level decreased when the dose increased and the prolactin level increased when the dose increased. Progressive motility of the sperm decreased and abnormal forms increased. Also increased duration of tramadol administration was also accompanied by a more negative effect on these parameters Conclusion Tramadol administration has a negative effect on hormone levels, libido, erectile function, and semen characters.Abbreviations:
ED: erectile dysfunction; EF: erectile function
Collapse
Affiliation(s)
- Tarek Soliman
- Department of Urology and Andrology, Benha University, Benha, Egypt
| | - Hussein Shaher
- Department of Urology and Andrology, Benha University, Benha, Egypt
| | - Ahmed Mohey
- Department of Urology and Andrology, Benha University, Benha, Egypt
| | - Waleed El-Shae
- Department of Urology and Andrology, Benha University, Benha, Egypt
| | - Ahmed Sebaey
- Department of Urology and Andrology, Benha University, Benha, Egypt
| |
Collapse
|
21
|
Bakr MH, Radwan E, Shaltout AS, Farrag AA, Mahmoud AR, Abd-Elhamid TH, Ali M. Chronic exposure to tramadol induces cardiac inflammation and endothelial dysfunction in mice. Sci Rep 2021; 11:18772. [PMID: 34548593 PMCID: PMC8455605 DOI: 10.1038/s41598-021-98206-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Tramadol is an opioid extensively used to treat moderate to severe pain; however, prolonged therapy is associated with several tissues damage. Chronic use of tramadol was linked to increased hospitalizations due to cardiovascular complications. Limited literature has described the effects of tramadol on the cardiovascular system, so we sought to investigate these actions and elucidate the underlying mechanisms. Mice received tramadol hydrochloride (40 mg/kg body weight) orally for 4 successive weeks. Oxidative stress, inflammation, and cardiac toxicity were assessed. In addition, eNOS expression was evaluated. Our results demonstrated marked histopathological alteration in heart and aortic tissues after exposure to tramadol. Tramadol upregulated the expression of oxidative stress and inflammatory markers in mice heart and aorta, whereas downregulated eNOS expression. Tramadol caused cardiac damage shown by the increase in LDH, Troponin I, and CK-MB activities in serum samples. Overall, these results highlight the risks of tramadol on the cardiovascular system.
Collapse
Affiliation(s)
- Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Biochemistry, Sphinx University, Assiut, Egypt
| | - Asmaa S Shaltout
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaimaa A Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Anatomy, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Maha Ali
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
22
|
Free Testosterone and Prolactin Levels and Sperm Morphology and Function Among Male Patients With Tramadol Abuse: A Case-Control Study. J Clin Psychopharmacol 2021; 40:405-408. [PMID: 32639294 DOI: 10.1097/jcp.0000000000001223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/PURPOSE Tramadol abuse has become a crisis in Egypt and many other Middle Eastern countries. Tramadol abuse is associated with sexual dysfunction and male infertility, according to recent animal and human studies. The objective of this study was to compare tramadol abuse patients and healthy controls regarding free testosterone and prolactin levels and semen analysis. METHODS Sixty patients with opiate use disorders attributed to tramadol (OUD-T) based on Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) diagnostic criteria and 30 healthy controls were included in the study. Sociodemographic and clinical data and urine, blood, and semen samples were collected from patients and controls for assessment. RESULTS Compared with controls, OUD-T patients had higher prolactin and lower free testosterone levels. Patients with OUD-T were more likely to have lower sperm count and higher abnormal motility and forms of sperms compared with controls. CONCLUSIONS Patients with OUD-T were found to be more likely to have lower free testosterone levels and lower sperm counts and vitality, and higher prolactin levels and sperm abnormal forms compared with controls.
Collapse
|
23
|
Stephen AO, Rotimi OA, Adegoke AT, Samson OO. Reprotoxic activities of vildagliptin administration in male Wistar rats. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000119144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Elbakary RH, Tawfik SM, Amer RM. Evaluation of the Possible Protective Effect of Alpha Lipoic Acid on Testicular Toxicity Induced by Polychlorinated Biphenyl in Adult Albino Rats: A Histological Study. J Microsc Ultrastruct 2020; 8:42-50. [PMID: 32766117 PMCID: PMC7365516 DOI: 10.4103/jmau.jmau_34_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 11/04/2022] Open
Abstract
Introduction Polychlorinated biphenyl (PCB) is considered one of the environmental pollutants. It is used as hydraulic coils in vacuum pumps, pesticides transformers, heat-exchange systems, capacitors and as additives in adhesive inks, paints, plastics, copying paper and sealants. Alpha lipoic acid (ALA) is an antioxidant substance normally present in mitochondria as a coenzyme. Aim of the Work To evaluate the protective effect of ALA on PCB induced testicular toxicity. Materials and Methods Twenty five adult male albino rats were used in this study. They were divided into four groups, a control group included 10 rats, group II rats received alpha lipoic acid 25mg/Kg /day orally for 30 days, group III rats received PCB 5mg /Kg/day orally for 30 days and group IV rats received both PCB and alpha lipoic acid at the same previous dose for 30 days. At the appropriate time, the specimens were taken and prepared for light and electron microscope study. Results LM examination revealed structural alterations in group III in the form of wide spaces between seminiferous tubules that contain homogeneous acidophilic substance, partial or complete detachment of the tubules from the basement membrane and total distorted irregular shaped tubules. Also dilated congested blood vessels were seen. EM examination of this group revealed Sertoli cells with cytoplasmic vacuolation and dilated rER. The basement membrane appeared as thick and irregular line under Sertoli and spermatogenic cells and it was interrupted in some points. Primary spermatocyte appeared shrunken while others revealed vacuoles in the cytoplasm and perinuclear dilatation. Leydig cells showed irregular vacuoles and swollen destroyed mitochondria. Amelioration of the previous histological changes could be detected in group IV. Conclusion It could be concluded that alpha-lipoic acid has a protective effect against PCB induced testicular toxicity.
Collapse
Affiliation(s)
| | | | - Rabab Mohamed Amer
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Abdelaziz AS, Kamel MA, Ahmed AI, Shalaby SI, El-darier SM, Magdy Beshbishy A, Batiha GES, Alomar SY, Khodeer DM. Chemotherapeutic Potential of Epimedium brevicornum Extract: The cGMP-Specific PDE5 Inhibitor as Anti-Infertility Agent Following Long-Term Administration of Tramadol in Male Rats. Antibiotics (Basel) 2020; 9:antibiotics9060318. [PMID: 32545153 PMCID: PMC7345865 DOI: 10.3390/antibiotics9060318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Epimedium brevicornum Maxim (EbM) is a well-known Chinese herb that has been widely used for the treatment of several diseases. The main purpose of this study is to examine the role of Epimedium brevicornum extract in certain andrological parameters in rats as a natural modulator for adverse viewpoints associated with chronic administration of tramadol (TAM). Fifty rats were categorized into five groups. Untreated rats were known as Group I, whereas rats in Groups II and III were administered 2.43 g/kg/day of E. brevicornum extract and 50 mg/kg/day of TAM for 130 consecutive days, respectively. Both of Groups IV and V were administered TAM for 65 successive days, followed by concomitant use of both drugs for another 65 days, with the E. brevicornum extract at doses of 0.81 and 2.43 g/kg/day, respectively. TAM showed an injurious effect on sperm attributes, serum hormones, tissue malondialdehyde, superoxide dismutase, and nitric oxide. Elevation of the apoptotic marker Bax and a reduction of Bcl2 were recorded. Histopathological abnormalities have been reported in rat testicles. Rats treated with E. brevicornum extract with TAM showed an improvement in all the parameters tested. It could be presumed that E. brevicornum extract plus TAM exhibits a promising effect on the enhancement of male anti-infertility effects.
Collapse
Affiliation(s)
- Ahmed S. Abdelaziz
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: (A.S.A.); (G.E.-S.B.); (S.Y.A.); Tel.: +20-45-271-6024 (G.E.-S.B.); Fax: +20-45-271-6024 (G.E.-S.B.)
| | - Mohamed A. Kamel
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amany I. Ahmed
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Shimaa I. Shalaby
- Physiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Salama M. El-darier
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt;
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt
- Correspondence: (A.S.A.); (G.E.-S.B.); (S.Y.A.); Tel.: +20-45-271-6024 (G.E.-S.B.); Fax: +20-45-271-6024 (G.E.-S.B.)
| | - Suliman Y. Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: (A.S.A.); (G.E.-S.B.); (S.Y.A.); Tel.: +20-45-271-6024 (G.E.-S.B.); Fax: +20-45-271-6024 (G.E.-S.B.)
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
26
|
Shalaby AM, Aboregela AM, Alabiad MA, El Shaer DF. Tramadol Promotes Oxidative Stress, Fibrosis, Apoptosis, Ultrastructural and Biochemical alterations in the Adrenal Cortex of Adult Male Rat with Possible Reversibility after Withdrawal. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:509-523. [PMID: 32366353 DOI: 10.1017/s1431927620001397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tramadol is a centrally acting analgesic drug, used for the management of moderate to severe pain in a variety of diseases. The long-term use of tramadol can induce endocrinopathy. This study aimed to evaluate the effect of tramadol dependence on the adrenal cortex and the effect of its withdrawal. Thirty adult male rats were divided into three experimental groups: the control group, the tramadol-dependent group that received increasing therapeutic doses of tramadol orally for 1 month, and the recovery group that received tramadol in a dose and duration similar to the previous group followed by a withdrawal period for another month. Specimens from the adrenal cortex were processed for histological, immunohistochemical, enzyme assay, and quantitative real-time PCR (RT-qPCR) studies. Tramadol induced a significant increase in malondialdehyde level and a significant decrease in the levels of glutathione peroxidase and superoxide dismutase. A significant decrease in the levels of adrenocorticotrophic hormones, aldosterone, cortisol, corticosterone, and dehydroepiandrosterone sulfate was also detected. Severe histopathological changes in the adrenal cortex were demonstrated in the form of disturbed architecture, swollen cells, and shrunken cells with pyknotic nuclei. Inflammatory cellular infiltration and variable-sized homogenized areas were also detected. A significant increase in P53 and Bax immunoreaction was detected and confirmed by RT-qPCR. The ultrastructural examination showed irregular, shrunken adrenocorticocytes with dense nuclei. Dilated smooth endoplasmic reticulum, mitochondria with disrupted cristae, and numerous coalesced lipid droplets were also demonstrated. All these changes started to return to normal after the withdrawal of tramadol. Thus, it was confirmed that the long-term use of tramadol can induce severe adrenal changes with subsequent insufficiency.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta31527, Egypt
| | - Adel Mohamed Aboregela
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig44519, Egypt
- Basic Medical Sciences Department, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig44519, Egypt
| | - Dina Fouad El Shaer
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta31527, Egypt
| |
Collapse
|
27
|
Sexual Dysfunction and Psychopathological Variables Among Tramadol Abusers: An Egyptian Perspective. ADDICTIVE DISORDERS & THEIR TREATMENT 2020. [DOI: 10.1097/adt.0000000000000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Koohsari M, Ahangar N, Mohammadi E, Shaki F. Ameliorative Effect of Melatonin Against Reproductive Toxicity of Tramadol in Rats via the Regulation of Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis-related Gene Expression Signaling Pathway. ADDICTION & HEALTH 2020; 12:118-129. [PMID: 32782734 PMCID: PMC7395930 DOI: 10.22122/ahj.v12i2.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The aim of the present study was to investigate the protective properties of melatonin (MT) against oxidative stress, mitochondrial dysfunction, and apoptosis induced by tramadol-reproductive toxicity in male rats. METHODS The rats were divided into the 7 groups of control, melatonin (1.5 mg/kg), tramadol (50 mg/kg), and melatonin (1, 1.5 and 2.5 mg/kg) administered 30 minutes before tramadol and vitamin C group (100 mg/kg). All injections were performed intraperitoneally. After administration for 3 consecutive weeks, the animals were killed and testis tissues were used for assessment of oxidative stress markers including lipid peroxidation (LPO), glutathione (GSH) content and protein carbonyl (PrC), and sperm analysis. Mitochondria were isolated from rat's testis using differential centrifugation technique and were studied in terms of mitochondrial viability, mitochondrial membrane potential (MMP), and mitochondrial swelling. The other part of the tissue sample was placed in RNA protector solution for assessment of Bax and Bcl-2 gene expression through real-time polymerase chain reaction (real-time PCR) assay. FINDINGS Tramadol caused a significant decline in epidermal sperm count, motility, and morphology, as well as a significant decrease in GSH level and mitochondrial function, and a significant evaluation of LPO, PrC, MMP, and mitochondrial swelling. In addition, tramadol induced a significant decrease in Bcl-2 gene expression, and increase in Bax gene expression. However, pretreatment of rats with MT improved sperm analysis, and testicular antioxidative status, and mitochondrial function. Furthermore, MT pretreatment regulated testicular Bcl-2 and Bax expressions. CONCLUSION Considering the protective effects of MT against reproductive toxicity induced by tramadol, this compound can be used as a possible agent for the prevention and treatment of tramadol-induced reproductive toxicity.
Collapse
Affiliation(s)
- Motahareh Koohsari
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
29
|
Bai X, Wang C, Zhang X, Feng Y, Zhang X. The role of testosterone in mu-opioid receptor expression in the trigeminal ganglia of opioid-tolerant rats. Neurosci Lett 2020; 723:134868. [PMID: 32109552 DOI: 10.1016/j.neulet.2020.134868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Although tolerance serves as a major limitation in the long-term clinical use of opioids in patients with chronic severe pain, mechanisms of opioid tolerance are poorly understood. In this study, a morphine tolerance model was established by subcutaneously injecting male rats with morphine (10 mg/kg) twice a day for 10 consecutive days. In addition, a subset of morphine-tolerant rats underwent testosterone replacement therapy. The levels of mu-opioid receptor (MOR) mRNA and protein in the trigeminal ganglia (TGs) of morphine-tolerant versus control rats and of morphine-tolerant rats with vs. without testosterone replacement therapy were measured. We found that testosterone levels were significantly lower in morphine-tolerant rats than in the controls (1.248 ± 0.231 ng/ml vs. 2.223 ± 0.153 ng/ ml, respectively; p = 0.008). Furthermore, chronic morphine exposure led to a downregulation in the levels of MOR mRNA to 79.3%, and of MOR protein to 68.9%. Testosterone replacement therapy restored MOR mRNA and protein levels specifically in rats who had developed a tolerance to morphine, thereby suggesting a potential role of testosterone in the opioid-receptor response to chronic morphine exposure. In summary, our study provides evidence for the involvement of testosterone in the proper regulation of the peripheral MOR system in rats following prolonged morphine exposure. We also suggest that analgesic therapeutic measures should take into account the testosterone levels of patients who have built up a tolerance to morphine.
Collapse
Affiliation(s)
- Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Chun Wang
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Xuedi Zhang
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Yingbo Feng
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Xia Zhang
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China.
| |
Collapse
|
30
|
Pomegranate Seeds Extract Possesses a Protective Effect against Tramadol-Induced Testicular Toxicity in Experimental Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2732958. [PMID: 32219129 PMCID: PMC7085358 DOI: 10.1155/2020/2732958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Tramadol is a centrally acting opioid analgesic that is extensively used. The chronic exposure to tramadol induces oxidative stress and toxicity especially for patients consuming it several times a day. Previously, we and others reported that tramadol induces testicular damage in rats. This study was conducted to investigate the possible protective effect of pomegranate seed extract (PgSE) against tramadol-induced testicular damage in adult and adolescent rats. Male rats were orally treated with tramadol or in a combination with PgSE for three weeks. Testes were then dissected and analyzed. Histological and ultrastructural examinations indicated that tramadol induced many structural changes in the testes of adult and adolescent rats including hemorrhage of blood vessels, intercellular spaces, interstitial vacuoles, exfoliation of germ cells in lumen, cell apoptosis, chromatin degeneration of elongated spermatids, and malformation of sperm axonemes. Interestingly, these abnormalities were not observed in tramadol/PgSE cotreated rats. The morphometric analysis revealed that tramadol disrupted collagen metabolism by elevating testicular levels of collagen fibers but that was protected in tramadol/PgSE cotreatment at both ages. In addition, DNA ploidy revealed that S phase of the cell cycle was diminished when adult and adolescent rats were treated with tramadol. However, the S phase had a normal cell population in the cotreated adult rats, but adolescent rats had a lower population than controls. Furthermore, the phytochemistry of PgSE revealed a high content of total polyphenols and total flavonoids within this extract; besides, the DPPH free radical scavenging activity was high. In conclusion, this study indicated that PgSE has a prophylactic effect against tramadol-induced testicular damage in both adult and adolescent ages, although the tramadol toxicity was higher in adolescent age to be completely protected. This prophylactic effect might be due to the high antioxidant compounds within the pomegranate seeds.
Collapse
|
31
|
Wei J, Wood MJ, Dubreuil M, Tomasson G, LaRochelle MR, Zeng C, Lu N, Lin J, Choi HK, Lei G, Zhang Y. Association of tramadol with risk of myocardial infarction among patients with osteoarthritis. Osteoarthritis Cartilage 2020; 28:137-145. [PMID: 31629022 PMCID: PMC7047659 DOI: 10.1016/j.joca.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Tramadol has been widely used among patients with osteoarthritis (OA); however, there is paucity of information on its cardiovascular risk. We aimed to examine the association of tramadol with risk of myocardial infarction (MI) among patients with OA. DESIGN Among OA patients aged 50-90 years without history of MI, cancer, or opioid use disorder in The Health Improvement Network database in the United Kingdom (2000-2016), three sequential propensity-score matched cohort studies were assembled, i.e., (1) patients who initiated tramadol or naproxen (negative comparator); (2) patients who initiated tramadol or diclofenac (positive comparator); and (3) patients who initiated tramadol or codeine (a commonly used weak opioid). The outcome was incident MI over six-months. RESULTS Among tramadol and naproxen initiators (n = 33,024 in each cohort), 77 (4.8/1000 person-years) and 46 (2.8/1000 person-years) incident MI occurred, respectively. The rate difference (RD) and hazard ratios (HR) for incident MI with tramadol initiation were 1.9 (95% confidence interval [CI] 0.6 to 2.3)/1000 person-years and 1.68 (95% CI 1.16 to 2.41) relative to naproxen initiation, respectively. Among tramadol and diclofenac initiators (n = 18,662 in each cohort), 58 (6.4/1000 person-years) and 47 (5.1/1000 person-years) incident MIs occurred, respectively. The corresponding RD and HR for incident MI were 1.2 (95%CI -2.1 to 14.1)/1000 person-years and 1.24 (95%CI 0.84 to 1.82), respectively. Among tramadol and codeine initiators (n = 42,722 in each cohort), 127 (6.1/1000 person-years) and 103 (5.0/1000 person-years) incident MI occurred, respectively, and the corresponding RD and HR were 1.1 (95%CI:-0.3 to 2.5)/1000 person-years and 1.23 (95%CI:0.95 to 1.60), respectively. CONCLUSIONS In this population-based cohort of patients with OA, the six-month risk of MI among initiators of tramadol was higher than that of naproxen, but comparable to, if not lower than, those of diclofenac or codeine.
Collapse
Affiliation(s)
- Jie Wei
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China,Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Malissa J Wood
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maureen Dubreuil
- Boston University School of Medicine, Boston, Massachusetts, USA,VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Gunnar Tomasson
- Department of Public Health Sciences, University of Iceland, Stapi Hringbraut, 101 Reykjavik, Iceland
| | - Marc R. LaRochelle
- Clinical Addiction Research and Education Unit at Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Chao Zeng
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Na Lu
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Arthritis Research Canada, Richmond, British Columbia, Canada
| | - Jianhao Lin
- Department of Orthopaedic Surgery, Peking University People’s Hospital, Beijing, China
| | - Hyon K. Choi
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Guanghua Lei
- Department of Orthopaedic Surgery, Peking University People’s Hospital, Beijing, China,National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Correspondence to: Guanghua Lei, Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China, 410008, ; Yuqing Zhang, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, USA, 02114,
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Correspondence to: Guanghua Lei, Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China, 410008, ; Yuqing Zhang, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, USA, 02114,
| |
Collapse
|
32
|
Abstract
Evidence suggests that opioids can modulate gonadal function, with consequent decreased release of sex hormones. We attempted to investigate the sexual function of males using tramadol hydrochloride (HCL) and its relationship to levels of free testosterone, luteinizing hormone, and follicle stimulating hormone, and to compare them with heroin use disorder patients and healthy controls. Our sample consisted of 60 opiate use disorder patients (assessed by Structured Clinical Interview for DSM-IV Axis I) (30 heroin and 30 tramadol) and 30 healthy controls. Sexual dysfunction was assessed using the International Index of Erectile Function. Free testosterone, follicle stimulating hormone, and luteinizing hormone levels were measured in morning blood samples using enzyme-linked immunosorbent assay (ELISA). Results showed that there was a decrease of luteinizing hormone and free testosterone levels in opiate use disorder patients compared with healthy controls, with heroin-dependent patients having significantly lower levels than those using tramadol. Opiates' effect on follicle stimulating hormone had mixed results. Opioid-dependent patients (both tramadol HCL and heroin using patients) developed sexual dysfunction more than healthy controls, which was generalized, with erectile dysfunction being the most affected domain. These findings are of ultimate importance, considering the fact that people use opioids to enhance their sexual performance in many countries.
Collapse
|
33
|
Salah S, Wagih M, Zaki A, Fathy W, Eid A. Long-term effects of tramadol on the reproductive function of male albino rats: an experimental biochemical and histopathological study. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2019. [DOI: 10.1186/s43043-019-0003-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Samadi M, Shaki F, Bameri B, Fallah M, Ahangar N, Mohammadi H. Caffeine attenuates seizure and brain mitochondrial disruption induced by Tramadol: the role of adenosinergic pathway. Drug Chem Toxicol 2019; 44:613-619. [PMID: 31368376 DOI: 10.1080/01480545.2019.1643874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Tramadol (TR) is an analgesic drug used to treat moderate-to-severe pain but it induces seizure even at therapeutic doses. The exact mechanism of TR-inducing seizure is not clear but inhibition of the serotonin, GABA, and nitrous oxide (NOS) pathways are the commonly proposed mechanisms. Adenosinergic system has a crucial function in the modulation of seizure. Also, oxidative damage is an unavoidable effect of the seizure. This study was conducted to evaluate the role of the adenosinergic system on the seizure and oxidative stress biomarkers induced by TR using antagonist of the adenosinergic receptors in the Albino mice. For that purpose, generated clonic seizure, as seizure threshold, was evaluated by TR. Caffeine (CAF; 8 mg/kg, i.p.), a nonselective antagonist of adenosine receptors, was administered 1 hour before the seizure induction. The seizure threshold significantly increased by CAF-treated group when compared to TR group (p < 0.001). Oxidative stress biomarkers such as reactive oxygen species, protein carbonyl content, and lipid peroxidation significantly decreased and glutathione content significantly increased by CAF in brain mitochondria compared to the TR group, whereas oxidative biomarkers significantly increased in the TR group compared to the control group. The results of the present study suggested that the adenosinergic system is involved in seizure induced by TR and meanwhile, inhibition of adenosine receptors can decrease the TR seizure threshold and also decrease the induced oxidative damage in the brain mitochondria.
Collapse
Affiliation(s)
- Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Pharmacutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
35
|
Aboulhoda BE, Hassan SS. Effect of prenatal tramadol on postnatal cerebellar development: Role of oxidative stress. J Chem Neuroanat 2018; 94:102-118. [PMID: 30342117 DOI: 10.1016/j.jchemneu.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM The adverse neurological effects of tramadol have recently raised attention. The literature pertaining to studying postnatal cerebellar changes induced by prenatal tramadol is very scanty, thus the current study has been designed to improve understanding of the cerebellar oxidative stress-related alterations associated with tramadol administration during pregnancy in this critical period of neuronal differentiation and synaptic development, thereby highlighting the importance of controlling prenatal prescription of opioids and optimizing care for opioid-dependent pregnant women and their infants. MATERIAL AND METHODS Twenty pregnant female rats of Sprague Dawley strains were used in the study. Their offspring were divided into two groups: group I (control group) offspring of mothers given saline; group II offspring of mothers given tramadol from the 10th day (D10) of gestation till D21. The pups were sacrificed on the 7th, 14th and 21st postnatal days. Cerebellar specimens were processed for histomorphometric, immunohistochemical and electron microscopic assessment and were evaluated for various oxidative stress parameters. RESULTS Tramadol administration during pregnancy caused profound structural abnormalities on the post-natal cerebellar cortex and was associated with oxidative stress evidenced by elevation of lipid peroxidation products and inhibition of antioxidant enzyme activities.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt.
| | - Sherif S Hassan
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt; Department of Medical Education, California University of Sciences and Medicine, School of medicine, San Bernardino, 92408 CA, USA
| |
Collapse
|
36
|
Sheweita SA, Almasmari AA, El-Banna SG. Tramadol-induced hepato- and nephrotoxicity in rats: Role of Curcumin and Gallic acid as antioxidants. PLoS One 2018; 13:e0202110. [PMID: 30110401 PMCID: PMC6093657 DOI: 10.1371/journal.pone.0202110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/27/2018] [Indexed: 11/18/2022] Open
Abstract
Tramadol is an analgesic used to treat moderate to severe pain caused by cancer, osteoarthritis, and other musculoskeletal diseases. Cytochrome P450 system metabolizes tramadol and induces oxidative stress in different organs. Therefore, the present study aims at investigating the changes in the activities and the protein expressions of CYPs isozymes (2E1, 3A4, 2B1/2), antioxidants status, free radicals levels after pretreatment of rats with Curcumin and/or Gallic as single- and/or repeated-doses before administration of tramadol. In repeated-dose treatments of rats with tramadol, the activities of cytochrome P450, cytochrome b5, and NADPH-cytochrome-c-reductase, and the antioxidant enzymes including glutathione reductase, glutathione peroxidase, glutathione S-transferase, catalase, superoxide dismutase, and levels of glutathione were inhibited in the liver and the kidney of rats. Interestingly, such changes caused by tramadol restored to their normal levels after pretreatment of rats with either Curcumin and/or Gallic acid. On the other hand, repeated-dose treatment of rats with tramadol increased the activities of both dimethylnitrosamine N-demethylase I (DMN-dI), and aryl hydrocarbon hydroxylase (AHH) compared to the control group. However, pretreatment of rats with Curcumin and/or Gallic acid prior to administration of tramadol restored the inhibited DMN-dI activity and its protein expression (CYP 2E1) to their normal levels. On the other hand, tramadol inhibited the activity of ethoxycoumarin O-deethylase (ECOD) and suppressed its protein marker expression (CYP2B1/2), whereas Curcumin, Gallic acid and/or their mixture restored such changes to their normal levels. In conclusion, Curcumin and/or Gallic acid alleviated the adverse effects caused by tramadol. In addition, patients should be advice to take Curcumin and/or Gallic acid prior to tramadol treatment to alleviate the hepatic and renal toxicities caused by tramadol.
Collapse
Affiliation(s)
- Salah A. Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandra, Egypt
| | - Ainour A. Almasmari
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandra, Egypt
| | - Sabah G. El-Banna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandra, Egypt
| |
Collapse
|
37
|
Farag AGA, Basha MA, Amin SA, Elnaidany NF, Elhelbawy NG, Mostafa MMT, Khodier SA, Ibrahem RA, Mahfouz RZ. Tramadol (opioid) abuse is associated with a dose- and time-dependent poor sperm quality and hyperprolactinaemia in young men. Andrologia 2018; 50:e13026. [DOI: 10.1111/and.13026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- A. G. A. Farag
- Dermatology, Andrology and STDs; Menoufia University; Shebin El Kom Egypt
| | - M. A. Basha
- Dermatology, Andrology and STDs; Menoufia University; Shebin El Kom Egypt
| | - S. A. Amin
- Forensic Medicine & Clinical Toxicology; Menoufia University; Shebin El Kom Egypt
| | - N. F. Elnaidany
- Faculty of Pharmacy; Clinical Pharmacy; MSA University; 6 October City Egypt
| | - N. G. Elhelbawy
- Faculty of Medicine; Medical Biochemistry; Menoufia University; Shebin El Kom Egypt
| | - M. M. T. Mostafa
- Dermatology, Andrology and STDs; Menoufia University; Shebin El Kom Egypt
| | - S. A. Khodier
- Faculty of Medicine; Clinical Pathology; Menoufia University; Shebin El Kom Egypt
| | - R. A. Ibrahem
- Faculty of Medicine; Public Health and Community Medicine; Menoufia University; Shebin El Kom Egypt
| | - R. Z. Mahfouz
- Faculty of Medicine; Clinical Pathology; Menoufia University; Shebin El Kom Egypt
- Cleveland Clinic Lerner College of Medicine; Case Western Reserve University; Cleveland Ohio
| |
Collapse
|
38
|
Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6) are associated with long term tramadol treatment-induced oxidative damage and hepatotoxicity. Toxicol Appl Pharmacol 2018; 346:37-44. [DOI: 10.1016/j.taap.2018.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/22/2018] [Accepted: 03/14/2018] [Indexed: 01/03/2023]
|
39
|
Attia AM, Bakry OA, Yassin H, Sarhan N, Samaka R, Gamal N. Morphometric and ultrastructural analysis of tramadol effects on epididymis: an experimental study. Ultrastruct Pathol 2018; 42:295-303. [DOI: 10.1080/01913123.2018.1460435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Abdalla Mohamed Attia
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Ola Ahmed Bakry
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Hossam Yassin
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Naglaa Sarhan
- Department of Histology, Tanta Faculty of Medicine, Tanta, Egypt
| | - Rehab Samaka
- Department of Pathology, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Nahla Gamal
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| |
Collapse
|
40
|
Islin J, Munkboel CH, Styrishave B. Steroidogenic disruptive effects of the serotonin-noradrenaline reuptake inhibitors duloxetine, venlafaxine and tramadol in the H295R cell assay and in a recombinant CYP17 assay. Toxicol In Vitro 2018; 47:63-71. [DOI: 10.1016/j.tiv.2017.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 01/03/2023]
|
41
|
Jafari-Sabet M, Mofidi H, Attarian-Khosroshahi MS. NMDA receptors in the dorsal hippocampal area are involved in tramadol state-dependent memory of passive avoidance learning in mice. Can J Physiol Pharmacol 2018; 96:45-50. [DOI: 10.1139/cjpp-2017-0228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise neurobiological mechanisms of tramadol abuse underlying the cognitive function are still unknown. The aim of the present study was to examine the possible effects of intra-CA1 injections of N-methyl-d-aspartate (NMDA), a glutamate NMDA receptor (NMDAR) agonist, and d,l-2-amino-5-phosphonopentanoic acid (DL-AP5), a competitive NMDAR antagonist, on tramadol state-dependent memory. A single-trial step-down passive avoidance task was used for the assessment of memory retrieval in adult male NMRI mice. Post-training i.p. administration of an atypical μ-opioid receptor agonist, tramadol (2.5 and 5 mg/kg), dose-dependently induced impairment of memory retention. Pre-test injection of tramadol (2.5 and 5 mg/kg) induced state-dependent retrieval of the memory acquired under post-training administration of tramadol (5 mg/kg) influence. Pre-test intra-CA1 injection of NMDA (10−5 and 10−4 μg/mouse) 5 min before the administration of tramadol (5 mg/kg, i.p.) dose-dependently inhibited tramadol state-dependent memory. Pre-test intra-CA1 injection of DL-AP5 (0.25 and 0.5 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (5 mg/kg). Pre-test administration of DL-AP5 (0.25 and 0.5 μg/mouse) with an ineffective dose of tramadol (1.25 mg/kg) restored the retrieval and induced tramadol state-dependent memory. It can be concluded that dorsal hippocampal NMDAR mechanisms play an important role in the modulation of tramadol state-dependent memory.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mofidi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Sadegh Attarian-Khosroshahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Abdelaleem SA, Hassan OA, Ahmed RF, Zenhom NM, Rifaai RA, El-Tahawy NF. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study. J Toxicol 2017; 2017:9815853. [PMID: 29279713 PMCID: PMC5723970 DOI: 10.1155/2017/9815853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this study. The rats were divided into 4 groups (control group, tramadol-treated group, and withdrawal groups). Tramadol was given to albino rats at a dose of 80 mg/kg body weight for 3 months and after withdrawal periods (7-15 days) rats were sacrificed. Long term use of tramadol induced severe histopathological changes in adrenal glands. Tramadol decreased the levels of serum cortisol and DHEAS hormones. In addition, it increased the level of adrenal MDA and decreased the genetic expression of glutathione peroxidase and thioredoxin reductase in adrenal gland tissues. All these changes started to return to normal after withdrawal of tramadol. Thus, it was confirmed that long term use of tramadol can induce severe adrenal insufficiency.
Collapse
Affiliation(s)
| | - Osama A. Hassan
- Forensic Medicine & Toxicology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rasha F. Ahmed
- Biochemistry Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nagwa M. Zenhom
- Biochemistry Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rehab A. Rifaai
- Histology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | | |
Collapse
|
43
|
Mehdizadeh H, Pourahmad J, Taghizadeh G, Vousooghi N, Yoonessi A, Naserzadeh P, Behzadfar L, Rouini MR, Sharifzadeh M. Mitochondrial impairments contribute to spatial learning and memory dysfunction induced by chronic tramadol administration in rat: Protective effect of physical exercise. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:426-433. [PMID: 28757160 DOI: 10.1016/j.pnpbp.2017.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/06/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023]
Abstract
Despite the worldwide use of tramadol, few studies have been conducted about its effects on memory and mitochondrial function, and controversial results have been reported. Recently, there has been an increasing interest in physical exercise as a protective approach to neuronal and cognitive impairments. Therefore, the aim of this study was to investigate the effects of physical exercise on spatial learning and memory and brain mitochondrial function in tramadol-treated rats. After completion of 2-week (short-term) and 4-week (long-term) treadmill exercise regimens, male Wistar rats received tramadol (20, 40, 80mg/kg/day) intraperitoneally for 30days. Then spatial learning and memory was assessed by Morris water maze test (MWM). Moreover, brain mitochondrial function was evaluated by determination of mitochondrial reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), mitochondrial swelling and cytochrome c release from mitochondria. Chronic administration of tramadol impaired spatial learning and memory as well as brain mitochondrial function as indicated by increased ROS level, MMP collapse, increased mitochondrial swelling and cytochrome c release from mitochondria. Conversely, treadmill exercise significantly attenuated the impairments of spatial learning and memory and brain mitochondrial dysfunction induced by tramadol. The results revealed that chronic tramadol treatment caused memory impairments through induction of brain mitochondrial dysfunction. Furthermore, pre-exposure to physical exercise markedly mitigated these impairments through its positive effects on brain mitochondrial function.
Collapse
Affiliation(s)
- Hajar Mehdizadeh
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, Faculty of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran; Rehabilitation Research Center, Faculty of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Yoonessi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ladan Behzadfar
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Omar NM, Mohammed MA. The impact of black seed oil on tramadol-induced hepatotoxicity: Immunohistochemical and ultrastructural study. Acta Histochem 2017; 119:543-554. [PMID: 28619287 DOI: 10.1016/j.acthis.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/21/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
The natural herb, black seed (Nigella Sativa; NS) is one of the most important elements of folk medicine. The aim was to evaluate the impact of Nigella Sativa Oil (NSO) on the changes induced by tramadol in rat liver. Twenty four albino rats were used. CONTROL GROUP given intraperitoneal and oral saline for 30days. TR-group: given intraperitoneal tramadol (20, 40, 80mg/kg/day) in the first, middle and last 10days of the experiment, respectively. TR+NS group: administered intraperitoneal tramadol in similar doses to TR-group plus oral NSO (4ml/kg/day) for 30days. Immunohistochemical, electron microscopic, biochemical and statistical studies were performed. TR-group displayed disarranged hepatic architecture, hepatic congestion, hemorrhage and necrosis. Apoptotic hepatocytes, mononuclear cellular infiltration and a significant increase in the number of anti-CD68 positive cells were observed. Ultrastructurally, hepatocytes showed shrunken nuclei, swollen mitochondria, many lysosomes and autophagic vacuoles. Activated Ito and Von Kupffer cells were also demonstrated. Elevated serum levels of AST, ALT, ALP and bilirubin were noticed. NSO administration resulted in preservation of hepatic histoarchitecture and ultrastructure and significant reductions in the number of anti-CD68 positive cells and serum levels of liver seromarkers. In conclusion, NSO administration could mitigate the alterations induced by tramadol in rat liver.
Collapse
|
45
|
Ray JA, Kushnir MM, Meikle AW, Sindt JE, Strathmann FG. An exploratory study Evaluating the impact of opioid and non-opioid pain medications on serum/plasma free testosterone and free estradiol concentrations. Drug Test Anal 2017; 9:1555-1560. [DOI: 10.1002/dta.2174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Julie A. Ray
- ARUP Institute for Clinical and Experimental Pathology; 500 Chipeta Way Salt Lake City UT 84108 USA
| | - Mark M. Kushnir
- ARUP Institute for Clinical and Experimental Pathology; 500 Chipeta Way Salt Lake City UT 84108 USA
| | - A. Wayne Meikle
- Department of Medicine; University of Utah; 30 N. 1900 E Salt Lake City UT 84132 USA
| | - Jill E. Sindt
- Department of Anesthesiology; University of Utah; 30 N. 1900 E Salt Lake City 84132 USA
| | - Frederick G. Strathmann
- ARUP Institute for Clinical and Experimental Pathology; 500 Chipeta Way Salt Lake City UT 84108 USA
- Department of Pathology; University of Utah; 15 N Medical Drive Salt Lake City UT 84112 USA
| |
Collapse
|
46
|
Oliveira RDCSD, Brito MVH, Ribeiro Júnior RFG, Oliveira LOD, Monteiro AM, Brandão FMV, Cavalcante LCDC, Gouveia EHH, Henriques HYB. Influence of remote ischemic conditioning and tramadol hydrochloride on oxidative stress in kidney ischemia/reperfusion injury in rats. Acta Cir Bras 2017; 32:229-235. [DOI: 10.1590/s0102-865020170030000007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/15/2017] [Indexed: 11/21/2022] Open
|
47
|
Pain Medications and Male Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1034:39-57. [DOI: 10.1007/978-3-319-69535-8_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Hyperprolactinemia contributes to reproductive deficit in male rats chronically administered PDE5 inhibitors (sildenafil and tadalafil) and opioid (tramadol). ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Nna VU, Osim EE. Testicular toxicity following separate and combined administration of PDE5 inhibitors and opioid: assessment of recovery following their withdrawal. Andrologia 2016; 49. [DOI: 10.1111/and.12669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- V. U. Nna
- Department of Physiology; Faculty of Basic Medical Sciences; College of Medical Sciences; University of Calabar; Calabar Cross River State Nigeria
| | - E. E. Osim
- Department of Physiology; Faculty of Basic Medical Sciences; College of Medical Sciences; University of Calabar; Calabar Cross River State Nigeria
| |
Collapse
|
50
|
Abdel-Hamid IA, Andersson KE, Waldinger MD, Anis TH. Tramadol Abuse and Sexual Function. Sex Med Rev 2016; 4:235-246. [DOI: 10.1016/j.sxmr.2015.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/24/2022]
|