1
|
Rees T, Hendrikse E, Hay D, Walker C. Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. Br J Pharmacol 2022; 179:381-399. [PMID: 34187083 PMCID: PMC9441195 DOI: 10.1111/bph.15605] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
The CGRP system has emerged as a key pharmacological target for the treatment of migraine. However, some individuals who suffer from migraine have low or no response to anti-CGRP or other treatments, suggesting the need for additional clinical targets. CGRP belongs to the calcitonin family of peptides, which includes calcitonin, amylin, adrenomedullin and adrenomedullin 2. These peptides display a range of pro-nociceptive and anti-nociceptive actions, in primary headache conditions such as migraine. Calcitonin family peptides also show expression at sites relevant to migraine and pain. This suggests that calcitonin family peptides and their receptors, beyond CGRP, may be therapeutically useful in the treatment of migraine and other pain disorders. This review considers the localisation of the calcitonin family in peripheral pain pathways and discusses how they may contribute to migraine and pain. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- T.A. Rees
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E.R Hendrikse
- School of Biological Science, University of Auckland, Auckland, NZ
| | - D.L. Hay
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| | - C.S Walker
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| |
Collapse
|
2
|
Yao R, Ren L, Wang S, Zhang M, Yang K. Euxanthone inhibits traumatic spinal cord injury via anti-oxidative stress and suppression of p38 and PI3K/Akt signaling pathway in a rat model. Transl Neurosci 2021; 12:114-126. [PMID: 33777443 PMCID: PMC7969821 DOI: 10.1515/tnsci-2021-0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Owing to neurite promoting, antioxidant and anti-inflammatory effects of Euxanthone (Eux), the investigation was aimed to probe the neuroprotective efficacy of Eux against traumatic spinal cord injury (t-SCI) in rats and whether Eux can improve neuropathic function in t-SCI. METHOD Sprague-Dawley (SD) rats were randomized in - Sham, t-SCI, Eux30, and Eux60 (t-SCI + 30 and 60 mg/kg respectively). Animals with compression force-induced t-SCI were subjected to estimation of locomotor functions. Spinal cord water content and Evans blue (EB) effusion were determined for quantifying edema and intactness of the spinal cord. Oxidative stress and immunochemical markers were quantified by ELISA and western blotting. RESULTS Findings revealed that Eux60 group animals had greater Basso, Beattie, and Bresnahan (BBB) and (incline plane test) IPT score indicating improved locomotor functions. There was a reduction in the spinal edema and water content after Eux treatment, together with lowering of oxidative stress markers. The expression of IL-6, IL-12, IL-1β, caspase-3, RANKL, TLR4, NF-κB, p-38, PI3K, and Akt in spinal cord tissues of t-SCI-induced rats was lowered after Eux treatment. CONCLUSION Overall, the investigation advocates that Eux attenuates t-SCI and associated inflammation, oxidative damage, and resulting apoptosis via modulation of TLR4/NF-κB/p38 and PI3K/Akt signaling cascade.
Collapse
Affiliation(s)
- Rubin Yao
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| | - Lirong Ren
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| | - Shiyong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| | - Ming Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| | - Kaishun Yang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| |
Collapse
|
3
|
Zou L, Gong Y, Liu S, Liang S. Natural compounds acting at P2 receptors alleviate peripheral neuropathy. Brain Res Bull 2018; 151:125-131. [PMID: 30599217 DOI: 10.1016/j.brainresbull.2018.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/29/2022]
Abstract
Neuropathic pain is generally resistant to currently available treatments, and it is often a consequence of nerve injury due to surgery, diabetes or infection. Myocardial ischemic nociceptive signaling increases the sympathoexcitatory reflex to aggravate myocardial injury. Elucidation of the pathogenetic factors might provide a target for optimal treatment. Abundant evidence in the literature suggests that P2X and P2Y receptors play important roles in signal transmission. Traditional Chinese medicines, such as emodin, puerarin and resveratrol, antagonize nociceptive transmission mediated by purinergic 2 (P2) receptors in primary afferent neurons. This review summarizes recently published data on P2 receptor-mediated neuropathic pain and myocardial ischemia in dorsal root ganglia (DRG), superior cervical ganglia (SCG) and stellate ganglia (SG), with a special focus on the beneficial role of natural compounds.
Collapse
Affiliation(s)
- Lifang Zou
- Neuropharmacological Labratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, Peoples Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yingxin Gong
- Undergraduate student of the First Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Neuropharmacological Labratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, Peoples Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Neuropharmacological Labratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, Peoples Republic of China; Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
4
|
Yin W, Nie Y, Chen L, Wang Q, Liu S, He X, Wang W. Deregulation of microRNA-193b affects the proliferation of liver cancer via myeloid cell leukemia-1. Oncol Lett 2018; 15:2781-2788. [PMID: 29435004 PMCID: PMC5778835 DOI: 10.3892/ol.2017.7690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/23/2017] [Indexed: 01/30/2023] Open
Abstract
Deregulation of microRNA (miR)-193b has been revealed to be associated with the proliferation of liver cells. However, the interaction between miR-193b and their targets inducing liver cancer remains largely unknown. The aim of the present study was to investigate the hypothesis that miR-193b affects the proliferation of liver cancer cells. In the present study, the overall survival of patients with liver cancer and low fold change of miR-193b was higher compared with that of patients with liver cancer patients and high fold change of miR-193b. The expression level of myeloid cell leukemia-1 (Mcl-1) in patients with liver cancer was lower compared with in the control group. The results of the present study demonstrated that downregulation of miR-193b suppressed the proliferation and induced apoptosis of liver cancer cells, and inhibited the Mcl-1 protein expression level in liver cancer cells. Upregulation of miR-193b increased cell proliferation and decreased apoptosis of liver cancer cells and promoted the expression level of Mcl-1 protein. The results of the present study demonstrated that the expression of miR-193b as a novel tumor suppressor serves an important role in the proliferation of liver cancer cells by mediating Mcl-1 expression.
Collapse
Affiliation(s)
- Wenjun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanhua University, Hengyang, Hunan 421001, P.R. China
| | - Yuehua Nie
- Department of Radiation Oncology, The First Affiliated Hospital of Nanhua University, Hengyang, Hunan 421001, P.R. China
| | - Lingying Chen
- Department of Blood Transfusion, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan 421001, P.R. China
| | - Quipping Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan 421001, P.R. China
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan 421001, P.R. China
| | - Xiusheng He
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanhua University, Hengyang, Hunan 421001, P.R. China
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
5
|
Xiong W, Tan M, He L, Ou X, Jin Y, Yang G, Huang L, Shen Y, Guan S, Xu C, Li G, Liu S, Xu H, Liang S, Gao Y. Inhibitory effects of tetramethylpyrazine on pain transmission of trigeminal neuralgia in CCI-ION rats. Brain Res Bull 2017; 134:72-78. [PMID: 28710025 DOI: 10.1016/j.brainresbull.2017.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/04/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022]
Abstract
Tetramethylpyrazine (TMP) has anti-inflammatory effects and is used to treat cerebral ischemic injury, but the mechanism of TMP on neural protection is not clear. Trigeminal neuralgia (TN) is a facial pain syndrome that is characterized by paroxysmal, shock-like pain attacks located in the somatosensory distribution of the trigeminal nerve. P2X3 receptor plays a crucial role in facilitating pain transmission. The present study investigates the effects of TMP on trigeminal neuralgia transmission mediated by P2X3 receptor of the trigeminal ganglia (TG). Chronic constriction injury of the infraorbital branch of the trigeminal nerve (CCI-ION) was used as a trigeminal neuralgia model. On day 15 after surgery, there was a significant decline in the mechanical hyperalgesia threshold in the territory of the ligated infraorbital nerve in the TN group, and an increase in expression of P2X3 receptor in the TG of the TN group compared with the Sham group. After treatment with TMP or A-317491, the mechanical hyperalgesia threshold of TN rats was significantly higher, and expression of P2X3 receptor in the TG noticeably declined compared with the TN group. Phosphorylation of p38 and ERK1/2 in the TN group was stronger than in the Sham group. However, the phosphorylation of p38 and ERK1/2 in the TN+TMP group and TN+A-317491 group was much lower than in the TN group. TMP significantly inhibited the ATP activated currents in HEK293 cells transfected with a P2X3 plasmid. Thus, TMP might have inhibitory effects on trigeminal neuralgia by suppressing the expression of P2X3 receptor in the TG and the phosphorylation of p38 and ERK1/2 in the TG.
Collapse
Affiliation(s)
- Wei Xiong
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Mengxia Tan
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China
| | - Lingkun He
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xiaoyan Ou
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Youhong Jin
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Guo Yang
- Queen Mary college of grade 2013, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Liping Huang
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China
| | - Yulin Shen
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China
| | - Shu Guan
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China
| | - Changshui Xu
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China
| | - Hong Xu
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China.
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
6
|
Janzadeh A, Nasirinezhad F, Masoumipoor M, Jameie SB, hayat P. Photobiomodulation therapy reduces apoptotic factors and increases glutathione levels in a neuropathic pain model. Lasers Med Sci 2016; 31:1863-1869. [DOI: 10.1007/s10103-016-2062-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 08/22/2016] [Indexed: 01/26/2023]
|
7
|
ZHANG PENG, MA XUN. Effect of rutin on spinal cord injury through inhibition of the expression of MIP-2 and activation of MMP-9, and downregulation of Akt phosphorylation. Mol Med Rep 2015; 12:7554-60. [DOI: 10.3892/mmr.2015.4357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 08/25/2015] [Indexed: 11/06/2022] Open
|