1
|
Zhang W, Guo C, Li Y, Wang H, Wang H, Wang Y, Wu T, Wang H, Cheng G, Man J, Chen S, Fu S, Yang L. Mitophagy mediated by HIF-1α/FUNDC1 signaling in tubular cells protects against renal ischemia/reperfusion injury. Ren Fail 2024; 46:2332492. [PMID: 38584135 PMCID: PMC11000611 DOI: 10.1080/0886022x.2024.2332492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Kidney Diseases, Lanzhou, China
| | - Chao Guo
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Hao Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huabing Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Yingying Wang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Tingting Wu
- Department of Functional Examination in Children, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huinan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Gang Cheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiangwei Man
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Siyu Chen
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Shengjun Fu
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Li Yang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Urology, Lanzhou, China
| |
Collapse
|
2
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2024:10.1007/s11010-024-05056-3. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
3
|
Juncos LA, Wieruszewski PM, Kashani K. Pathophysiology of Acute Kidney Injury in Critical Illness: A Narrative Review. Compr Physiol 2022; 12:3767-3780. [PMID: 36073750 DOI: 10.1002/cphy.c210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute kidney injury (AKI) is a syndrome that entails a rapid decline in kidney function with or without injury. The consequences of AKI among acutely ill patients are dire and lead to higher mortality, morbidity, and healthcare cost. To prevent AKI and its short and long-term repercussions, understanding its pathophysiology is essential. Depending on the baseline kidney histology and function reserves, the number of kidney insults, and the intensity of each insult, the clinical presentation of AKI may differ. While many factors are capable of inducing renal injury, they can be categorized into a few processes. The three primary processes reported in the literature are hemodynamic changes, inflammatory reactions, and nephrotoxicity. The majority of patients with AKI will suffer from more than one during their development and/or progression of AKI. Moreover, the development of one usually leads to the instigation of another. Thus, the interactions and progression between these mechanisms may determine the severity and duration of the AKI. Other factors such as organ crosstalk and how our concurrent therapies interact with these mechanisms complicate the pathophysiology of the progression of the AKI even further. In this narrative review article, we describe these three main pathophysiological processes that lead to the development and progression of AKI. © 2022 American Physiological Society. Compr Physiol 12: 1-14, 2022.
Collapse
Affiliation(s)
- Luis A Juncos
- Division of Nephrology, Central Arkansas Veterans' Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Patrick M Wieruszewski
- Division of Hospital Pharmacy, Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y, Yue C, Cui X, Zhao Q, Liu S, Yang Y, Zhang D, Cao Q, Gao X. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol 2022; 51:102262. [PMID: 35180475 PMCID: PMC8857079 DOI: 10.1016/j.redox.2022.102262] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
|
5
|
Xie D, Wang J, Hu G, Chen C, Yang H, Ritter JK, Qu Y, Li N. Kidney-Targeted Delivery of Prolyl Hydroxylase Domain Protein 2 Small Interfering RNA with Nanoparticles Alleviated Renal Ischemia/Reperfusion Injury. J Pharmacol Exp Ther 2021; 378:235-243. [PMID: 34103333 PMCID: PMC11047054 DOI: 10.1124/jpet.121.000667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Inhibition of hypoxia-inducible factor-prolyl hydroxylase (PHD) has been shown to protect against various kidney diseases. However, there are controversial reports on the effect of PHD inhibition in renoprotection. The present study determined whether delivery of PHD2 small interfering RNA (siRNA) using an siRNA carrier, folic acid (FA)-decorated polyamidoamine dendrimer generation 5 (G5-FA), would mainly target kidneys and protect against renal ischemia/reperfusion injury (I/R). The renal I/R was generated by clipping the renal pedicle for 30 minutes in uninephrectomized mice. Mice were sacrificed 48 hours after I/R. Normal saline or G5-FA complexed with control or PHD2 siRNA was injected via tail vein 24 hours before ischemia. After the injection of near-infrared fluorescent dye-labeled G5-FA, the fluorescence was mainly detected in kidneys but not in other organs. The reduction of PHD2 mRNA and protein was only observed in kidneys but not in other organs after injection of PHD2-siRNA-G5-FA complex. The injection of PHD2-siRNA-G5-FA significantly alleviated renal I/R injury, as shown by the inhibition of increases in serum creatinine and blood urea nitrogen, the blockade of increases in kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, and the improvement of histologic damage compared with mice treated with control siRNA. PHD2 siRNA can be delivered specifically into kidneys using G5-FA, and that local knockdown of PHD2 gene expression within the kidney alleviates renal I/R injury. Therefore, G5-FA is an efficient siRNA carrier to deliver siRNA into the kidney, and that local inhibition of PHD2 within the kidney may be a potential strategy for the management of acute I/R injury. SIGNIFICANCE STATEMENT: Folic acid (FA)-decorated polyamidoamine dendrimer generation 5 (G5-FA) was demonstrated to be an effective carrier to deliver small interfering RNA (siRNA) into kidneys. Delivery of prolyl hydroxylase domain protein 2 siRNA with G5-FA effectively protected the kidneys against the acute renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dengpiao Xie
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Juan Wang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Gaizun Hu
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Chaoling Chen
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Hu Yang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Joseph K Ritter
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Yun Qu
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| |
Collapse
|
6
|
Wu M, Chen W, Miao M, Jin Q, Zhang S, Bai M, Fan J, Zhang Y, Zhang A, Jia Z, Huang S. Anti-anemia drug FG4592 retards the AKI-to-CKD transition by improving vascular regeneration and antioxidative capability. Clin Sci (Lond) 2021; 135:1707-1726. [PMID: 34255035 DOI: 10.1042/cs20210100] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Acute kidney injury (AKI) is a known risk factor for the development of chronic kidney disease (CKD), with no satisfactory strategy to prevent the progression of AKI to CKD. Damage to the renal vascular system and subsequent hypoxia are common contributors to both AKI and CKD. Hypoxia-inducible factor (HIF) is reported to protect the kidney from acute ischemic damage and a novel HIF stabilizer, FG4592 (Roxadustat), has become available in the clinic as an anti-anemia drug. However, the role of FG4592 in the AKI-to-CKD transition remains elusive. In the present study, we investigated the role of FG4592 in the AKI-to-CKD transition induced by unilateral kidney ischemia-reperfusion (UIR). The results showed that FG4592, given to mice 3 days after UIR, markedly alleviated kidney fibrosis and enhanced renal vascular regeneration, possibly via activating the HIF-1α/vascular endothelial growth factor A (VEGFA)/VEGF receptor 1 (VEGFR1) signaling pathway and driving the expression of the endogenous antioxidant superoxide dismutase 2 (SOD2). In accordance with the improved renal vascular regeneration and redox balance, the metabolic disorders of the UIR mice kidneys were also attenuated by treatment with FG4592. However, the inflammatory response in the UIR kidneys was not affected significantly by FG4592. Importantly, in the kidneys of CKD patients, we also observed enhanced HIF-1α expression which was positively correlated with the renal levels of VEGFA and SOD2. Together, these findings demonstrated the therapeutic effect of the anti-anemia drug FG4592 in preventing the AKI-to-CKD transition related to ischemia and the redox imbalance.
Collapse
Affiliation(s)
- Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Weiyi Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Qianqian Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Shengnan Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Jiaojiao Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
7
|
Wu Y, Yang B. Erythropoietin Receptor/β Common Receptor: A Shining Light on Acute Kidney Injury Induced by Ischemia-Reperfusion. Front Immunol 2021; 12:697796. [PMID: 34276689 PMCID: PMC8278521 DOI: 10.3389/fimmu.2021.697796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Acute kidney injury (AKI) is a health problem worldwide, but there is a lack of early diagnostic biomarkers and target-specific treatments. Ischemia-reperfusion (IR), a major cause of AKI, not only induces kidney injury, but also stimulates the self-defense system including innate immune responses to limit injury. One of these responses is the production of erythropoietin (EPO) by adjacent normal tissue, which is simultaneously triggered, but behind the action of its receptors, either by the homodimer EPO receptor (EPOR)2 mainly involved in erythropoiesis or the heterodimer EPOR/β common receptor (EPOR/βcR) which has a broad range of biological protections. EPOR/βcR is expressed in several cell types including tubular epithelial cells at low levels or absent in normal kidneys, but is swiftly upregulated by hypoxia and inflammation and also translocated to cellular membrane post IR. EPOR/βcR mediates anti-apoptosis, anti-inflammation, pro-regeneration, and remodeling via the PI3K/Akt, STAT3, and MAPK signaling pathways in AKI. However, the precise roles of EPOR/βcR in the pathogenesis and progression of AKI have not been well defined, and its potential as an earlier biomarker for AKI diagnosis and monitoring repair or chronic progression requires further investigation. Here, we review biological functions and mechanistic signaling pathways of EPOR/βcR in AKI, and discuss its potential clinical applications as a biomarker for effective diagnosis and predicting prognosis, as well as directing cell target drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, China.,Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Yang
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
8
|
Del Vecchio L, Locatelli F. Hypoxia response and acute lung and kidney injury: possible implications for therapy of COVID-19. Clin Kidney J 2020; 13:494-499. [PMID: 32905208 PMCID: PMC7467604 DOI: 10.1093/ckj/sfaa149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic of unprecedented severity affecting millions of people around the world and causing several hundred thousands of deaths. The presentation of the disease ranges from asymptomatic manifestations through to acute respiratory distress syndrome with the necessity of mechanical ventilation. Cytokine storm and maladaptive responses to the viral spread in the body could be responsible for the severity of disease. Many patients develop acute kidney injury (AKI) during the course of their disease, especially in more severe cases. Many factors could cause kidney damage during infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. It is still unclear whether direct viral damage or the overexpression of cytokines and inflammatory factors are preeminent. According to autoptic studies, in most of the cases, AKI is due proximal tubular damage. However, cases of collapsing focal segmental glomerulosclerosis were reported as well in the absence of signs of direct viral infection of the kidney. Considering that severe hypoxia is a hallmark of severe SARS-CoV-2 infection, the involvement of the hypoxia-inducible factor (HIF) system is very likely, possibly influencing the inflammatory response and outcome in both the lungs and kidneys. Several bodies of evidence have shown a possible role of the HIF pathway during AKI in various kidney disease models. Similar observations were made in the setting of acute lung injury. In both organs, HIF activation by means of inhibition of the prolyl-hydroxylases domain (PHD) could be protective. Considering these promising experimental data, we hypothesize that PHD inhibitors could be considered as a possible new therapy against severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Francesco Locatelli
- Past Director, Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, ASST Lecco, Lecco, Italy
| |
Collapse
|
9
|
Wei L, Qin Y, Jiang L, Yu X, Xi Z. PPARγ and mitophagy are involved in hypoxia/reoxygenation-induced renal tubular epithelial cells injury. J Recept Signal Transduct Res 2019; 39:235-242. [PMID: 31538845 DOI: 10.1080/10799893.2019.1660894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Renal tubular epithelial cell (RTEC) injury is the main cause and common pathological process of various renal diseases. Mitochondrial dysfunction (MtD) is a pathological process after renal injury. Mitophagy is vital for mitochondrial function. Hypoxia is a common cause of RTEC injury. Peroxisome proliferator-activated receptor γ (PPARγ) is involved in cell proliferation, apoptosis, and inflammation. Previous studies have shown that the low expression of PPARγ might be involved in hypoxia-induced RTEC injury. The present study aimed to investigate the correlation between PPARγ and mitophagy in damaged RTEC in the hypoxia/reoxygenation (HR) model. The results showed that HR inhibited the expression of PPARγ, but increased the expression of LC3II, Atg5, SQSTM1/P62, and PINK1 in a time-dependent manner. Moreover, mitochondrial DNA (mt DNA) copy number, mitochondria membrane potential (MMP) levels, ATP content, and cell viability were decreased in hypoxic RTECs, the expression of SQSTM1/P62 and PINK1, the release of cytochrome c (cyt C), and production of reactive oxygen species (ROS) were increased. Mitochondrial-containing autophagosomes (APs) were detected using transmission election microscope (TEM) and laser scanning confocal microscope (LSCM). Furthermore, PPARγ protein expression was negatively correlated with that of LC3II, PINK1, and the positive rate of RTEC-containing mitochondrial-containing APs (all p < .05), but positively correlated with cell viability, MMP level, and ATP content (all p < .05). These data suggested that PPARγ and mitophagy are involved in the RTEC injury process. Thus, a close association could be detected between PPARγ and mitophagy in HR-induced RTEC injury, albeit additional investigation is imperative.
Collapse
Affiliation(s)
- Luming Wei
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Yuanhan Qin
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Ling Jiang
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Xueyun Yu
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Zhiyang Xi
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| |
Collapse
|
10
|
Encinas JFA, Foncesca CH, Perez MM, Simões DP, da Costa Aguiar Alves B, Bacci MR, Maifrino LBM, Fonseca FLA, da Veiga GL. Role of hypoxia-inducible factor 1α as a potential biomarker for renal diseases-A systematic review. Cell Biochem Funct 2019; 37:443-451. [PMID: 31317578 DOI: 10.1002/cbf.3425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/01/2019] [Accepted: 06/26/2019] [Indexed: 01/14/2023]
Abstract
Renal cells need oxygen for homeostasis; it is known for adjusting cellular functioning and the energy obtainment have a broad relationship with cellular respiration, through the O2 bioavailability. O2 homeostasis regulation in the kidney is mediated by hypoxia-inducible factors (HIFs). HIF is divided into three α isoforms, represented by HIF-1α, HIF-2α, and HIF-3α in addition to three paralogs of HIF-1β; these are involved in some metabolic processes, as well as in the pathogenesis of several diseases. Renal biopsy analyses of patients and experimental animal models aim to understand the relationship between HIF and protection against developing renal diseases or the induction of their onset, being thus this molecule can be considered a potential biomarker of renal disease. We carried out a systematic review to which we included studies on HIF-1α and renal disease in the last 5 years (2013-2018) in researches with humans and/or animal model through searches in three databases: LILACS, PubMed, and SciELO by two researchers. We obtained 22 articles that discussed the relationship with HIF as inductor or protector against renal disease and no relation between HIF and renal. We observed controversies remain regarding the relation between of HIF with renal diseases; this may be related to the different intracellular pathways mediated by HIF-1α, thereby determining differentiated cellular responses.
Collapse
Affiliation(s)
| | - Carlos Henrique Foncesca
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil
| | - Matheus Moreira Perez
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil
| | - Diogo Pimenta Simões
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil.,Universidade Municipal de São Caetano do Sul/USCS - São Caetano do Sul, Sao Caetano do Sul, Brazil
| | | | - Marcelo Rodrigues Bacci
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil
| | | | - Fernando Luiz Affonso Fonseca
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil.,Universidade Federal de São Paulo/UNIFESP - Diadema, São Paulo, Brazil
| | - Glaucia Luciano da Veiga
- Department of Clinical Analysis, Faculdade de Medicina do ABC/FMABC - Santo André, Santo André, Brazil
| |
Collapse
|
11
|
Abstract
Pathophysiologically, the classification of acute kidney injury (AKI) can be divided into three categories: (1) prerenal, (2) intrinsic, and (3) postrenal. Emerging evidence supports the involvement of renal tubular epithelial cells and the innate and adaptive arms of the immune system in the pathogenesis of intrinsic AKI. Pro-inflammatory damage-associated molecular patterns, pathogen-associated molecular patterns, hypoxia inducible factors, toll-like receptors, complement system, oxidative stress, adhesion molecules, cell death, resident renal dendritic cells, neutrophils, T and B lymphocytes, macrophages, natural killer T cells, cytokines, and secreted chemokines contribute to the immunopathogenesis of AKI. However, other immune cells and pathways such as M2 macrophages, regulatory T cells, progranulin, and autophagy exhibit anti-inflammatory properties and facilitate kidney tissue repair after AKI. Thus, therapies for AKI include agents such as anti-inflammatory (e.g., recombinant alkaline phosphatase), antioxidants (iron chelators), and apoptosis inhibitors. In preclinical toxicity studies, drug-induced kidney injury can be seen after exposure to a nephrotoxicant test article due to immune mechanisms and dysregulation of innate, and/or adaptive cellular immunity. The focus of this review will be on intrinsic AKI, as it relates to the immune and renal systems cross talks focusing on the cellular and pathophysiologic mechanisms of AKI.
Collapse
Affiliation(s)
- Zaher A. Radi
- Drug Safety R&D, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| |
Collapse
|