1
|
Kamran S, Sinniah A, Chik Z, Nelli G, Alshawsh MA. Synergistic anti-tumorigenic effect of diosmetin in combination with 5-fluorouracil on human colon cancer xenografts in nude mice. Biochem Biophys Res Commun 2024; 735:150677. [PMID: 39265366 DOI: 10.1016/j.bbrc.2024.150677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
5-Fluorouracil (5-FU) is frequently used to treat colorectal cancer (CRC), but its clinical application is limited by its toxicity. Natural compounds have been combined with chemotherapeutic drugs to reduce chemotherapy-related toxicity. Diosmetin, a natural flavonoid, has demonstrated anticancer effects against CRC. This study investigated diosmetin's potential in combination with 5-FU using a murine model of HCT-116 colon cancer xenografts in nu/nu nude mice. HCT-116 cells were injected into the right flanks of mice, and once tumors reached a size of 50 mm3, the mice were treated with diosmetin (100 mg/kg), 5-FU (30 mg/kg), or a combination of both at two dose levels (100 + 30 mg/kg and 50 + 15 mg/kg) for 4 weeks. Blood and tumors were collected on the final day for further analysis. Mice treated with the higher combination dose exhibited the smallest tumor volume (330.91 ± 88.49 mm3). Biochemistry and histology analysis showed no toxicity or abnormalities in the liver, kidney, and heart with the combination therapy. Immunohistochemistry results revealed a notable reduction in the proliferation marker (Ki67) and inflammation marker (TLR4) in tumors from high-dose combination-treated mice. Moreover, immunofluorescence data indicated increased levels of apoptotic markers (Bax, Caspase-3, p53, p21) and downregulation of anti-apoptotic protein (Bcl-2) in the high-dose combination group. The findings suggest that 100 mg/kg of diosmetin combined with 30 mg/kg 5-FU significantly reduced tumor volume and had a less toxic effect on the heart compared to 5-FU monotherapy.
Collapse
Affiliation(s)
- Sareh Kamran
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia; Universiti Malaya Bioequivalence testing Centre, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Giribabu Nelli
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, 3168, Victoria, Australia.
| |
Collapse
|
2
|
Zhang Y, Luo C, Huang P, Cheng Y, Ma Y, Gao J, Ding H. Diosmetin Ameliorates HFD-induced Cognitive Impairments via Inhibiting Metabolic Disorders, Mitochondrial Dysfunction and Neuroinflammation in Male SD Rats. Mol Neurobiol 2024; 61:8069-8085. [PMID: 38460078 DOI: 10.1007/s12035-024-04083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Currently, accumulating evidence has indicated that overnutrition-associated obesity may result in not only metabolic dysregulations, but also cognitive impairments. This study aimed to investigate the protective effects of Diosmetin, a bioflavonoid compound with multiple biological functions, on cognitive deficits induced by a high fat diet (HFD) and the potential mechanisms. In the present study, oral administration of Diosmetin (25, 50 and 100 mg/kg) for 12 weeks significantly reduced the body weight, restored glucose tolerance and normalized lipid profiles in the serum and liver in HFD-induced obese rats. Diosmetin also significantly ameliorated depression-like behaviors and impaired spatial memory in multiple behavioral tests, including the open field test, elevated plus-maze and Morris water maze, which was in accordance with the decreased pathological changes and neuronal damage in different regions of hippocampus as suggested by H&E and Nissl staining. Notably, our results also indicated that Diosmetin could significantly improve mitochondrial dysfunction induced by HFD through upregulating genes involved in mitochondrial biogenesis and dynamics, increasing mitochondrial ATP levels and inhibiting oxidative stress. Moreover, the levels of key enzymes involved in the TCA cycle were also significantly increased upon Diosmetin treatment. Meanwhile, Diosmetin inhibited HFD-induced microglial overactivation and down-regulated inflammatory cytokines both in the serum and hippocampus. In conclusion, these results indicated that Diosmetin might be a novel nutritional intervention to prevent the occurrence and development of obesity-associated cognitive dysfunction via metabolic regulation and anti-inflammation.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Chunyun Luo
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Puxin Huang
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Yahong Cheng
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Yufang Ma
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Jiefang Gao
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Hong Ding
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China.
| |
Collapse
|
3
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Xu H, Yu S, Lin C, Dong D, Xiao J, Ye Y, Wang M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155409. [PMID: 38342018 DOI: 10.1016/j.phymed.2024.155409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China
| | - Shenglong Yu
- Department of Cardiovascular, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Chunxi Lin
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dingjun Dong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Campus, E-32004 Ourense, Spain
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China.
| |
Collapse
|
6
|
Varshney KK, Gupta JK, Srivastava R. Unveiling the Molecular Mechanism of Diosmetin and its Impact on Multifaceted Cellular Signaling Pathways. Protein Pept Lett 2024; 31:275-289. [PMID: 38629379 DOI: 10.2174/0109298665294109240323033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic, and anti-inflammatory activities. OBJECTIVE This comprehensive review was aimed to critically explore diverse pharmacological activities exhibited by diosmetin. Along with that, this review can also identify potential research areas with an elucidation of the multifactorial underlying signaling mechanism of action of diosmetin in different diseases. METHODS A comprehensive collection of evidence and insights was obtained from scientific journals and books from physical libraries and electronic platforms like Google Scholar and PubMed. The time frame selected was from year 1992 to July 2023. RESULTS The review delves into diosmetin's impact on cellular signaling pathways and its potential in various diseases. Due to its ability to modulate signaling pathways and reduce oxidative stress, it can be suggested as a potential versatile therapeutic agent for mitigating oxidative stressassociated pathogenesis. CONCLUSION The amalgamation of the review underscores diosmetin's promising role as a multifaceted therapeutic agent, highlighting its potential for drug development and clinical applications.
Collapse
Affiliation(s)
| | | | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Haynes AP, Desta S, Ahmad T, Neikirk K, Hinton A, Bloodworth N, Kirabo A. The Antioxidative Effects of Flavones in Hypertensive Disease. Biomedicines 2023; 11:2877. [PMID: 38001878 PMCID: PMC10669108 DOI: 10.3390/biomedicines11112877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is the leading remediable risk factor for cardiovascular morbidity and mortality in the United States. Excess dietary salt consumption, which is a catalyst of hypertension, initiates an inflammatory cascade via activation of antigen-presenting cells (APCs). This pro-inflammatory response is driven primarily by sodium ions (Na+) transporting into APCs by the epithelial sodium channel (ENaC) and subsequent NADPH oxidase activation, leading to high levels of oxidative stress. Oxidative stress, a well-known catalyst for hypertension-related illness development, disturbs redox homeostasis, which ultimately promotes lipid peroxidation, isolevuglandin production and an inflammatory response. Natural medicinal compounds derived from organic materials that are characterized by their anti-inflammatory, anti-oxidative, and anti-mutagenic properties have recently gained traction amongst the pharmacology community due to their therapeutic effects. Flavonoids, a natural phenolic compound, have these therapeutic benefits and can potentially serve as anti-hypertensives. Flavones are a type of flavonoid that have increased anti-inflammatory effects that may allow them to act as therapeutic agents for hypertension, including diosmetin, which is able to induce significant arterial vasodilation in several different animal models. This review will focus on the activity of flavones to illuminate potential preventative and potential therapeutic mechanisms against hypertension.
Collapse
Affiliation(s)
- Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Selam Desta
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC 20059, USA
| | - Taseer Ahmad
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Punjab, Pakistan
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Nathaniel Bloodworth
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| |
Collapse
|
8
|
Li HL, Wei YY, Li XH, Zhang SS, Zhang RT, Li JH, Ma BW, Shao SB, Lv ZW, Ruan H, Zhou HG, Yang C. Diosmetin has therapeutic efficacy in colitis regulating gut microbiota, inflammation, and oxidative stress via the circ-Sirt1/Sirt1 axis. Acta Pharmacol Sin 2022; 43:919-932. [PMID: 34262136 PMCID: PMC8976001 DOI: 10.1038/s41401-021-00726-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Diosmetin (3',5,7 -trihydroxy-4'-methoxy flavone) is a natural flavonoid compound in the citrus species, it exhibits a variety of pharmacological activities, but little is known of its effects on colitis. In this study we evaluated the therapeutic effects of diosmetin on mouse models of chronic and acute colitis. Chronic colitis was induced in mice by drinking water containing 3% dextran sulfate sodium (DSS) from D0 to D8, followed by administration of diosmetin (25, 50 mg · kg-1 · d-1) for another 8 days. Acute colitis was induced by drinking water containing 5% DSS from D0 to D7, the mice concomitantly received diosmetin (25, 50 mg · kg-1 · d-1) from D1 to D7. During the experiments, body weight and disease activity index (DAI) were assessed daily. After the mice were sacrificed, colon tissue and feces samples were collected, and colon length was measured. We showed that in both models, diosmetin administration significantly decreased DAI score and ameliorated microscopic colon tissue damage; increased the expression of tight junction proteins (occludin, claudin-1, and zonula occludens-1), and reduced the secretion of proinflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2 in colon tissue. We found that diosmetin administration remarkably inhibited colon oxidative damage by adjusting the levels of intracellular and mitochondrial reactive oxygen species, GSH-Px, SOD, MDA and GSH in colon tissue. The protection of diosmetin against intestinal epithelial barrier damage and oxidative stress were also observed in LPS-treated Caco-2 and IEC-6 cells in vitro. Furthermore, we demonstrated that diosmetin markedly increased the expression of Nrf2 and HO-1 and reduced the ratio of acetylated NF-κB and NF-κB by activating the circ-Sirt1/Sirt1 axis, which inhibited oxidative stress and inflammation in vivo and in vitro. Diosmetin reversed the effects of si-circSirt1 and si-Sirt1 in LPS-treated Caco-2 and IEC-6 cells. When the gut microbiota was analyzed in the mouse model of colitis, we found that diosmetin administration modulated the abundance of Bacteroidetes, Actinobacteria, Cyanobacteria and Firmicutes, which were crucial for inflammatory bowel disease. Our results have linked colitis to the circ-Sirt1/Sirt1 signaling pathway, which is activated by diosmetin. The results imply that diosmetin may be a novel candidate to alleviate DSS-induced colitis and can be a lead compound for future optimization and modification.
Collapse
Affiliation(s)
- Hai-long Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Yi-ying Wei
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Xiao-he Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Shan-shan Zhang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Ruo-tong Zhang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Jin-he Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Bo-wei Ma
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Shuai-bo Shao
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Zi-wei Lv
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Hao Ruan
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Hong-gang Zhou
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Cheng Yang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| |
Collapse
|
9
|
Anshen Buxin Liuwei Pill, a Mongolian Medicinal Formula, Could Protect H 2O 2-Induced H9c2 Myocardial Cell Injury by Suppressing Apoptosis, Calcium Channel Activation, and Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5023654. [PMID: 35178104 PMCID: PMC8843775 DOI: 10.1155/2022/5023654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
Background Anshen Buxin Liuwei pill (ABLP) is a Mongolian medicinal formula which has a therapeutic effect on the symptoms such as coronary heart disease, angina pectoris, arrhythmia, depression and irritability, palpitation, and short breath. However, its bioactivity against cardiac injury remains unclear. Methods The protective effect of ABLP was evaluated using H9c2 cells. Cell viability, intracellular Ca2+, reactive oxidative indices, and mitochondrial membrane potential (∆ψ) were assessed, respectively. The mRNA levels of Ca2+ channel-related genes (DHPR, RyR2, and SCN5A) and oxidative stress-related genes (Keap1, Nrf2, and HO-1) were measured by RT-PCR. Results 0.5–50 μg/mL ABLP could significantly decrease H2O2-induced cell injury by suppressing cell necrosis/apoptosis and excess oxidative stress, ameliorating the collapse of ∆ψ, and reducing intracellular Ca2+ concentration. Furthermore, 0.5–50 μg/mL ABLP reversed H2O2-induced imbalance in the mRNA levels of DHPR, RyR2, SCN5A, Keap1, Nrf2, and HO-1 gene in H9c2 cells, which further illustrate the mechanism. Conclusion ABLP provided protective and therapeutic benefits against H2O2-induced H9c2 cell injury, indicating that this formula can effectively treat coronary disease. In addition, the present study also provides an in-depth understanding of the pharmacological functions of ABLP, which may lead to further successful applications of Mongolian medicine.
Collapse
|
10
|
GENİŞEL M, YILDIZOĞLU F. Alleviation Effects of Diosmetin on H2O2-Induced Oxidative Damage in Human Erythrocytes. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.793336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Mo G, He Y, Zhang X, Lei X, Luo Q. Diosmetin exerts cardioprotective effect on myocardial ischaemia injury in neonatal rats by decreasing oxidative stress and myocardial apoptosis. Clin Exp Pharmacol Physiol 2020; 47:1713-1722. [PMID: 32219867 PMCID: PMC7540525 DOI: 10.1111/1440-1681.13309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022]
Abstract
Myocardial injury caused by the myocardial ischaemia (MI) is still a troublesome condition in the clinic, including apoptosis, oxidative stress and inflammation. Diosmetin inhibits the cellular apoptosis and inflammatory response and enhances antioxidant activity. So, this study was designed to investigate the cardioprotective effects of diosmetin on MI model neonatal rats. Forty Sprague Dawley (SD) rats 7 days old were randomly divided into five groups. Four groups of rats received diosmetin (50, 100, and 200 mg/kg) or vehicle (MI group) after ischaemia. Another group received vehicle without ischaemia to serve as a control group. Rats were pretreated with diosmetin intraperitoneally for 7 days and intoxicated with isoproterenol (ISO, 85 mg/kg, sc) on the last 2 days. The expression of apoptotic molecules, myocardial systolic function index, antioxidant enzymes and myocardial enzyme was analyzed. Compared with the control group, the proliferation marker proteins of Ki67 were increased significantly (P < .05), the MI group significantly increased the cardiac apoptosis, oxidative stress and myocardial enzymes, and weakened myocardial contractility. The levels of p-P65/P65 were increased significantly (P < .05) with decreased p-AKT/AKT and p-Nrf2/Nrf2 (P < .05). Nevertheless, pretreatment with diosmetin reversed these changes, especially high-dose group. In summary, diosmetin has significant potential as a therapeutic intervention to ameliorate myocardial injury after MI and provides the rationale for further clinical studies.
Collapse
Affiliation(s)
- GuoLiang Mo
- Department of PediatricAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Yong He
- Department of PediatricAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - XiaoQian Zhang
- The First Social Welfare introduction in Nan ChongNanchongChina
| | - Xia Lei
- Nobier Biotechnology Co.LtdChengduChina
| | - Qi Luo
- Department of PediatricAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| |
Collapse
|