1
|
Qian H, Song L, Wang L, Yang Q, Wu R, Du J, Zheng B, Liang W. FolIws1-driven nuclear translocation of deacetylated FolTFIIS ensures conidiation of Fusarium oxysporum. Cell Rep 2024; 43:114588. [PMID: 39110594 DOI: 10.1016/j.celrep.2024.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Plant diseases caused by fungal pathogens pose a great threat to crop production. Conidiation of fungi is critical for disease epidemics and serves as a promising drug target. Here, we show that deacetylation of the FolTFIIS transcription elongation factor is indispensable for Fusarium oxysporum f. sp. lycopersici (Fol) conidiation. Upon microconidiation, Fol decreases K76 acetylation of FolTFIIS by altering the level of controlling enzymes, allowing for its nuclear translocation by FolIws1. Increased nuclear FolTFIIS enhances the transcription of sporulation-related genes and, consequently, enables microconidia production. Deacetylation of FolTFIIS is also critical for the production of macroconidia and chlamydospores, and its homolog has similar functions in Botrytis cinerea. We identify two FolIws1-targeting chemicals that block the conidiation of Fol and have effective activity against a wide range of pathogenic fungi without harm to the hosts. These findings reveal a conserved mechanism of conidiation regulation and provide candidate agrochemicals for disease management.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Limin Song
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lulu Wang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianqian Yang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruihan Wu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Du
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bangxian Zheng
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Zhu Z, Yang M, Yang G, Zhang B, Cao X, Yuan J, Ge F, Wang S. PP2C phosphatases Ptc1 and Ptc2 dephosphorylate PGK1 to regulate autophagy and aflatoxin synthesis in the pathogenic fungus Aspergillus flavus. mBio 2023; 14:e0097723. [PMID: 37754565 PMCID: PMC10653812 DOI: 10.1128/mbio.00977-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Aspergillus flavus is a model filamentous fungus that can produce aflatoxins when it infects agricultural crops. This study evaluated the protein phosphatase 2C (PP2C) family as a potential drug target with important physiological functions and pathological significance in A. flavus. We found that two redundant PP2C phosphatases, Ptc1 and Ptc2, regulate conidia development, aflatoxin synthesis, autophagic vesicle formation, and seed infection. The target protein phosphoglycerate kinase 1 (PGK1) that interacts with Ptc1 and Ptc2 is essential to regulate metabolism and the autophagy process. Furthermore, Ptc1 and Ptc2 regulate the phosphorylation level of PGK1 S203, which is important for influencing aflatoxin synthesis. Our results provide a potential target for interdicting the toxicity of A. flavus.
Collapse
Affiliation(s)
- Zhuo Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohong Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Cai Y, Chen X, Li P, Ren W, Zhang Q, Wang Y, Jiang Y, Zhu P, Toyoda H, Xu L. Phosphorylation status of a conserved residue in the adenylate cyclase of Botrytis cinerea is involved in regulating photomorphogenesis, circadian rhythm, and pathogenicity. Front Microbiol 2023; 14:1112584. [PMID: 36876105 PMCID: PMC9975511 DOI: 10.3389/fmicb.2023.1112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Adenylate cyclase (AC) regulates growth, reproduction, and pathogenicity in many fungi by synthesizing cyclic adenosine monophosphate (cAMP) and activating downstream protein kinase A (PKA). Botrytis cinerea is a typical necrotrophic plant-pathogenic fungus. It shows a typical photomorphogenic phenotype of conidiation under light and sclerotia formation under dark; both are important reproduction structures for the dispersal and stress resistance of the fungus. The report of B. cinerea adenylate cyclase (BAC) mutation showed it affects the production of conidia and sclerotia. However, the regulatory mechanisms of the cAMP signaling pathways in photomorphogenesis have not been clarified. In this study, the S1407 site was proven to be an important conserved residue in the PP2C domain which poses a remarkable impact on the phosphorylation levels and enzyme activity of the BAC and the overall phosphorylation status of total proteins. The point mutation bacS1407P , complementation bacP1407S , phosphomimetic mutation bacS1407D , and phosphodeficient mutation bacS1407A strains were used for comparison with the light receptor white-collar mutant Δbcwcl1 to elucidate the relationship between the cAMP signaling pathway and the light response. The comparison of photomorphogenesis and pathogenicity phenotype, evaluation of circadian clock components, and expression analysis of light response transcription factor genes Bcltf1, Bcltf2, and Bcltf3 showed that the cAMP signaling pathway could stabilize the circadian rhythm that is associated with pathogenicity, conidiation, and sclerotium production. Collectively, this reveals that the conserved S1407 residue of BAC is a vital phosphorylation site to regulate the cAMP signaling pathway and affects the photomorphogenesis, circadian rhythm, and pathogenicity of B. cinerea.
Collapse
Affiliation(s)
- Yunfei Cai
- School of Life Science, East China Normal University, Shanghai, China
| | - Xue Chen
- School of Life Science, East China Normal University, Shanghai, China
| | - Peixuan Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Weiheng Ren
- School of Life Science, East China Normal University, Shanghai, China
| | - Qiang Zhang
- School of Life Science, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Science, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Science, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | | | - Ling Xu
- School of Life Science, East China Normal University, Shanghai, China
| |
Collapse
|
4
|
Xu Y, Li X, Liang W, Liu M. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in the Phytopathogenic Fungus Botrytis cinerea. Front Microbiol 2020; 11:585614. [PMID: 33329453 PMCID: PMC7728723 DOI: 10.3389/fmicb.2020.585614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Posttranslational modifications (PTMs) of the whole proteome have become a hot topic in the research field of epigenetics, and an increasing number of PTM types have been identified and shown to play significant roles in different cellular processes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly detected PTM, and the 2-hydroxyisobutyrylome has been identified in several species. Botrytis cinerea is recognized as one of the most destructive pathogens due to its broad host distribution and very large economic losses; thus the many aspects of its pathogenesis have been continuously studied. However, distribution and function of Khib in this phytopathogenic fungus are not clear. In this study, a proteome-wide analysis of Khib in B. cinerea was performed, and 5,398 Khib sites on 1,181 proteins were identified. Bioinformatics analysis showed that the 2-hydroxyisobutyrylome in B. cinerea contains both conserved proteins and novel proteins when compared with Khib proteins in other species. Functional classification, functional enrichment and protein interaction network analyses showed that Khib proteins are widely distributed in cellular compartments and involved in diverse cellular processes. Significantly, 37 proteins involved in different aspects of regulating the pathogenicity of B. cinerea were detected as Khib proteins. Our results provide a comprehensive view of the 2-hydroxyisobutyrylome and lay a foundation for further studying the regulatory mechanism of Khib in both B. cinerea and other plant pathogens.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxia Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020; 9:pathogens9110923. [PMID: 33171745 PMCID: PMC7695001 DOI: 10.3390/pathogens9110923] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen.
Collapse
|
6
|
Nunez‐Rodriguez JC, Ruiz‐Roldán C, Lemos P, Membrives S, Hera C. The phosphatase Ptc6 is involved in virulence and MAPK signalling in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2020; 21:206-217. [PMID: 31802599 PMCID: PMC6988432 DOI: 10.1111/mpp.12889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mitogen-activated kinase (MAPK) signalling pathways are involved in several important processes related to the development and virulence of Fusarium oxysporum. Reversible phosphorylation of the protein members of these pathways is a major regulator of essential biological processes. Among the phosphatases involved in dephosphorylation of MAPKs, type 2C protein phosphatases (PP2Cs) play important roles regulating many developmental strategies and stress responses in yeasts. Nevertheless, the PP2C family is poorly known in filamentous fungi. The F. oxysporum PP2C family includes seven proteins, but only Ptc1 has been studied so far. Here we show the involvement of Ptc6 in the stress response and virulence of F. oxysporum. Expression analysis revealed increased expression of ptc6 in response to cell wall and oxidative stresses. Additionally, targeted inactivation of ptc6 entailed enhanced susceptibility to cell wall stresses caused by Calcofluor White (CFW). We also demonstrate that the lack of Ptc6 deregulates both the Mpk1 phosphorylation induced by CFW and, more importantly, the Fmk1 dephosphorylation induced by pH acidification of the extracellular medium, indicating that Ptc6 is involved in the regulation of these MAPKs. Finally, we showed, for the first time, the involvement of a phosphatase in the invasive growth and virulence of F. oxysporum.
Collapse
Affiliation(s)
| | - Carmen Ruiz‐Roldán
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| | - Pedro Lemos
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| | - Sergio Membrives
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| | - Concepcion Hera
- Departamento de GeneticaUniversidad de CordobaCampus de Excelencia Agroalimentario CeiA3Cordoba14071Spain
| |
Collapse
|
7
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
8
|
Gandía M, Garrigues S, Hernanz-Koers M, Manzanares P, Marcos JF. Differential roles, crosstalk and response to the Antifungal Protein AfpB in the three Mitogen-Activated Protein Kinases (MAPK) pathways of the citrus postharvest pathogen Penicillium digitatum. Fungal Genet Biol 2019; 124:17-28. [DOI: 10.1016/j.fgb.2018.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
|
9
|
Yin Y, Wu S, Chui C, Ma T, Jiang H, Hahn M, Ma Z. The MAPK kinase BcMkk1 suppresses oxalic acid biosynthesis via impeding phosphorylation of BcRim15 by BcSch9 in Botrytis cinerea. PLoS Pathog 2018; 14:e1007285. [PMID: 30212570 PMCID: PMC6136818 DOI: 10.1371/journal.ppat.1007285] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cassette of the cell wall integrity (CWI) pathway is primarily responsible for orchestrating changes of cell wall. However, functions of this cassette in other cellular processes are not well understood. Here, we found that the Botrytis cinerea mutant of MAPK kinase (BcMkk1) displays more serious defects in mycelial growth, conidiation, responses to cell wall and oxidative stresses, but possesses less reduced virulence than the mutants of its upstream (BcBck1) and downstream (BcBmp3) kinases. Interestingly, BcMkk1, but not BcBck1 and BcBmp3, negatively regulates production of oxalic acid (OA) and activity of extracellular hydrolases (EHs) that are proposed to be virulence factors of B. cinerea. Moreover, we obtained evidence that BcMkk1 negatively controls OA production via impeding phosphorylation of the Per-Arnt-Sim (PAS) kinase BcRim15 by the Ser/Thr kinase BcSch9. In addition, the fungal Pro40 homolog BcPro40 was found to interact simultaneously with three MAPKs, implying that BcPro40 is a scaffold protein of the CWI pathway in B. cinerea. Taken together, results of this study reveal that BcMkk1 negatively modulates virulence via suppressing OA biosynthesis in B. cinerea, which provides novel insight into conserved and species-specific functions of the MAPK kinase in fungi. Botrytis cinerea causes pre- and postharvest diseases in more than 200 economically important crops. In this study, the roles of cell wall integrity (CWI)-related MAPK kinase BcMkk1in regulating B. cinerea virulence were investigated using genetic and biochemical approaches. We found that the MAPK kinase BcMkk1 positively regulates virulence via the CWI pathway. Unexpectedly, BcMkk1 also negatively regulates fungal virulence via restraining oxalic acid production, by impeding phosphorylation of the PAS kinase BcRim15 mediated by the kinase BcSch9. To our knowledge, this is the first report that a MAPK kinase can negatively modulate fungal virulence on host plants. Our results provide novel insight into biological functions of a MAPK kinase in fungal pathogenesis.
Collapse
Affiliation(s)
- Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Sisi Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chaonan Chui
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huixian Jiang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Matthias Hahn
- Department of Biology, Kaiserslautern University, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
10
|
Wang Q, An B, Hou X, Guo Y, Luo H, He C. Dicer-like Proteins Regulate the Growth, Conidiation, and Pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Front Microbiol 2018; 8:2621. [PMID: 29403443 PMCID: PMC5777394 DOI: 10.3389/fmicb.2017.02621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/15/2017] [Indexed: 11/17/2022] Open
Abstract
Colletotrichum gloeosporioides from Hevea brasiliensis is the hemibiotrophic fungi which could cause anthracnose in rubber trees. Dicer like proteins (DCL) were the core enzymes for generation of small RNAs. In the present study, the knocking-out mutants of two dicer like proteins encoding genes of C. gloeosporioides were constructed; and functions of two proteins were investigated. The results showed that DCL play important roles in regulating the growth, conidiation and pathogenicity of C. gloeosporioides; and there is a functional redundancy between DCL1 and DCL2. Microscopy analysis and DAB staining revealed that loss of penetration ability into the host cells, instead of the decreased growth rate, was the main cause for the impaired pathogenicity of the ΔDcl1ΔDcl2 double mutant. Proteomics analysis suggested that DCL proteins affected the expression of functional proteins to regulating multiple biological processes of C. gloeosporioides. These data lead to a better understanding of the functions of DCL proteins in regulating the development and pathogenesis of C. gloeosporioides.
Collapse
Affiliation(s)
- Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xingrong Hou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yunfeng Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
11
|
Zhou Y, Yang L, Wu M, Chen W, Li G, Zhang J. A Single-Nucleotide Deletion in the Transcription Factor Gene bcsmr1 Causes Sclerotial-Melanogenesis Deficiency in Botrytis cinerea. Front Microbiol 2017; 8:2492. [PMID: 29312200 PMCID: PMC5733056 DOI: 10.3389/fmicb.2017.02492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
Botrytis cinerea is an important plant pathogenic fungus with a wide range of host. It usually produces black-colored sclerotia (BS) due to deposition of 1,8-dihydroxynaphthalene melanin in sclerotial melanogenesis. Our previous study (Zhou et al., 2018) reported six B. cinerea isolates producing orange-colored sclerotia (OS) with deficiency in sclerotial melanogenesis. Comparison of ecological fitness (conidia, mycelia, sclerotia), natural distribution, and melanogenesis of selected BS and OS isolates suggests that sclerotia play an important role in the disease cycle caused by B. cinerea. However, the molecular mechanism for formation of the OS B. cinerea remains unknown. This study was done to unravel the molecular mechanism for the sclerotial melanogenesis deficiency in the OS isolates. We found that all the five sclerotial melanogenesis genes (bcpks12, bcygh1, bcbrn1/2, bcscd1) were down-regulated in OS isolates, compared to the genes in the BS isolates. However, the sclerotial melanogenesis-regulatory gene bcsmr1 had similar expression in both types of sclerotia, suggesting the sclerotial melanogenesis deficiency is due to loss-of-function of bcsmr1, rather than lack of expression of bcsmr1. Therefore, we cloned bcsmr1 from OS (bcsmr1OS ) and BS (bcsmr1BS ) isolates, and found a single-nucleotide deletion in bcsmr1OS . The single-nucleotide deletion caused formation of a premature stop codon in the open reading frame of bcsmr1OS , resulting in production of a 465-aa truncated protein. The transcription activity of the truncated protein was greatly reduced, compared to that of the 935-aa full-length protein encoded by bcsmr1BS in the BS isolates. The function of bcsmr1OS was partially complemented by bcsmr1BS . This study not only elucidated the molecular mechanism for formation of orange-colored sclerotia by the spontaneous mutant XN-1 of B. cinerea, but also confirmed the regulatory function of bcsmr1 in sclerotial melanogenesis of B. cinerea.
Collapse
Affiliation(s)
- Yingjun Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Laboratory of Biological Processing, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, United States
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
The Phosphatome of Medicinal and Edible Fungus Wolfiporia cocos. Curr Microbiol 2017; 75:124-131. [DOI: 10.1007/s00284-017-1356-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
13
|
Shao W, Zhang Y, Wang J, Lv C, Chen C. BcMtg2 is required for multiple stress tolerance, vegetative development and virulence in Botrytis cinerea. Sci Rep 2016; 6:28673. [PMID: 27346661 PMCID: PMC4921815 DOI: 10.1038/srep28673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 01/05/2023] Open
Abstract
In Saccharomyces cerevisiae, the Mtg2 gene encodes the Obg protein, which has an important function in assembling ribosomal subunits. However, little is known about the role of the Obg GTPase in filamentous fungi. In this study, we identified an Mtg2 ortholog, BcMtg2, in B. cinerea. The BcMtg2 deletion mutant showed a defect in spore production, conidial germination and sclerotial formation. Additionally, the mutant increased sensitivity to various environmental stresses. The BcMtg2 mutant exhibited dramatically decreased virulence on host plant tissues. BcMtg2 mutant showed increased sensitivity to osmotic and oxidative stresses, and to Congo red (cell wall stress agent). In the yeast complement assay, growth defects of yeast BY4741ΔMTG2 mutant were partly restored by genetic complementation of BcMtg2 under these environmental stresses. Additionally, compared with the parental strain and complement strain, the BcMtg2 deletion mutant displayed a minor glycerol response to osmosis stress. These defective phenotypes were recovered in the complement strain ΔBcMtg2C, which was created by adding the wild-type BcMtg2 gene to the ΔBcMtg2 mutant. The results of this study indicate that BcMtg2 has a necessary role in asexual development, environmental stress response and pathogenicity in B. cinerea.
Collapse
Affiliation(s)
- Wenyong Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chiyuan Lv
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Yang Q, Yu F, Yin Y, Ma Z. Correction: Involvement of Protein Tyrosine Phosphatases BcPtpA and BcPtpB in Regulation of Vegetative Development, Virulence and Multi-Stress Tolerance in Botrytis cinerea. PLoS One 2016; 11:e0151720. [PMID: 26974164 PMCID: PMC4790925 DOI: 10.1371/journal.pone.0151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Yun Y, Liu Z, Yin Y, Jiang J, Chen Y, Xu JR, Ma Z. Functional analysis of the Fusarium graminearum phosphatome. THE NEW PHYTOLOGIST 2015; 207:119-134. [PMID: 25758923 DOI: 10.1111/nph.13374] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Phosphatases are known to play important roles in the regulation of various cellular processes in eukaryotes. However, systematic characterization of the phosphatome has not been reported in phytopathogenic fungi. The wheat scab fungus Fusarium graminearum contains 82 putative phosphatases. The biological functions of each phosphatase were investigated in this study. Although 11 phosphatase genes appeared to be essential, deletion mutants of the other 71 phosphatase genes were obtained and characterized for changes in 15 phenotypes, including vegetative growth, nutrient response and virulence. Overall, the deletion of 63 phosphatase genes resulted in changes in at least one of the phenotypes assayed. Interestingly, the deletion of four genes (Fg06297, Fg03333, Fg03826 and Fg07932) did not dramatically affect hyphal growth, but led to strongly reduced virulence. Western blot analyses showed that three phosphatases (Fg10516, Fg03333 and Fg12867) functioned as negative regulators of the mitogen-activated protein kinase signaling pathways. In addition, we found, for the first time, that FgCdc14 is dispensable for growth, but plays an important role in ribosome biogenesis. Overall, in this first functional characterization of the fungal phosphatome, phosphatases important for various aspects of hyphal growth, development, plant infection and secondary metabolism were identified in the phytopathogenic fungus F. graminearum.
Collapse
Affiliation(s)
- Yingzi Yun
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zunyong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinhua Jiang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Winkelströter LK, Dolan SK, Fernanda Dos Reis T, Bom VLP, Alves de Castro P, Hagiwara D, Alowni R, Jones GW, Doyle S, Brown NA, Goldman GH. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus. G3 (BETHESDA, MD.) 2015; 5:1525-39. [PMID: 25943523 PMCID: PMC4502386 DOI: 10.1534/g3.115.016766] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/30/2015] [Indexed: 11/18/2022]
Abstract
Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen.
Collapse
Affiliation(s)
- Lizziane K Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Stephen K Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Raneem Alowni
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil National Laboratory of Science and Technology of Bioethanol (CTBE), 13083-970 Campinas, Brazil
| |
Collapse
|
17
|
Gu Q, Chen Y, Liu Y, Zhang C, Ma Z. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. THE NEW PHYTOLOGIST 2015; 206:315-328. [PMID: 25388878 DOI: 10.1111/nph.13158] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathways have been characterized in Fusarium graminearum. Currently, the upstream sensors of these pathways are unknown. Biological functions of a transmembrane protein FgSho1 were investigated using a target gene deletion strategy. The relationship between FgSho1 and the MAPK cassette FgSte50-Ste11-Ste7 was analyzed in depth. The transmembrane protein FgSho1 is required for conidiation, full virulence, and deoxynivalenol (DON) biosynthesis in F. graminearum. Furthermore, FgSho1 and FgSln1 have an additive effect on virulence of F. graminearum. The yeast two-hybrid, coimmunoprecipitation, colocalization and affinity capture-mass spectrometry analyses strongly indicated that FgSho1 physically interacts with the MAPK module FgSte50-Ste11-Ste7. Similar to the FgSho1 mutant, the mutants of FgSte50, FgSte11, and FgSte7 were defective in conidiation, pathogenicity, and DON biosynthesis. In addition, FgSho1 plays a minor role in the response to osmotic stress but it is involved in the cell wall integrity pathway, which is independent of the module FgSte50-Ste11-Ste7 in F. graminearum. Collectively, results of this study strongly indicate that FgSho1 regulates fungal development and pathogenicity via the MAPK module FgSte50-Ste11-Ste7 in F. graminearum, which is different from what is known in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Qin Gu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ye Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chengqi Zhang
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|