1
|
Nkhebenyane SJ, Khasapane NG, Lekota KE, Thekisoe O, Ramatla T. Insight into the Prevalence of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Vegetables: A Systematic Review and Meta-Analysis. Foods 2024; 13:3961. [PMID: 39683033 DOI: 10.3390/foods13233961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The occurrence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in vegetables is an escalating global problem. This study aimed to document the global prevalence of ESBL-producing Enterobacteriaceae in vegetables using a comprehensive meta-analysis. A web-based search of electronic databases such as ScienceDirect, Google Scholar, and PubMed was conducted using studies published between 2014 and 2024. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for the systematic review and meta-analysis. The Comprehensive Meta-Analysis (CMA) Ver 4.0 software was used to analyse the data. The pooled prevalence estimate (PPE) with a 95% confidence interval (CI) was calculated using the random effects model. After reviewing 1802 articles, 63 studies were carefully analyzed and were part of the comprehensive meta-analysis. The overall PPE of ESBL-producing Enterobacteriaceae (ESBL-E) was 11.9% (95% CI: 0.091-0.155), with high heterogeneity (I2 = 96.8%, p < 0.001) from 2762 isolates. The blaSHV ESBL-encoding gene was the most prevalent, showing a PPE of 42.8% (95% CI: 0.269-0.603), while the PPE of blaampC-beta-lactamase-producing Enterobacteriaceae was 4.3% (95% CI: 0.025-0.71). Spain had a high ESBL-E PPE of 28.4% (0.284; 95% CI: 0.057-0.723, I2 = 98.2%), while China had the lowest PPE at 6.4% (0.064; 95% CI: 0.013-0.259, I2 = 95.6%). Continentally, the PPE of ESBL-E was significantly higher in reports from South America at 19.4% (95% CI: 0.043-0.560). This meta-analysis showed that ESBL-E in vegetables increased by 9.0%, 9.8%, and 15.9% in 2018-2019, 2020-2021, and 2022-2024, respectively. The findings emphasize the potential risks of consuming raw or inadequately cleaned produce and the importance of vegetables as ESBL-E reservoirs. Our work calls for immediate attention to food safety procedures and more thorough surveillance as antibiotic resistance rises to reduce antimicrobial resistance risks in food systems.
Collapse
Affiliation(s)
- Sebolelo Jane Nkhebenyane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa
| | - Ntelekwane George Khasapane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa
| | - Kgaugelo Edward Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Tsepo Ramatla
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
2
|
Song YQ, Xie ST, Qi FY, Jensen MS, Yeerkenbieke A, Su JQ, Zhu YG, Brandt KK, Qiao M. Impacts of soil type on the temporal dynamics of antibiotic resistance gene profiles following application of composted manure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136372. [PMID: 39488978 DOI: 10.1016/j.jhazmat.2024.136372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Farmland application of composted manure is associated with a risk of dissemination of antibiotic resistance genes (ARGs) in agricultural soils. However, the impact of soil type on the temporal dynamics of ARGs in agricultural soil remains largely unclear. The aims of this study were to study the persistence of composted manure-derived ARGs in six soil types representative for Chinese agriculture and to explore the underlying environmental drivers of soil ARG profiles in a controlled greenhouse experiment. Temporal dynamics of manure-derived ARGs was strongly affected by soil type. High persistence of fertilizer-derived ARGs was evident in red soil, yellow soil and sierozem soil, while a rapid decrease to near pre-fertilization levels (low persistence) was observed in yellow-brown soil, black soil and brown earth soil. The distribution of ARGs was linked to soil properties such as soil texture, pH and concentrations of heavy metals. More complex co-occurrence networks of ARGs and bacteria in red soil, yellow soil, and sierozem soil suggested a higher dissemination potential, which was consistent with the significantly increased abundance of MGEs in these three types of soils. Our findings highlight the necessity for developing tailored fertilization strategies for different soil types to mitigate environmental dissemination of ARGs.
Collapse
Affiliation(s)
- Ya-Qiong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Bejing 101400, China; Sino-Danish Center for Education and Research, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Shu-Ting Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, China
| | - Feng-Yuan Qi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Mia Staal Jensen
- Sino-Danish College, University of Chinese Academy of Sciences, Bejing 101400, China; Sino-Danish Center for Education and Research, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Aisimubati Yeerkenbieke
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Kristian Koefoed Brandt
- Sino-Danish Center for Education and Research, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
3
|
Haq IU, Rahim K, Yahya G, Ijaz B, Maryam S, Paker NP. Eco-smart biocontrol strategies utilizing potent microbes for sustainable management of phytopathogenic diseases. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00859. [PMID: 39308938 PMCID: PMC11415593 DOI: 10.1016/j.btre.2024.e00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Plants have an impact on the economy because they are used in the food and medical industries. Plants are a source of macro- and micronutrients for the health of humans and animals; however, the rise in microbial diseases has put plant health and yield at risk. Because there are insufficient controls, microbial infections annually impact approximately 25 % of the world's plant crops. Alternative strategies, such as biocontrol, are required to fight these illnesses. This review discusses the potential uses of recently discovered microorganisms because they are safe, effective, and unlikely to cause drug resistance. They have no negative effects on soil microbiology or the environment because they are environmentally benign. Biological control enhances indigenous microbiomes by reducing bacterial wilt, brown blotch, fire blight, and crown gall. More research is required to make these biocontrol agents more stable, effective, and less toxic before they can be used in commercial settings.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Programa de Pos-graduacao em Invacao Tecnologia, Universidade de Minas Gerais Belo Horizonte, Brazil
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663, Kaiserslautern, Germany
| | - Bushra Ijaz
- Department of Functional and Evolutionary Ecology, University of Vienna, Austria
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Najeeba Parre Paker
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
4
|
Goh YX, Anupoju SMB, Nguyen A, Zhang H, Ponder M, Krometis LA, Pruden A, Liao J. Evidence of horizontal gene transfer and environmental selection impacting antibiotic resistance evolution in soil-dwelling Listeria. Nat Commun 2024; 15:10034. [PMID: 39562586 DOI: 10.1038/s41467-024-54459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Soil is an important reservoir of antibiotic resistance genes (ARGs) and understanding how corresponding environmental changes influence their emergence, evolution, and spread is crucial. The soil-dwelling bacterial genus Listeria, including L. monocytogenes, the causative agent of listeriosis, serves as a key model for establishing this understanding. Here, we characterize ARGs in 594 genomes representing 19 Listeria species that we previously isolated from soils in natural environments across the United States. Among the five putatively functional ARGs identified, lin, which confers resistance to lincomycin, is the most prevalent, followed by mprF, sul, fosX, and norB. ARGs are predominantly found in Listeria sensu stricto species, with those more closely related to L. monocytogenes tending to harbor more ARGs. Notably, phylogenetic and recombination analyses provide evidence of recent horizontal gene transfer (HGT) in all five ARGs within and/or across species, likely mediated by transformation rather than conjugation and transduction. In addition, the richness and genetic divergence of ARGs are associated with environmental conditions, particularly soil properties (e.g., aluminum and magnesium) and surrounding land use patterns (e.g., forest coverage). Collectively, our data suggest that recent HGT and environmental selection play a vital role in the acquisition and diversification of bacterial ARGs in natural environments.
Collapse
Affiliation(s)
- Ying-Xian Goh
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Anthony Nguyen
- Computational Modeling & Data Analytics Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hailong Zhang
- Department of Business Information Technology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Monica Ponder
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Leigh-Anne Krometis
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Zhang X, Zhao B, Zhang Y, Zhang J, Li Y, Zhong J, Diao J, Ma F, Liu H, Duan K. Sources, interactions, influencing factors and ecological risks of microplastics and antibiotic resistance genes in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175226. [PMID: 39098429 DOI: 10.1016/j.scitotenv.2024.175226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are gaining increasing attention as they pose a threat to the ecological environment and human health as emerging contaminants. MPs has been proved to be a hot spot in ARGs, and although it has been extensively studied in water environment, the results of bibliometrics statistical analysis in this paper showed that relevant studies in soil ecological environment are currently in the initial stage. In view of this, the paper provides a systematic review of the sources, interactions, influencing factors, and ecological risks associated with MPs and ARGs in soil environments. Additionally, the mechanism and influencing factors of plastisphere formation and resistance are elaborated in detail. The MPs properties, soil physicochemical properties, soil environmental factors and agricultural activities are the primarily factors affecting the interaction between MPs and ARGs in soil. Challenges and development directions of related research in the future are also prospected. It is hoped that the review could assist in a deeper comprehension and exploration of the interaction mechanism between MPs and ARGs in soil as well as the function of MPs in the transmission process of ARGs among diverse environmental media and organisms, and provide theory basis and reference for the MPs and ARGs pollution control and remediation in soil.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jinkui Zhong
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jingru Diao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Hui Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| |
Collapse
|
6
|
Sahayarayan JJ, Thiyagarajan R, Prathiviraj R, Tn K, Rajan KS, Manivannan P, Balasubramanian S, Mohd Zainudin MH, Alodaini HA, Moubayed NM, Hatamleh AA, Ravindran B, Mani RR. Comparative genome analysis reveals putative and novel antimicrobial resistance genes common to the nosocomial infection pathogens. Microb Pathog 2024; 197:107028. [PMID: 39426637 DOI: 10.1016/j.micpath.2024.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The 21st century has witnessed several clinical outcomes regarding AMR. One health concept has been foreseen as a standard global public health initiative in ensuring human, animal and environmental health. The present study explores critical Gram-negative ESKAPE pathogens encompassing Acinetobacter baumannii (ACB), Klebsiella pneumoniae (KPX) and Pseudomonas aeruginosa (PAE). A comparative genomic analysis approach was utilized for identifying novel and putative genes coercing global health consequences stressing the significance of the above iatrogenic and nosocomial pathogens. O findings reveal that Pseudomonas aeruginosaPAO1 (PAE) possesses the largest genome, measuring 62,64,404 base pairs, containing 14,342 protein-coding genes and an elevated count of ORFs, surpassing other organisms. Notably, P. aeruginosa PAO1 exhibits a comprehensive metabolic landscape with 355 pathways and 1659 metabolic reactions, encompassing 200 biosynthesis and 132 degradation pathways. Transferases are the predominant enzyme category across all three genomes, followed by oxidoreductases and hydrolases. The pivotal role of beta-lactamase in conferring resistance against antibiotics is also evident in all three microbes. This investigation underscores the PAE genome harbours genes and enzymes associated with heightened virulence in antibiotic resistance. The holistic review combined with comparative genomics underlines the significance of delving into the genomes of these antimicrobial-resistant organisms. In silico methodologies are increasingly stressed in aiding the successful accomplishment of the United Nations Sustainable Development Goal -3: Good Health and Well-being. The prominent findings establish Carbapenem resistance and evolutionary lineages of the MCR-1 gene conferring AMR landscapes for future research.
Collapse
Affiliation(s)
| | - Ramesh Thiyagarajan
- Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Pondicherry, 605014, Tamil Nadu, India.
| | - Kumaresan Tn
- Department of Microbiology, Pondicherry University, Pondicherry, 605014, Tamil Nadu, India.
| | | | | | | | - Mohd Huzairi Mohd Zainudin
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, college of science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Nadine Ms Moubayed
- Department of Botany and Microbiology, college of science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, college of science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Balasubramani Ravindran
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Gyeonggi-Do, 16227, South Korea; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Zhu S, Yang B, Yu F, Zhang J, Wang Z, Liu Y. Investigation of the impact of widely used pesticides on conjugative transfer of multidrug resistance plasmids. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135436. [PMID: 39141944 DOI: 10.1016/j.jhazmat.2024.135436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Plasmid-mediated conjugative transfer has emerged as a major driver accounting for the dissemination of antibiotic resistance genes (ARGs). In addition to the use of antimicrobial agents, there is growing evidence that non-antibiotic factors also play an important role. Pesticides are widely used to protect crops against vectors of diseases, and are indispensable agents in agricultural production, whereas the impact of pesticide pollution on the transmission of antimicrobial resistance remains poorly understood. Here we reveal that the pesticides at environmentally relevant concentrations, especially cyromazine (Cyr) and kresoxim-methyl (Kre), greatly facilitate the conjugative transfer of antibiotic-resistance plasmids carrying clinically important ARGs. Mechanistic studies indicate that Cyr and Kre treatments trigger reactive oxygen species (ROS) production and SOS response, increase membrane permeability, upregulate bacterial proton motive force (PMF) and promote ATP supply. Further non-targeted metabolomics and biochemical analysis demonstrate that the addition of Cyr and Kre accelerates tricarboxylic acid (TCA) cycle and electron transport chain (ETC), thereby activating bacterial energy metabolism. In the constructed soil model, we prove that two pesticides contribute to the dissemination of resistance plasmids in the soil microbiota. 16S rRNA sequencing analyses indicate that pesticides alter transconjugant microbial communities, and enable more opportunistic pathogens, such as Pseudomonas and Enterobacter, to acquire the multidrug resistance plasmids. Collectively, our work indicates the potential risk in accelerating the spread of antimicrobial resistance owing to pesticide pollution, highlighting the importance of continuous surveillance of pesticide residues in complex environmental settings.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Feiyu Yu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiayi Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
8
|
Wang J, Ou Y, Li R, Tao C, Liu H, Li R, Shen Z, Shen Q. The occurrence of banana Fusarium wilt aggravates antibiotic resistance genes dissemination in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116982. [PMID: 39217893 DOI: 10.1016/j.ecoenv.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The spread of antibiotic resistance genes (ARGs) and subsequent soil-borne disease outbreaks are major threats to soil health and sustainable crop production. However, the relationship between occurrences of soil-borne diseases and the transmission of soil ARGs remains unclear. Here, soil ARGs, mobile genetic elements and microbial communities from co-located disease suppressive and conducive banana orchards were deciphered using metagenomics and metatranscriptomics approaches. In total, 23 ARG types, with 399 subtypes, were detected using a metagenomics approach, whereas 23 ARG types, with 452 subtypes, were discovered using a metatranscriptomics method. Furthermore, the metagenomics analysis revealed that the ARG total abundance levels were greater in rhizospheres (0.45 ARGs/16S rRNA on average) compared with bulk (0.32 ARGs/16S rRNA on average) soils. Interestingly, metatranscriptomics revealed that the total ARG abundances were greater in disease-conducive (8.85 ARGs/16S rRNA on average) soils than disease suppressive (1.45 ARGs/16S rRNA on average) soils. Mobile genetic elements showed the same trends as ARGs. Network and binning analyses indicated that Mycobacterium, Streptomyces, and Blastomonas are the main potential hosts of ARGs. Furthermore, Bacillus was significantly and negatively correlated with Fusarium (P < 0.05, r = -0.84) and hosts of ARGs (i.e., Mycobacterium, Streptomyces, and Blastomonas). By comparing metagenomic and metatranscriptomic analyses,this study demonstrated that metatranscriptomics may be more sensitive in indicating ARGs activities in soil. Our findings enable the more accurate assessment of the transmission risk of ARGs. The data provide a new perspective for recognizing soil health, in which soil-borne disease outbreaks appear to be associated with ARG spread, whereas beneficial microbe enrichment may mitigate wilt disease and ARG transmission.
Collapse
Affiliation(s)
- Jiabao Wang
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yannan Ou
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ruochen Li
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zongzhuan Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
9
|
Saccà ML, Resci I, Cilia G. Phenotypic and genotypic antimicrobial resistance patterns in honey bee (Apis mellifera L.) bacterial symbionts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34598-8. [PMID: 39098972 DOI: 10.1007/s11356-024-34598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Antimicrobial resistance (AMR) is a major global public health problem. Nevertheless, the knowledge of the factors driving the spread of resistance among environmental microorganisms is limited, and few studies have been performed worldwide. Honey bees (Apis mellifera L.) have long been considered bioindicators of environmental pollution and more recently also of AMR. In this study, 53 bacterial strains isolated from the body surface of honey bees at three ontogenetic stages, collected from ten different geographic locations, were tested for their phenotypic and genotypic resistance to eight classes of the most widely used antimicrobials in human and veterinary medicine. Results showed that 83% of the strains were resistant to at least one antimicrobial and 62% were multidrug-resistant bacteria, with a prevalence of resistance to nalidixic acid, cefotaxime, and aztreonam. A high percentage of isolates harbouring at least one antimicrobial gene was also observed (85%). The gene encoding resistance to colistin mcr-1 was the most abundant, followed by those for tetracycline tetM and tetC. Geographical features influenced the distribution of these traits more than bacterial species or bee stage, supporting the use of honey bee colonies and their associated bacteria as indicators to monitor environmental resistance. This approach can improve the scientific understanding of this global threat by increasing data collection capacity.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Economics, Via Di Corticella 133, 40128, Bologna, Italy.
| | - Ilaria Resci
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Economics, Via Di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
10
|
Dulya O, Mikryukov V, Shchepkin DV, Pent M, Tamm H, Guazzini M, Panagos P, Jones A, Orgiazzi A, Marroni F, Bahram M, Tedersoo L. A trait-based ecological perspective on the soil microbial antibiotic-related genetic machinery. ENVIRONMENT INTERNATIONAL 2024; 190:108917. [PMID: 39089094 DOI: 10.1016/j.envint.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Antibiotic resistance crisis dictates the need for resistance monitoring and the search for new antibiotics. The development of monitoring protocols is hindered by the great diversity of resistance factors, while the "streetlight effect" denies the possibility of discovering novel drugs based on existing databases. In this study, we address these challenges using high-throughput environmental screening viewed from a trait-based ecological perspective. Through an in-depth analysis of the metagenomes of 658 topsoil samples spanning Europe, we explored the distribution of 241 prokaryotic and fungal genes responsible for producing metabolites with antibiotic properties and 485 antibiotic resistance genes. We analyzed the diversity of these gene collections at different levels and modeled the distribution of each gene across environmental gradients. Our analyses revealed several nonparallel distribution patterns of the genes encoding sequential steps of enzymatic pathways synthesizing large antibiotic groups, pointing to gaps in existing databases and suggesting potential for discovering new analogues of known antibiotics. We show that agricultural activity caused a continental-scale homogenization of microbial antibiotic-related machinery, emphasizing the importance of maintaining indigenous ecosystems within the landscape mosaic. Based on the relationships between the proportion of the genes in the metagenomes with the main predictors (soil pH, land cover type, climate temperature and humidity), we illustrate how the properties of chemical structures dictate the distribution of the genes responsible for their synthesis across environments. With this understanding, we propose general principles to facilitate the discovery of antibiotics, including principally new ones, establish abundance baselines for antibiotic resistance genes, and predict their dissemination.
Collapse
Affiliation(s)
- Olesya Dulya
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| | - Vladimir Mikryukov
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| | - Daniil V Shchepkin
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia.
| | - Heidi Tamm
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia.
| | - Massimo Guazzini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy.
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Province of Varese 21027, Italy.
| | - Arwyn Jones
- European Commission, Joint Research Centre (JRC), Ispra, Province of Varese 21027, Italy.
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre (JRC), Ispra, Province of Varese 21027, Italy; European Dynamics, Brussels B-1000, Belgium.
| | - Fabio Marroni
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy.
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia; Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden; Department of Agroecology, Aarhus University, Forsøgsvej 1 4200, Slagelse, Denmark.
| | - Leho Tedersoo
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia.
| |
Collapse
|
11
|
Naidoo Y, Pierneef RE, Cowan DA, Valverde A. Characterization of the soil resistome and mobilome in Namib Desert soils. Int Microbiol 2024; 27:967-975. [PMID: 37968548 PMCID: PMC11300574 DOI: 10.1007/s10123-023-00454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
The study of the soil resistome is important in understanding the evolution of antibiotic resistance and its dissemination between the clinic and the environment. However, very little is known about the soil resistome, especially of those from deserts. Here, we characterize the bacterial communities, using targeted sequencing of the 16S rRNA genes, and both the resistome and the mobilome in Namib Desert soils, using shotgun metagenomics. We detected a variety of antibiotic resistance genes (ARGs) that conferred resistance to antibiotics such as elfamycin, rifampicin, and fluoroquinolones, metal/biocide resistance genes (MRGs/BRGs) conferring resistance to metals such as arsenic and copper, and mobile genetic elements (MGEs) such as the ColE1-like plasmid. The presence of metal/biocide resistance genes in close proximity to ARGs indicated a potential for co-selection of resistance to antibiotics and metals/biocides. The co-existence of MGEs and horizontally acquired ARGs most likely contributed to a decoupling between bacterial community composition and ARG profiles. Overall, this study indicates that soil bacterial communities in Namib Desert soils host a diversity of resistance elements and that horizontal gene transfer, rather than host phylogeny, plays an essential role in their dynamics.
Collapse
Affiliation(s)
- Yashini Naidoo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | - Rian E Pierneef
- Biotechnology Platform, Agricultural Research Council, Soutpan Road, Onderstepoort Campus, Pretoria, 0110, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Angel Valverde
- IRNASA-CSIC, Cordel de Merinas, 37008, Salamanca, Spain.
| |
Collapse
|
12
|
Zhang Z, Zhu X, Su JQ, Zhu S, Zhang L, Ju F. Metagenomic Insights into Potential Impacts of Antibacterial Biosynthesis and Anthropogenic Activity on Nationwide Soil Resistome. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134677. [PMID: 38795484 DOI: 10.1016/j.jhazmat.2024.134677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The presence of antibiotic resistance genes (ARGs) in soils has received extensive attention regarding its impacts on environmental, animal, and human systems under One Health. However, the health risks of soil ARGs and microbial determinants of soil resistomes remain poorly understood. Here, a nationwide metagenomic investigation of ARGs in cropland and forest soils in China was conducted. The findings indicated that the abundance and richness of high-risk (i.e., mobilizable, pathogen-carriable and clinically relevant) ARGs in cropland soils were 25.7 times and 8.4 times higher, respectively, compared to those identified in forest soils, suggesting the contribution of agricultural practices to the elevated risk level of soil resistomes. The biosynthetic potential of antibacterials best explained the total ARG abundance (Mantel's r = 0.52, p < 0.001) when compared with environmental variables and anthropogenic disturbance. Both microbial producers' self-resistance and antagonistic interactions contributed to the ARG abundance, of which self-resistance ARGs account for 14.1 %- 35.1 % in abundance. With the increased biosynthetic potential of antibacterials, the antagonistic interactions within the microbial community were greatly enhanced, leading to a significant increase in ARG abundance. Overall, these findings advance our understanding of the emergence and dissemination of soil ARGs and provide critical implications for the risk control of soil resistomes.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang Province, China
| | - Xinyu Zhu
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
13
|
Nazir R, Shua D, Shen JP, Hu HW, Wang JT, He JZ. Effect of meddling ARBs on ARGs dynamics in fungal infested soil and their selective dispersal along spatially distant mycelial networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174594. [PMID: 38992349 DOI: 10.1016/j.scitotenv.2024.174594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
During the recent times, environmental antibiotic resistance genes (ARGs) and their potential transfer to other bacterial hosts of pathogenic importance are of serious concern. However, the dissemination strategies of such ARGs are largely unknown. We tested that saprotrophic soil fungi differentially enriched antibiotic resistant bacteria (ARBs) and subsequently contributed in spatial distribution of selective ARGs. Wafergen qPCR analysis of 295 different ARGs was conducted for manure treated pre-sterilized soil incubated or not with selected bacterial-fungal consortia. The qPCR assay detected unique ARGs specifically found in the mycosphere of ascomycetous and basidiomycetous fungi. Both fungi exerted potentially different selection pressures on ARBs, resulting in different patterns of ARGs dissemination (to distant places) along their respective growing fungal highways. The relative abundance of mobile genetic elements (MGEs) was significantly decreased along fungal highways compared to the respective inoculation points. Moreover, the decrease in MGEs and ARGs (along fungal highways) was more prominent over time which depicts the continuous selection pressure of growing fungi on ARBs for enrichment of particular ARGs in mycosphere. Such data also indicate the potential role of saprotrophic soil fungi to facilitate horizontal gene transfer within mycospheric environmental settings. Our study, therefore, advocates to emphasize the future investigations for such (bacteria-fungal) interactive microbial consortia for potential (spatial) dissemination of resistance determinants which may ultimately increase the exposure risks of ARGs.
Collapse
Affiliation(s)
- Rashid Nazir
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Abbottabad - Campus, Tobe Camp, University Road, 22060 Abbottabad, Pakistan; State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Du Shua
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
14
|
Muñoz-Gutiérrez I, Cantu L, Shanahan J, Girguis M, de la Cruz M, Mota-Bravo L. Cryptic environmental conjugative plasmid recruits a novel hybrid transposon resulting in a new plasmid with higher dispersion potential. mSphere 2024; 9:e0025224. [PMID: 38771049 PMCID: PMC11332342 DOI: 10.1128/msphere.00252-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Cryptic conjugative plasmids lack antibiotic-resistance genes (ARGs). These plasmids can capture ARGs from the vast pool of the environmental metagenome, but the mechanism to recruit ARGs remains to be elucidated. To investigate the recruitment of ARGs by a cryptic plasmid, we sequenced and conducted mating experiments with Escherichia coli SW4848 (collected from a lake) that has a cryptic IncX (IncX4) plasmid and an IncF (IncFII/IncFIIB) plasmid with five genes that confer resistance to aminoglycosides (strA and strB), sulfonamides (sul2), tetracycline [tet(A)], and trimethoprim (dfrA5). In a conjugation experiment, a novel hybrid Tn21/Tn1721 transposon of 22,570 bp (designated Tn7714) carrying the five ARG mobilized spontaneously from the IncF plasmid to the cryptic IncX plasmid. The IncF plasmid was found to be conjugative when it was electroporated into E. coli DH10B (without the IncX plasmid). Two parallel conjugations with the IncF and the new IncX (carrying the novel Tn7714 transposon) plasmids in two separate E. coli DH10B as donors and E. coli J53 as the recipient revealed that the conjugation rate of the new IncX plasmid (with the novel Tn7714 transposon and five ARGs) is more than two orders of magnitude larger than the IncF plasmid. For the first time, this study shows experimental evidence that cryptic environmental plasmids can capture and transfer transposons with ARGs to other bacteria, creating novel multidrug-resistant conjugative plasmids with higher dispersion potential. IMPORTANCE Cryptic conjugative plasmids are extrachromosomal DNA molecules without antibiotic-resistance genes (ARGs). Environmental bacteria carrying cryptic plasmids with a high conjugation rate threaten public health because they can capture clinically relevant ARGs and rapidly spread them to pathogenic bacteria. However, the mechanism to recruit ARG by cryptic conjugative plasmids in environmental bacteria has not been observed experimentally. Here, we document the first translocation of a transposon with multiple clinically relevant ARGs to a cryptic environmental conjugative plasmid. The new multidrug-resistant conjugative plasmid has a conjugation rate that is two orders of magnitude higher than the original plasmid that carries the ARG (i.e., the new plasmid from the environment can spread ARG more than two orders of magnitude faster). Our work illustrates the importance of studying the mobilization of ARGs in environmental bacteria. It sheds light on how cryptic conjugative plasmids recruit ARGs, a phenomenon at the root of the antibiotic crisis.
Collapse
Affiliation(s)
- Iván Muñoz-Gutiérrez
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Luis Cantu
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Jack Shanahan
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Miray Girguis
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Marlene de la Cruz
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Luis Mota-Bravo
- School of Biological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
15
|
Klümper U, Gionchetta G, Catão E, Bellanger X, Dielacher I, Elena AX, Fang P, Galazka S, Goryluk-Salmonowicz A, Kneis D, Okoroafor U, Radu E, Szadziul M, Szekeres E, Teban-Man A, Coman C, Kreuzinger N, Popowska M, Vierheilig J, Walsh F, Woegerbauer M, Bürgmann H, Merlin C, Berendonk TU. Environmental microbiome diversity and stability is a barrier to antimicrobial resistance gene accumulation. Commun Biol 2024; 7:706. [PMID: 38851788 PMCID: PMC11162449 DOI: 10.1038/s42003-024-06338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
When antimicrobial resistant bacteria (ARB) and genes (ARGs) reach novel habitats, they can become part of the habitat's microbiome in the long term if they are able to overcome the habitat's biotic resilience towards immigration. This process should become more difficult with increasing biodiversity, as exploitable niches in a given habitat are reduced for immigrants when more diverse competitors are present. Consequently, microbial diversity could provide a natural barrier towards antimicrobial resistance by reducing the persistence time of immigrating ARB and ARG. To test this hypothesis, a pan-European sampling campaign was performed for structured forest soil and dynamic riverbed environments of low anthropogenic impact. In soils, higher diversity, evenness and richness were significantly negatively correlated with relative abundance of >85% of ARGs. Furthermore, the number of detected ARGs per sample were inversely correlated with diversity. However, no such effects were present in the more dynamic riverbeds. Hence, microbiome diversity can serve as a barrier towards antimicrobial resistance dissemination in stationary, structured environments, where long-term, diversity-based resilience against immigration can evolve.
Collapse
Affiliation(s)
- Uli Klümper
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Giulia Gionchetta
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | - Elisa Catão
- Université de Lorraine, Villers-lès-Nancy, France
- Université de Toulon, Toulon, France
| | | | - Irina Dielacher
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
| | - Alan Xavier Elena
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Peiju Fang
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Sonia Galazka
- AGES - Austrian Agency for Health and Food Safety, Department for Integrative Risk Assessment, Division for Risk Assessment, Data and Statistics, Vienna, Austria
| | - Agata Goryluk-Salmonowicz
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Physiology, Warsaw, Poland
- Warsaw University of Life Sciences, Institute of Biology, Department of Biochemistry and Microbiology, Warsaw, Poland
| | - David Kneis
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Uchechi Okoroafor
- Maynooth University, Department of Biology, Kathleen Lonsdale Institute for Human Health, Maynooth, Co. Kildare, Ireland
| | - Elena Radu
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
- Romanian Academy of Science, Institute of Virology Stefan S. Nicolau, Bucharest, Romania
| | - Mateusz Szadziul
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Physiology, Warsaw, Poland
| | - Edina Szekeres
- NIRDBS, Institute of Biological Research Cluj-Napoca, Cluj-Napoca, Romania
| | - Adela Teban-Man
- NIRDBS, Institute of Biological Research Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristian Coman
- NIRDBS, Institute of Biological Research Cluj-Napoca, Cluj-Napoca, Romania
| | - Norbert Kreuzinger
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
| | - Magdalena Popowska
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Physiology, Warsaw, Poland
| | - Julia Vierheilig
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
- Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Fiona Walsh
- Maynooth University, Department of Biology, Kathleen Lonsdale Institute for Human Health, Maynooth, Co. Kildare, Ireland
| | - Markus Woegerbauer
- AGES - Austrian Agency for Health and Food Safety, Department for Integrative Risk Assessment, Division for Risk Assessment, Data and Statistics, Vienna, Austria
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | | | | |
Collapse
|
16
|
Hailu W, Alemayehu H, Hailu L, Medhin G, Rajashekara G, Gebreyes WA, Eguale T. Escherichia coli isolates from vegetable farms in Addis Ababa, Ethiopia: Antimicrobial susceptibility profile and associated resistance genetic markers. Food Sci Nutr 2024; 12:4122-4132. [PMID: 38873492 PMCID: PMC11167155 DOI: 10.1002/fsn3.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
The use of animal manure to fertilize soil is an emerging concern contributing to the transfer of antimicrobial-resistant pathogens to vegetables. Hence, assessing antimicrobial susceptibility profile of Escherichia coli in vegetable farms is essential to design appropriate interventions against antimicrobial resistance (AMR) in the food chain. This study assessed antimicrobial resistance profile and associated genetic markers among E. coli isolated from vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 1044 samples were collected using convenience sampling: soil (n = 271), manure (n = 375), and vegetables (n = 398) from 81 vegetable farms in Addis Ababa, Ethiopia. Antimicrobial susceptibility test was conducted for 100 E. coli isolates and antimicrobial resistance genes (ARGs) were tested by polymerase chain reaction (PCR). Of the 1044 collected samples, 25.3% were positive for E. coli, with significantly higher prevalence in the manure sample and samples collected from Akaki Kality sub-city (p < .05). The highest resistance rate was recorded for tetracycline (72%), followed by streptomycin (63%), and sulfamethoxazole +trimethoprim (56%). Multidrug resistance was detected in 61% of the E. coli isolates. The aac(3)-IV (76.9%), bla TEM (65.4%), aadA (60.3%), tet(A) (58.3%), and sulI (51.7%) were the commonly detected resistance genes. The current study showed a high burden of antimicrobial resistance among E. coli isolated from manure-amended vegetable farms, with potential of playing a significant role in the dissemination of antimicrobial resistance in the food chain. Efforts should be made to reduce the burden of resistant organisms and ARGs through prudent use of antimicrobials in livestock and application of appropriate composting techniques before using manure as fertilizer.
Collapse
Affiliation(s)
- Woinshet Hailu
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
- College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Haile Alemayehu
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Lulit Hailu
- Ethiopian Public Health InstituteAddis AbabaEthiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
| | - Gireesh Rajashekara
- Global One Health initiative (GOHi)The Ohio State UniversityColumbusOhioUSA
- Department of Animal Sciences, College of Food, Agricultural, and Environmental SciencesThe Ohio State UniversityWoosterOhioUSA
| | - Wondwossen A. Gebreyes
- Global One Health initiative (GOHi)The Ohio State UniversityColumbusOhioUSA
- Department of Preventive Veterinary Medicine, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Tadesse Eguale
- Aklilu Lemma Institute of PathobiologyAddis Ababa UniversityAddis AbabaEthiopia
- Ohio State Global One HealthAddis AbabaEthiopia
| |
Collapse
|
17
|
Martak D, Henriot CP, Hocquet D. Environment, animals, and food as reservoirs of antibiotic-resistant bacteria for humans: One health or more? Infect Dis Now 2024; 54:104895. [PMID: 38548016 DOI: 10.1016/j.idnow.2024.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Antimicrobial resistance (AMR) is a major public health challenge. For several years, AMR has been addressed through a One Health approach that links human health, animal health, and environmental quality. In this review, we discuss AMR in different reservoirs with a focus on the environment. Anthropogenic activities produce effluents (sewage, manure, and industrial wastes) that contaminate soils and aquatic environments with antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), and selective agents such as antibiotics, biocides, and heavy metals. Livestock treated with antibiotics can also contaminate food with ARB. In high-income countries (HICs), effective sanitation infrastructure and limited pharmaceutical industries result in more controlled discharges associated with human activities. Hence, studies using genome-based typing methods have revealed that, although rare inter-reservoir transmission events have been reported, human acquisition in HICs occurs primarily through person-to-person transmission. The situation is different in low- and middle-income countries (LMICs) where high population density, poorer sanitation and animal farming practices are more conducive to inter-reservoir transmissions. In addition, environmental bacteria can be a source of ARGs that, when transferred to pathogenic species under antibiotic selection pressure in environmental hotspots, produce new antibiotic-resistant strains that can potentially spread in the human community through human-to-human transmission. The keys to reducing AMR in the environment are (i) better treatment of human waste by improving wastewater treatment plants (WWTPs) in HICs and improving sanitation infrastructure in LMICs, (ii) reducing the use of antibiotics by humans and animals, (iii) prioritizing the use of less environmentally harmful antibiotics, and (iv) better control of pharmaceutical industry waste.
Collapse
Affiliation(s)
- Daniel Martak
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France.
| | - Charles P Henriot
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France
| | - Didier Hocquet
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France; CHU de Besançon, Hygiène Hospitalière, F-25000 Besançon, France
| |
Collapse
|
18
|
Alkorta I, Garbisu C. Expanding the focus of the One Health concept: links between the Earth-system processes of the planetary boundaries framework and antibiotic resistance. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0013. [PMID: 38815132 DOI: 10.1515/reveh-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people's health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide. Relevantly, antibiotic resistance has been claimed to be the quintessential One Health issue. The One Health concept links human, animal, and environmental health, but it is frequently only focused on the risk of zoonotic pathogens to public health or, to a lesser extent, the impact of contaminants on human health, i.e., adverse effects on human health coming from the other two One Health "compartments". It is recurrently claimed that antibiotic resistance must be approached from a One Health perspective, but such statement often only refers to the connection between the use of antibiotics in veterinary practice and the antibiotic resistance crisis, or the impact of contaminants (antibiotics, heavy metals, disinfectants, etc.) on antibiotic resistance. Nonetheless, the nine Earth-system processes considered in the planetary boundaries framework can be directly or indirectly linked to antibiotic resistance. Here, some of the main links between those processes and the dissemination of antibiotic resistance are described. The ultimate goal is to expand the focus of the One Health concept by pointing out the links between critical Earth-system processes and the One Health quintessential issue, i.e., antibiotic resistance.
Collapse
Affiliation(s)
- Itziar Alkorta
- Department of Biochemistry and Molecular Biology, 16402 University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Carlos Garbisu
- NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
19
|
Batuman O, Britt-Ugartemendia K, Kunwar S, Yilmaz S, Fessler L, Redondo A, Chumachenko K, Chakravarty S, Wade T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. PHYTOPATHOLOGY 2024; 114:885-909. [PMID: 38478738 DOI: 10.1094/phyto-10-23-0357-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Sanju Kunwar
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Lauren Fessler
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Ana Redondo
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kseniya Chumachenko
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Shourish Chakravarty
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Tara Wade
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
20
|
Shawver S, Ishii S, Strickland MS, Badgley B. Soil type and moisture content alter soil microbial responses to manure from cattle administered antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27259-27272. [PMID: 38507165 PMCID: PMC11052774 DOI: 10.1007/s11356-024-32903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Growing concerns about the global antimicrobial resistance crisis require a better understanding of how antibiotic resistance persists in soil and how antibiotic exposure impacts soil microbial communities. In agroecosystems, these responses are complex because environmental factors may influence how soil microbial communities respond to manure and antibiotic exposure. The study aimed to determine how soil type and moisture alter responses of microbial communities to additions of manure from cattle treated with antibiotics. Soil microcosms were constructed using two soil types at 15, 30, or 45% moisture. Microcosms received biweekly additions of manure from cattle given cephapirin or pirlimycin, antibiotic-free manure, or no manure. While soil type and moisture had the largest effects on microbiome structure, impacts of manure treatments on community structure and individual ARG abundances were observed across varying soil conditions. Activity was also affected, as respiration increased in the cephapirin treatment but decreased with pirlimycin. Manure from cattle antibiotics also increased NH4+ and decreased NO3- availability in some scenarios, but the effects were heavily influenced by soil type and moisture. Overall, this work demonstrates that environmental conditions can alter how manure from cattle administered antibiotics impact the soil microbiome. A nuanced approach that considers environmental variability may benefit the long-term management of antibiotic resistance in soil systems.
Collapse
Affiliation(s)
- Sarah Shawver
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
21
|
Ren Z, Li H, Luo W. Unraveling the mystery of antibiotic resistance genes in green and red Antarctic snow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170148. [PMID: 38246373 DOI: 10.1016/j.scitotenv.2024.170148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Antarctic snow is a thriving habitat for a diverse array of complex microorganisms, and can present in different colors due to algae blooms. However, the potential role of Antarctic snow as reservoirs for antibiotic resistance genes (ARGs) has not been studied. Using metagenomic sequencing, we studied ARGs in green-snow and red-snow on the Fildes Peninsula, Antarctica. Alpha and beta diversities of ARGs, as well as co-occurrence between ARGs and bacteria were assessed. The results showed that a total of 525 ARGs conferring resistance to 30 antibiotic classes were detected across the samples, with half of the ARGs presented in all samples. Green-snow exhibited a higher number of ARGs compared to red-snow. The most abundant ARGs conferring resistance to commonly used antibiotics, including disinfecting agents and antiseptics, peptide, isoniazid, MLS, fluoroquinolone, aminocoumarin, etc. Multidrug resistance genes stood out as the most diverse and abundant, with antibiotic efflux emerging as the dominant resistance mechanism. Interestingly, the composition of ARGs in green-snow markedly differed from that in red-snow, highlighting distinct ARG profiles. Beta-diversity partitioning showed a higher contribution of nestedness for ARG's variation in green-snow, while higher contribution of turnover in red-snow. Furthermore, the co-occurrence analysis between ARGs and bacteria unveiled intricate relationships, indicating that certain ARGs may have multiple potential hosts. The observed differences in co-occurrence networks between green-snow and red-snow suggested distinct host relationships between ARGs and bacteria in these colored snows. Given the increasing appearance of the colored snow around the world due to the climate change, the results shed light on the mystery and potential implication of ARGs in green and red Antarctic snow.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huirong Li
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China; Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China; Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
22
|
Stanton IC, Tipper HJ, Chau K, Klümper U, Subirats J, Murray AK. Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobial-Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:623-636. [PMID: 36416260 DOI: 10.1002/etc.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2024;43:623-636. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universitӓt Dresden, Dresden, Germany
| | - Jessica Subirats
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Aimee K Murray
- College of Medicine and Health, University of Exeter, Cornwall, UK
| |
Collapse
|
23
|
Musiyiwa K, Simbanegavi TT, Marumure J, Makuvara Z, Chaukura N, Gwenzi W. The soil-microbe-plant resistome: A focus on the source-pathway-receptor continuum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12666-12682. [PMID: 38253827 DOI: 10.1007/s11356-023-31788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
The One World, One Health concept implies that antibiotic resistance (AR) in the soil-microbe-plant resistome is intricately linked to the human resistome. However, the literature is mainly confined to sources and types of AR in soils or microbes, but comprehensive reviews tracking AR in the soil-microbe-plant resistome are limited. The present review applies the source-pathway-receptor concept to understand the sources, behaviour, and health hazards of the soil-microbe-plant resistome. The results showed that the soil-microbe-plant system harbours various antibiotic-resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and mobile genetic elements (MGEs). Anthropogenic sources and drivers include soil application of solid waste, wastewater, biosolids, and industrial waste. Water-, wind-, and human-driven processes and horizontal gene transfer circulate AR in the soil-microbe-plant resistome. The AR in bulk soil, soil components that include soil microorganisms, soil meso- and macro-organisms, and possible mechanisms of AR transfer to soil components and ultimately to plants are discussed. The health risks of the soil-microbe-plant resistome are less studied, but potential impacts include (1) the transfer of AR to previously susceptible organisms and other resistomes, including the human resistome. Overall, the study tracks the behaviour and health risks of AR in the soil-plant system. Future research should focus on (1) ecological risks of AR at different levels of biological organization, (2) partitioning of AR among various phases of the soil-plant system, (3) physico-chemical parameters controlling the fate of AR, and (4) increasing research from low-income regions particularly Africa as most of the available literature is from developed countries.
Collapse
Affiliation(s)
- Kumbirai Musiyiwa
- Department of Crop Science and Post-Harvest Technology, School of Agricultural Science and Technology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mt. Pleasant, P.O. Box MP167, Harare, Zimbabwe
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, P.O. Box 1235, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, P.O. Box 1235, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Universitat Kassel, Steinstraβe 19, 37213, Witzenhausen, Germany.
| |
Collapse
|
24
|
Liu S, Han Z, Zhu D, Luan X, Deng L, Dong L, Yang M, Zhang Y. Field-based evidence for the enrichment of intrinsic antibiotic resistome stimulated by plant-derived fertilizer in agricultural soil. J Environ Sci (China) 2024; 135:728-740. [PMID: 37778843 DOI: 10.1016/j.jes.2022.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 10/03/2023]
Abstract
Animal manures have been demonstrated to enhance antibiotic resistance in agricultural soils. However, little is known about the effects of plant-derived fertilizer on soil antibiotic resistome. Herein, metagenomic sequencing was used to investigate the effects of a plant-derived fertilizer processed from sugarcane and beet on soil antibiotic resistance genes (ARGs) in a soybean field along crop growth stages. ARG profiles in the soils amended by plant-derived fertilizer were compared with those in the soils amended by chicken manure. The abundance and diversity of total ARGs in the soils amended by plant-derived fertilizer were significantly (P < 0.05) elevated at the sprout stage, to a level comparable to that in the manured soils. Whereas, unlike chicken manure mainly introducing manure-borne ARGs to soil, the plant-derived fertilizer was indicated to mainly enrich multidrug resistance genes in soil by nourishing indigenous bacteria. ARGs with abundances in amended soils significantly (P < 0.05) higher than in unamended soils at the sprout stage of soybean were considered as enriched ARGs. Decrease in the abundance of the enriched ARGs was observed in both the amended soils from the sprout to the harvest. Network analysis further identified Proteobacteria and Bacteroidetes as the primary bacterial taxa involved in the temporal variation of the enriched ARGs in the soils amended by plant-derived fertilizer, while in manured soils were Firmicutes and Actinobacteria. As revealed by multivariate statistical analyses, variation of the enriched ARGs in the soils amended by plant-derived fertilizer was majorly attributed to the response of co-occurred bacteria to depleting nutrients, which was different from the failed establishment of manure-borne bacteria in the manured soils. Our study provided field-based evidence that plant-derived fertilizer stimulated the intrinsic antibiotic resistome, and proposed attention to the un-perceived risk since some clinically relevant ARGs originate and evolve from natural resistome.
Collapse
Affiliation(s)
- Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liujie Deng
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos 835007, China
| | - Liping Dong
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos 835007, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Chen D, Zou J, Chen D, He X, Zhang C, Li J, Lan S, Liu ZJ, Zou S, Qian X. Chicken manure application alters microbial community structure and the distribution of antibiotic-resistance genes in rhizosphere soil of Cinnamomum camphora forests. FEMS Microbiol Ecol 2023; 99:fiad155. [PMID: 38006232 PMCID: PMC10710299 DOI: 10.1093/femsec/fiad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023] Open
Abstract
The distribution of antibiotic-resistance genes (ARGs) in environmental soil is greatly affected by livestock and poultry manure fertilization, the application of manure will lead to antibiotic residues and ARGs pollution, and increase the risk of environmental pollution and human health. Cinnamomum camphora is an economically significant tree species in Fujian Province, China. Here, through high-throughput sequencing analysis, significant differences in the composition of the bacterial community and ARGs were observed between fertilized and unfertilized rhizosphere soil. The application of chicken manure organic fertilizer significantly increased the relative abundance and alpha diversity of the bacterial community and ARGs. The content of organic matter, soluble organic nitrogen, available phosphorus, nitrate reductase, hydroxylamine reductase, urease, acid protease, β-glucosidase, oxytetracycline, and tetracycline in the soil of C. camphora forests have significant effects on bacterial community and ARGs. Significant correlations between environmental factors, bacterial communities, and ARGs were observed in the rhizosphere soil of C. camphora forests according to Mantel tests. Overall, the findings of this study revealed that chicken manure organic fertilizer application has a significant effect on the bacterial community and ARGs in the rhizosphere soil of C. camphora forests, and several environmental factors that affect the bacterial community and ARGs were identified.
Collapse
Affiliation(s)
- Deqiang Chen
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Jiawei Zou
- School of Pharmacy, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou 350002, Fujian Province, China
| | - Dexing Chen
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Xin He
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Jinwei Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Siren Lan
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Zhong-Jian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Shuangquan Zou
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, Fujian Province, China
| |
Collapse
|
26
|
Sun H, Li H, Zhang X, Liu Y, Chen H, Zheng L, Zhai Y, Zheng H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr Zool 2023; 18:1014-1026. [PMID: 36892101 DOI: 10.1111/1749-4877.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Huihui Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| |
Collapse
|
27
|
Tang Q, Sui Q, Wei Y, Shen P, Zhang J. Swine-manure composts induce the enrichment of antibiotic-resistant bacteria but not antibiotic resistance genes in soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118707. [PMID: 37536132 DOI: 10.1016/j.jenvman.2023.118707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Composting is a common and effective strategy for reducing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from animal manure. However, it is unclear whether the advantages of composting for the control of ARGs and ARB can be further increased in land application. This study investigated the fate of ARB and ARGs after land application of swine-manure composts (SMCs) to three different soil types (red soil, loess and black soil). The results showed that although the SMCs caused an increase in the abundance of total ARGs in the soil in the short period, they significantly reduced (p < 0.01) the abundance of total ARGs after 82 days compared to the control. The decay rate of ARGs reflected by the half-life times (t1/2) varied by soil type, with red soil being the longest. The SMCs mainly introduced ermF, tetG and tetX into the soils, while these ARGs quickly declined to the control level. Notably, SMCs increased the number of ARB in the soils, especially for cefotaxime-resistant bacteria. Although SMCs only affected the microbiome significantly during the early stage (p < 0.05), it took a much longer time for the microbiome to recover compared to the control. Statistical analysis indicated that changes in the microbial community contributed more to the fate of ARGs during SMCs land application than other factors. Overall, it is proposed that the advantages of ARGs control in the composting process for swine manure can be further increased in land application, but it can still bring some risks in regard to ARB.
Collapse
Affiliation(s)
- Qihe Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Life Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning, 530005, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Zhou SYD, Huang FY, Su W, Lie Z, Liu Y, Lin C, Yang K, Meng Z, Liu Z, Neilson R, Su JQ, Liu J. Distinct patterns of the soil and phyllosphere antibiotic resistome in natural forest ecosystems under an altitudinal gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165346. [PMID: 37419346 DOI: 10.1016/j.scitotenv.2023.165346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Warming affects microbial functioning of soil and the phyllosphere across global ecosystems. However, little is known about the impact of increasing temperature on antibiotic resistome profiles in natural forests. To address this issue, we investigated antibiotic resistance genes (ARGs) in both soil and the plant phyllosphere using an experimental platform established in a forest ecosystem that delivers a temperature difference of 2.1 °C along an altitudinal gradient. Principal Coordinate Analysis (PCoA) showed that there were significant differences in the composition of soil and plant phyllosphere ARGs at different altitudes (P = 0.001). The relative abundance of phyllosphere ARGs and mobile genetic elements (MGEs) and soil MGEs increased with temperature. More resistance gene classes increased in abundance in the phyllosphere (10 classes) than soil (2 classes), and a Random Forest model analysis suggested that phyllosphere ARGs were more sensitive to temperature change than soil. Increasing temperature as a direct consequence of an altitudinal gradient, and the relative abundance of MGEs were the main drivers that shaped the profiles of ARGs in the phyllosphere and soil. Biotic and abiotic factors affected phyllosphere ARGs indirectly via MGEs. This study enhances our understanding of the influence of altitude gradients on resistance genes in natural environments.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Wei Su
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Zhongkai University of Agriculture and Engineering, 24 Dongsha Street, Haizhu District, Guangzhou 510225, China
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yue Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
29
|
Seyoum MM, Ashworth AJ, Feye KM, Ricke SC, Owens PR, Moore PA, Savin M. Long-term impacts of conservation pasture management in manuresheds on system-level microbiome and antibiotic resistance genes. Front Microbiol 2023; 14:1227006. [PMID: 37886073 PMCID: PMC10598662 DOI: 10.3389/fmicb.2023.1227006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
Animal manure improves soil fertility and organic carbon, but long-term deposition may contribute to antibiotic resistance genes (ARGs) entering the soil-water environment. Additionally, long-term impacts of applying animal manure to soil on the soil-water microbiome, a crucial factor in soil health and fertility, are not well understood. The aim of this study is to assess: (1) impacts of long-term conservation practices on the distribution of ARGs and microbial dynamics in soil, and runoff; and (2) associations between bacterial taxa, heavy metals, soil health indicators, and ARGs in manures, soils, and surface runoff in a study following 15 years of continuous management. This management strategy consists of two conventional and three conservation systems, all receiving annual poultry litter. High throughput sequencing of the 16S ribosomal RNA was carried out on samples of cattle manure, poultry litter, soil, and runoff collected from each manureshed. In addition, four representative ARGs (intl1, sul1, ermB, and blactx-m-32) were quantified from manures, soil, and runoff using quantitative PCR. Results revealed that conventional practice increased soil ARGs, and microbial diversity compared to conservation systems. Further, ARGs were strongly correlated with each other in cattle manure and soil, but not in runoff. After 15-years of conservation practices, relationships existed between heavy metals and ARGs. In the soil, Cu, Fe and Mn were positively linked to intl1, sul1, and ermB, but trends varied in runoff. These findings were further supported by network analyses that indicated complex co-occurrence patterns between bacteria taxa, ARGs, and physicochemical parameters. Overall, this study provides system-level linkages of microbial communities, ARGs, and physicochemical conditions based on long-term conservation practices at the soil-water-animal nexus.
Collapse
Affiliation(s)
- Mitiku Mihiret Seyoum
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Amanda J. Ashworth
- USDA-ARS, Poultry Production and Product Safety Research Unit, Fayetteville, AR, United States
| | - Kristina M. Feye
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Phillip R. Owens
- USDA-ARS, Dale Bumpers Small Farms Research Center, Booneville, AR, United States
| | - Philip A. Moore
- USDA-ARS, Poultry Production and Product Safety Research Unit, Fayetteville, AR, United States
| | - Mary Savin
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
30
|
Xiang Q, Fu CX, Lu CY, Sun AQ, Chen QL, Qiao M. Flooding drives the temporal turnover of antibiotic resistance gene in manure-amended soil-water continuum. ENVIRONMENT INTERNATIONAL 2023; 179:108168. [PMID: 37647704 DOI: 10.1016/j.envint.2023.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Rice paddy soil is a hotspot of antibiotic resistance genes (ARGs) due to the application of organic fertilizers. However, the temporal dynamics of ARGs in rice paddy soil and its flooded water during the growing season remain underexplored. In this study, a microcosm experiment was conducted to explore the ARG profiles in a long term (130 days) flooded two-phase manure-amended soil-water system. By using high-throughput quantitative PCR array, a total of 23-98 and 34-85 ARGs were detected in the soil and overlying water, respectively. Regression analysis exhibited significant negative correlations between ARG profile similarities and flooding duration, indicating that flooding significantly altered the resistome (P < 0.001). This finding was validated by the increased ARG abundance in the soil and the overlying water, for example, after 130 days flooding, the abundance of ARGs in CK soil was increased from 0.03 to 1.20 copies per 16S rRNA. The PCoA analysis further suggested pig manure application resulted in distinct ARG profiles in the soil-water continuum compared with those of the non-amended control (Adonis, P < 0.05). The Venn diagram showed that all ARGs detected in the pig manure were present in the treated soil. Twelve ARGs (e.g., sul1) were shared among the pig manure, manure-amended soil, and overlying water, indicating that certain manure- or soil-borne ARGs were readily dispersed from the soil to the overlying water. Moreover, the enhanced relationships between the ARGs and mobile genetic elements in pig manure applied soil-water continuum indicate that the application of organic matter could accelerate the emergence and dissemination of ARGs. These findings suggested that flooding represents a crucial pathway for dispersal of ARGs from the soil to the overlying water. Identification of highly mobile ARGs in the soil-water continuum is essential for assessing their potential risk to human health and promoting the development of sustainable agricultural practices to mitigate their spread.
Collapse
Affiliation(s)
- Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Chen-Xi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Yi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - An-Qi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
D'Angelo EM. Diversity of virulence and antibiotic resistance genes expressed in Class A biosolids and biosolids-amended soil as revealed by metatranscriptomic analysis. Lett Appl Microbiol 2023; 76:ovad097. [PMID: 37596067 DOI: 10.1093/lambio/ovad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
Class A biosolids is a treated sewage sludge, commonly applied to agricultural fields, home lawns/gardens, golf courses, forests, and remediation sites around the world. This practice is of public and agricultural concern due to the possibility that biosolids contain antibiotic-resistant bacteria and fungal pathogens that could persist for extended periods in soil. This possibility was determined by metatranscriptomic analysis of virulence, antibiotic resistance, and plasmid conjugation genes, a Class A biosolids, organically managed soil, and biosolids-amended soil under realistic conditions. Biosolids harbored numerous transcriptionally active pathogens, antibiotic resistance genes, and conjugative genes that annotated mostly to Gram-positive pathogens of animal hosts. Biosolids amendment to soil significantly increased the expression of virulence genes by numerous pathogens and antibiotic-resistant genes that were strongly associated with biosolids. Biosolids amendment also significantly increased the expression of virulence genes by native soil fungal pathogens of plant hosts, which suggests higher risks of crop damage by soil fungal pathogens in biosolids-amended soil. Although results are likely to be different in other soils, biosolids, and microbial growth conditions, they provide a more holistic, accurate view of potential health risks associated with biosolids and biosolids-amended soils than has been achievable with more selective cultivation and PCR-based techniques.
Collapse
Affiliation(s)
- Elisa Marie D'Angelo
- Plant and Soil Sciences Department, University of Kentucky, N-122 Agricultural Science Center North, Lexington, KY 40546, United States
| |
Collapse
|
32
|
Abbas F, Thomas P, Cully‐Duse B, Andronicos NM, Winter G. Cattle-compost-soil: The transfer of antibiotic resistance in livestock agriculture. Microbiologyopen 2023; 12:e1375. [PMID: 37642484 PMCID: PMC10436696 DOI: 10.1002/mbo3.1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Antibiotic resistance is a major global health threat. Agricultural use of antibiotics is considered to be a main contributor to the issue, influencing both animals and humans as defined by the One Health approach. The purpose of the present study was to determine the abundance of antibiotic-resistant bacterial populations and the overall bacterial diversity of cattle farm soils that have been treated with animal manure compost. Soil and manure samples were collected from different sites at Tullimba farm, NSW. Cultures were grown from these samples in the presence of 11 commonly used antibiotics and antibiotic-resistant bacteria (ARB) colonies were identified. Soil and manure bacterial diversity was also determined using 16S ribosomal RNA next-generation sequencing. Results showed that ARB abundance was greatest in fresh manure and significantly lower in composted manure. However, the application of composted manure on paddock soil led to a significant increase in soil ARB abundance. Of the antibiotics tested, the number of ARB in each sample was greatest for antibiotics that inhibited the bacterial cell wall and protein synthesis. Collectively, these results suggest that the transfer of antibiotic resistance from composted animal manure to soil may not be solely mediated through the application of live bacteria and highlight the need for further research into the mechanism of antibiotic resistance transfer.
Collapse
Affiliation(s)
- Fadhel Abbas
- School of Science and TechnologyThe University of New EnglandArmidaleNew South WalesAustralia
| | - Phil Thomas
- School of Science and TechnologyThe University of New EnglandArmidaleNew South WalesAustralia
| | - Bianca Cully‐Duse
- School of Science and TechnologyThe University of New EnglandArmidaleNew South WalesAustralia
| | - Nicholas M. Andronicos
- School of Science and TechnologyThe University of New EnglandArmidaleNew South WalesAustralia
| | - Gal Winter
- School of Science and TechnologyThe University of New EnglandArmidaleNew South WalesAustralia
| |
Collapse
|
33
|
Yuan Q, Wang X, Fang H, Cheng Y, Sun R, Luo Y. Coastal mudflats as reservoirs of extracellular antibiotic resistance genes: Studies in Eastern China. J Environ Sci (China) 2023; 129:58-68. [PMID: 36804242 DOI: 10.1016/j.jes.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Despite coastal mudflats serving as essential ecological zones interconnecting terrestrial/freshwater and marine systems, little is known about the profiles of antibiotic resistance genes (ARGs) in this area. In this study, characteristics of typical ARGs, involving both intracellular (iARGs) and extracellular ARGs (eARGs) at different physical states, were explored in over 1000 km of coastal mudflats in Eastern China. Results indicated the presence of iARGs and eARGs at states of both freely present or attached by particles. The abundance of eARGs was significantly higher than that of iARGs (87.3% vs 12.7%), and their dominance was more significant than those in other habitats (52.7%-76.3%). ARG abundance, especially for eARGs, showed an increasing trend (p < 0.05) from southern (Nantong) to northern (Lianyungang) coastal mudflats. Higher salinity facilitated the transformation from iARGs to eARGs, and smaller soil particle size was conducive to the persistence of eARGs in northern coastal mudflats. This study addresses the neglected function of coastal mudflats as eARGs reservoirs.
Collapse
Affiliation(s)
- Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xiaolin Wang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hui Fang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
34
|
Shi H, Hu X, Zhang J, Li W, Xu J, Hu B, Ma L, Lou L. Soil minerals and organic matters affect ARGs transformation by changing the morphology of plasmid and bacterial responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131727. [PMID: 37257383 DOI: 10.1016/j.jhazmat.2023.131727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Soil environment is a vital place for the occurrence and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Extracellular DNA-mediated transformation is an important pathway for ARGs horizontal transfer and widely exists in soil environment. However, little information is available on how common soil components affect ARGs transformation. Here, three minerals (quartz, kaolinite, and montmorillonite) and three organic matters (humic acid, biochar, and soot) were selected as typical soil components. A small amount in suspension (0.2 g/L) of most soil components (except for quartz and montmorillonite) promoted transformant production by 1.1-1.6 folds. For a high amount (8 g/L), biochar significantly promoted transformant production to 1.5 times, kaolinite exerted a 30 % inhibitory effect. From the perspective of plasmid, biochar induced a higher proportion of supercoiled plasmid than kaolinite; more dissolved organic matter and metal ions facilitated plasmid aggregation under the near-neutral pH, thus promoted transformation. As for the influence of materials on recipient, although biochar and kaolinite both increased reactive oxygen species (ROS) level and membrane permeability, biochar up-regulated more ROS related genes, resulting in intracellular ROS production and up-regulating the expression of carbohydrate metabolism and transformation related genes. While kaolinite inhibited transformation mainly by causing nutrient deficiency.
Collapse
Affiliation(s)
- Hongyu Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Jin Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Wenxuan Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Jiang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China.
| |
Collapse
|
35
|
Ibekwe AM, Bhattacharjee AS, Phan D, Ashworth D, Schmidt MP, Murinda SE, Obayiuwana A, Murry MA, Schwartz G, Lundquist T, Ma J, Karathia H, Fanelli B, Hasan NA, Yang CH. Potential reservoirs of antimicrobial resistance in livestock waste and treated wastewater that can be disseminated to agricultural land. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162194. [PMID: 36781130 DOI: 10.1016/j.scitotenv.2023.162194] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Livestock manure, dairy lagoon effluent, and treated wastewater are known reservoirs of antibiotic resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and virulence factor genes (VFGs), and their application to agricultural farmland could be a serious public health threat. However, their dissemination to agricultural lands and impact on important geochemical pathways such as the nitrogen (N) cycle have not been jointly explored. In this study, shotgun metagenomic sequencing and analyses were performed to examine the diversity and composition of microbial communities, ARGs, VFGs, and N cycling genes in different livestock manure/lagoon and treated wastewater collected from concentrated animal feeding operations (CAFOs) and a municipal wastewater treatment plant along the west coast of the United States. Multivariate analysis showed that diversity indices of bacterial taxa from the different microbiomes were not significantly different based on InvSimpson (P = 0.05), but differences in ARG mechanisms were observed between swine manure and other microbiome sources. Comparative resistome profiling showed that ARGs in microbiome samples belonged to four core resistance classes: aminoglycosides (40-55 %), tetracyclines (30-45 %), beta-lactam-resistance (20-35 %), macrolides (18-30 %), and >50 % of the VFGs that the 24 microbiomes harbored were phyletically affiliated with two bacteria, Bacteroidetes fragilis and Enterobacter aerogenes. Network analysis based on Spearman correlation showed co-occurrence patterns between several genes such as transporter-gene and regulator, efflux pump and involved-in-polymyxin- resistance, aminoglycoside, beta-lactam, and macrolide with VFGs and bacterial taxa such as Firmicutes, Candidatus Themoplasmatota, Actinobacteria, and Bacteroidetes. Metabolic reconstruction of metagenome-assembled genome (MAGs) analysis showed that the most prevalent drug resistance mechanisms were associated with carbapenem resistance, multidrug resistance (MDR), and efflux pump. Bacteroidales was the main taxa involved in dissimilatory nitrate reduction (DNRA) in dairy lagoon effluent. This study demonstrates that the dissemination of waste from these sources can increase the spread of ARGs, ARB, and VFGs into agricultural lands, negatively impacting both soil and human health.
Collapse
Affiliation(s)
- Abasiofiok M Ibekwe
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA.
| | - Ananda S Bhattacharjee
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA; Department of Environmental Sciences, University of California, Riverside, CA 92507, USA
| | - Duc Phan
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, 92507, CA, USA
| | - Daniel Ashworth
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Michael P Schmidt
- US Salinity Laboratory, USDA-ARS, 450 W. Big Springs Rd., Riverside, CA 92507, USA
| | - Shelton E Murinda
- Animal and Veterinary Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Amarachukwu Obayiuwana
- Department of Biological Sciences, Augustine University Ilara-Epe, Lagos State 106101, Nigeria
| | - Marcia A Murry
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Gregory Schwartz
- BioResource and Agricultural Engineering Department, College of Agriculture, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Tryg Lundquist
- Civil and Environmental Engineering Department, College of Engineering, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Jincai Ma
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | | | | | - Nur A Hasan
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA; EzBiome Inc, MD, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
36
|
Zeng Z, Yue W, Kined C, Raciheon B, Liu J, Chen X. Effect of Lysinibacillus isolated from environment on probiotic properties and gut microbiota in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114952. [PMID: 37141683 DOI: 10.1016/j.ecoenv.2023.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/09/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Soil microorganisms (SM) are primarily involved in organism degradation, plant nitrogen nutrient immobilization, host microorganisms and oxidation. However, research on the effect of soil-derived Lysinibacillus on the intestinal microbiota spatial disparity of mice is lacking. To test the probiotic properties of Lysinibacillus and the spatial disparity on mice intestinal microorganisms, hemolysis test, molecular phylogenetic analysis, antibiotic sensitivity testing, serum biochemical assays and 16S rRNA profiling were applied. The results showed that Lysinibacillus (LZS1 and LZS2) was resistant to two common antibiotics, Tetracyclines and Rifampin, and sensitive to other antibiotics among the 12 antibiotics tested and negative for hemolysis. In addition, the body weight of group L (treatment of Lysinibacillus, 1.0 × 108 CFU/d for 21days) mice was significantly greater than that of the control group; serum biochemical tests showed that the TG and UREA were significantly lower in group L. The spatial disparity of intestinal microorganisms in mice was significant, treatment of Lysinibacillus (1.0 × 108 CFU/d for 21days) reduced the intestinal microbial diversity and decreased the richness of Proteobacteria, Cyanobacteria and Bacteroidetes in mice. Furthermore, Lysinibacillus treatment enhanced Lactobacillus and Lachnospiraceae richness and significantly reduced 6 bacterial genera in jejunum community, reduced 8 bacterial genera, but increased bacteria at the 4 genera level in cecum microorganisms. In conclusion, this study demonstrated spatial disparity of intestinal microorganisms in mice and probiotic potential of Lysinibacillus isolated from soil.
Collapse
Affiliation(s)
- Zhibo Zeng
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Wen Yue
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Cermon Kined
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Bakint Raciheon
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Xinzhu Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China.
| |
Collapse
|
37
|
Hernández M, Roy S, Keevil CW, Dumont MG. Identification of diverse antibiotic resistant bacteria in agricultural soil with H 218O stable isotope probing combined with high-throughput sequencing. ENVIRONMENTAL MICROBIOME 2023; 18:34. [PMID: 37072776 PMCID: PMC10111737 DOI: 10.1186/s40793-023-00489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND We aimed to identify bacteria able to grow in the presence of several antibiotics including the ultra-broad-spectrum antibiotic meropenem in a British agricultural soil by combining DNA stable isotope probing (SIP) with high throughput sequencing. Soil was incubated with cefotaxime, meropenem, ciprofloxacin and trimethoprim in 18O-water. Metagenomes and the V4 region of the 16S rRNA gene from the labelled "heavy" and the unlabelled "light" SIP fractions were sequenced. RESULTS An increase of the 16S rRNA copy numbers in the "heavy" fractions of the treatments with 18O-water compared with their controls was detected. The treatments resulted in differences in the community composition of bacteria. Members of the phyla Acidobacteriota (formally Acidobacteria) were highly abundant after two days of incubation with antibiotics. Pseudomonadota (formally Proteobacteria) including Stenotrophomonas were prominent after four days of incubation. Furthermore, a metagenome-assembled genome (MAG-1) from the genus Stenotrophomonas (90.7% complete) was retrieved from the heavy fraction. Finally, 11 antimicrobial resistance genes (ARGs) were identified in the unbinned-assembled heavy fractions, and 10 ARGs were identified in MAG-1. In comparison, only two ARGs from the unbinned-assembled light fractions were identified. CONCLUSIONS The results indicate that both non-pathogenic soil-dwelling bacteria as well as potential clinical pathogens are present in this agricultural soil and several ARGs were identified from the labelled communities, but it is still unclear if horizontal gene transfer between these groups can occur.
Collapse
Affiliation(s)
- Marcela Hernández
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Shamik Roy
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - C William Keevil
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
38
|
Mitchell SW, Moran RA, Elbourne LDH, Chapman B, Bull M, Muscatello G, Coleman NV. Impacts of Domestication and Veterinary Treatment on Mobile Genetic Elements and Resistance Genes in Equine Fecal Bacteria. Appl Environ Microbiol 2023; 89:e0159022. [PMID: 36988354 PMCID: PMC10057962 DOI: 10.1128/aem.01590-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/05/2023] [Indexed: 03/09/2023] Open
Abstract
Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I+ isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I+ Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I+ Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger PC promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria.
Collapse
Affiliation(s)
- Scott W. Mitchell
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Robert A. Moran
- Institute of Microbiology and Infection, School of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Liam D. H. Elbourne
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Belinda Chapman
- Quantal Bioscience Pty Ltd, Carlingford, New South Wales, Australia
| | - Michelle Bull
- Quantal Bioscience Pty Ltd, Carlingford, New South Wales, Australia
| | - Gary Muscatello
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Klimkaitė L, Ragaišis I, Krasauskas R, Ružauskas M, Sužiedėlienė E, Armalytė J. Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin. Int J Mol Sci 2023; 24:ijms24076037. [PMID: 37047008 PMCID: PMC10094639 DOI: 10.3390/ijms24076037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
As one of the most diverse habitats of microorganisms, soil has been recognised as a reservoir of both antibiotics and the antibiotic resistance genes (ARGs). Bacteria naturally inhabiting soil or water often possess innate ARGs to counteract the chemical compounds produced by competitors living in the same environment. When such bacteria are able to cause infections in immunocompromised patients, their strong innate antibiotic resistance mechanisms make treatment difficult. We generated functional gene libraries using antibiotic-resistant Stenotrophomonas maltophilia and Chryseobacterium spp. bacteria isolated from agricultural soils in Lithuania to select for the genetic determinants responsible for their resistance. We were able to find novel variants of aminoglycoside and β-lactam resistance genes, with β-lactamases isolated from the Chryseobacterium spp. functional gene library, one of which is a variant of IND-like metallo-β-lactamase (MBL) IND-17 and the other of which is a previously uncharacterised MBL we named CHM (Chryseobacterium metallo β-lactamase). Our results indicate that soil microorganisms possess a diversity of ARG variants, which could potentially be transferred to the clinical setting.
Collapse
Affiliation(s)
- Laurita Klimkaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Ignas Ragaišis
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Modestas Ružauskas
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| |
Collapse
|
40
|
Shi H, Hu X, Xu J, Hu B, Ma L, Lou L. Conjugation-mediated transfer of antibiotic resistance genes influenced by primary soil components and underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161232. [PMID: 36586689 DOI: 10.1016/j.scitotenv.2022.161232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Soil is the main natural reservoir of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Their dissemination and proliferation were largely motivated by conjugative transfer, while the influence of soil components on bacterial conjugative transfer and the underlying mechanisms remain poorly understood. In the present study, two Escherichia coli strains were exposed to soil minerals (quartz, kaolinite and montmorillonite) and organic matters (humic acid, biochar and soot) respectively to investigate their impact on ARGs conjugation. The results showed that quartz had no significant effect on conjugation; montmorillonite promoted the growth of the donor, but inhibited the recipient and conjugant; kaolinite and three organic matters significantly promoted the production of conjugant, while biochar promoted and then inhibited it with time prolong. Within the range of bacterial concentration involved in this study, the concentration of conjugant increased with the ratio of the concentration of donor and recipient (RD/R), indicating that the variation of conjugant production was mainly mediated by changing RD/R. Further observation of biochar treatment group showed that the bacterial responses such as cell membrane permeability, cell surface hydrophobicity and biofilm formation ability shifted with the exposure time, which might be a potential factor affecting conjugative transfer. Collectively, our findings suggest that the type and exposure time of soil components jointly affected conjugation, while the change of RD/R and related bacterial responses are the main underlying mechanisms.
Collapse
Affiliation(s)
- Hongyu Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Jiang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, PR China.
| |
Collapse
|
41
|
Li S, Ondon BS, Ho SH, Li F. Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. ENVIRONMENTAL RESEARCH 2023; 219:115132. [PMID: 36563979 DOI: 10.1016/j.envres.2022.115132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Soil plays a vital role as a nutrient source for microflora and plants in ecosystems. The accumulation and proliferation of antibiotics resistance bacteria (ARB) and antibiotics resistance genes (ARGs) causes emerging soil contamination and pollution, posing new challenges for soil remediation, recovery, and conservation. Fertilizer application in agriculture is one of the most important sources of ARB and ARGs contamination in soils. The recent existing techniques for the remediation of soil polluted with ARB and ARGs are very limited in terms of ARB and ARGs removal in soil. Bioelectrochemical remediation using bioelectrochemical systems such as microbial fuel cells and microbial electrolysis cells are promising technologies for the removal of ARB and ARGs in soil. Herein, diverse sources of ARB and ARGs in soil have been reviewed, their effects on soil microbial diversity have been analyzed, and the causes of ARB and ARGs rapid proliferation in soil are explained. Bioelectrochemical systems used for the remediation of soil contaminated with ARB and ARGs is still in its infancy stage and presents serious disadvantage and limits, therefore it needs to be well understood and implemented. In general, merging soil contamination of ARB and ARGs is an increasing concern threatening the soil ecosystem while the remediation technologies are still challenging. Efforts need to be made to develop new, effective, and efficient technologies for soil remediation and conservation to tackle the spread of ARB and ARGs and overcome the new challenges posed by ARB and ARGs contamination in soil.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Brim Stevy Ondon
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
42
|
Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12020333. [PMID: 36830244 PMCID: PMC9952537 DOI: 10.3390/antibiotics12020333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.
Collapse
|
43
|
Huang Q, Zhu J, Qu C, Wang Y, Hao X, Chen W, Cai P, Huang Q. Dichotomous Role of Humic Substances in Modulating Transformation of Antibiotic Resistance Genes in Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:790-800. [PMID: 36516830 DOI: 10.1021/acs.est.2c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Widespread antibiotic resistance genes (ARGs) have emerged as a focus of attention for public health. Transformation is essential for ARGs dissemination in soils and associated environments; however, the mechanisms of how soil components contribute to the transformation of ARGs remain elusive. Here we demonstrate that three representative mineral-humic acid (HA) composites exert contrasting influence on the transformation of plasmid-borne ARGs in Bacillus subtilis. Mineral surface-bound HA facilitated transformation in kaolinite and montmorillonite systems, while an inhibitory effect of HA was observed for goethite. The elevated transformation by HA-coated kaolinite was mainly attributed to the enhanced activity of competence-stimulating factor (CSF), while increased transformation by montmorillonite-HA composites was assigned to the weakened adsorption affinity of DNA and enhanced gene expression induced by flagella-driven cell motility. In goethite system, HA played an overriding role in suppressing transformation via alleviation of cell membrane damage. The results obtained offer insights into the divergent mechanisms of humic substances in modulating bacterial transformation by soil minerals. Our findings would help for a better understanding on the fate of ARGs in soil systems and provide potentials for the utilization of soil components, particularly organic matter, to mitigate the spread of ARGs in a range of settings.
Collapse
Affiliation(s)
- Qiong Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. Int J Mol Sci 2023; 24:ijms24021153. [PMID: 36674663 PMCID: PMC9867233 DOI: 10.3390/ijms24021153] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Endophytes, which are widely found in host plants and have no harmful effects, are a vital biological resource. Plant endophytes promote plant growth and enhance plants' resistance to diseases, pests, and environmental stresses. In addition, they enhance the synthesis of important secondary metabolites in plants and improve the potential applicability of plants in agriculture, medicine, food, and horticulture. In this review, we summarize the recent progress in understanding the interaction between endophytes and plants and summarize the construction of synthetic microbial communities (SynComs) and metaomics analysis of the interaction between endophytes and plants. The application and development prospects of endophytes in agriculture, medicine, and other industries are also discussed to provide a reference for further study of the interaction between endophytes and plants and further development and utilization of endophytes.
Collapse
|
45
|
Delgado-Baquerizo M, Hu HW, Maestre FT, Guerra CA, Eisenhauer N, Eldridge DJ, Zhu YG, Chen QL, Trivedi P, Du S, Makhalanyane TP, Verma JP, Gozalo B, Ochoa V, Asensio S, Wang L, Zaady E, Illán JG, Siebe C, Grebenc T, Zhou X, Liu YR, Bamigboye AR, Blanco-Pastor JL, Duran J, Rodríguez A, Mamet S, Alfaro F, Abades S, Teixido AL, Peñaloza-Bojacá GF, Molina-Montenegro MA, Torres-Díaz C, Perez C, Gallardo A, García-Velázquez L, Hayes PE, Neuhauser S, He JZ. The global distribution and environmental drivers of the soil antibiotic resistome. MICROBIOME 2022; 10:219. [PMID: 36503688 PMCID: PMC9743735 DOI: 10.1186/s40168-022-01405-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/31/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Little is known about the global distribution and environmental drivers of key microbial functional traits such as antibiotic resistance genes (ARGs). Soils are one of Earth's largest reservoirs of ARGs, which are integral for soil microbial competition, and have potential implications for plant and human health. Yet, their diversity and global patterns remain poorly described. Here, we analyzed 285 ARGs in soils from 1012 sites across all continents and created the first global atlas with the distributions of topsoil ARGs. RESULTS We show that ARGs peaked in high latitude cold and boreal forests. Climatic seasonality and mobile genetic elements, associated with the transmission of antibiotic resistance, were also key drivers of their global distribution. Dominant ARGs were mainly related to multidrug resistance genes and efflux pump machineries. We further pinpointed the global hotspots of the diversity and proportions of soil ARGs. CONCLUSIONS Together, our work provides the foundation for a better understanding of the ecology and global distribution of the environmental soil antibiotic resistome. Video Abstract.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain.
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Science, Fujian Normal University, Fuzhou, 350007, China.
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Martin-Luther University Halle Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qing-Lin Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0028, South Africa
| | - Jay Prakash Verma
- Plant-Microbe Interactions Lab., Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
- Soil Microbiology Lab., Department of Soil Science, Federal University of Ceara, Fortaleza, Brazil
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Sergio Asensio
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Ling Wang
- Institute of Grassland Science/School of Life Science, Northeast Normal University, and Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| | - Eli Zaady
- Agricultural Research Organization, Department of Natural Resources, Institute of Plant Sciences, Gilat Research Center, Mobile Post, 8531100, Negev, Israel
| | - Javier G Illán
- Department of Entomology, Washington State University, Pullman, WA, 99164, USA
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City D.F., CP, 04510, México
| | - Tine Grebenc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, CAS, Urumqi, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - José L Blanco-Pastor
- INRAE, UR4 (URP3F), Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
- Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes 6, ES-41012, Seville, Spain
| | - Jorge Duran
- Misión Biolóxica de Galicia, Consejo Superior de Investigaciones Científicas, 36143, Pontevedra, Spain
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Alexandra Rodríguez
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Steven Mamet
- College of Agriculture and Bioresources Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Fernando Alfaro
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
| | - Sebastian Abades
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
| | - Alberto L Teixido
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Av. Fernando Corrêa, 2367, Boa Esperança, Cuiabá, MT, 78060-900, Brazil
| | - Gabriel F Peñaloza-Bojacá
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Cristian Torres-Díaz
- Grupo de Biodiversidad y Cambio Global (BCG), Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Cecilia Perez
- Instituto de Ecología y Biodiversidad, Las Palmeras 3425, Santiago, Chile
| | - Antonio Gallardo
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, 41013, Sevilla, Spain
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Laura García-Velázquez
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Sigrid Neuhauser
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Science, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
46
|
Major N, Jechalke S, Nesme J, Goreta Ban S, Černe M, Sørensen SJ, Ban D, Grosch R, Schikora A, Schierstaedt J. Influence of sewage sludge stabilization method on microbial community and the abundance of antibiotic resistance genes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:126-135. [PMID: 36242814 DOI: 10.1016/j.wasman.2022.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Municipal sewage sludge (MSS) and other biosolids are of high interest for agriculture. These nutrient-rich organic materials can potentially serve as organic fertilizers. Besides an increase of organic matter in soil, other positive effects were shown after their application. Especially the positive influence on circular economy increased the attention paid to management of MSS in recent years. Unfortunately, the use of sewage sludge has some drawbacks. Biosolids are frequently polluted with heavy metals, xenobiotic organic compounds and industrial chemicals, which may be hazardous for the environment and humans. Here, we investigated the influence of stabilization method and the size of wastewater treatment plant on the structure of microbial communities as well as the abundance of antibiotic resistance genes (ARG) and mobile genetic elements (MGE). All tested ARG and MGE were detectable in almost all of the samples. Interestingly, the presence of MGE as well as particular heavy metals correlated positively with the presence of several ARG. We conclude that the distribution of ARG and MGE in biosolids originated from municipal wastewater treatment plants, cannot be explained by the size of the facility or the applied stabilization method. Moreover, we postulate that the presence of pollutants and long-term impacts should be assessed prior to a possible use of sewage sludge as fertilizer.
Collapse
Affiliation(s)
- Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany.
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
47
|
Liao H, Li H, Duan CS, Zhou XY, An XL, Zhu YG, Su JQ. Metagenomic and viromic analysis reveal the anthropogenic impacts on the plasmid and phage borne transferable resistome in soil. ENVIRONMENT INTERNATIONAL 2022; 170:107595. [PMID: 36283158 DOI: 10.1016/j.envint.2022.107595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic land use changes have been recognized with significant effects on the abundance and diversity of antibiotic resistance genes (ARGs) in soil, but their impacts on ARGs with potential health risk remained poorly understood. In this study, paired metagenomes and viromes were obtained from soils (Anthrosols and Nitisols) with different land uses including urban parks, road verge, forests, vegetable and paddy in a subtropical city, Xiamen, and soils (Anthrosols) with various long-term fertilization treatments in Dezhou located in temperate region, respectively, to explore the influence of anthropogenic activity on soil resistome. The diversity and abundance of antibiotic resistance genes (ARGs) were profiled, and the risk associated factors of ARGs, i.e., genetic location, host, and co-existence with virulence factors (VFs), were systematically investigated at reads and contigs level. We observed that agricultural areas significantly enriched human-related ARGs and viruses, and positively related with clinical ARGs. Most of the ARG-carrying contigs were chromosomes (∼85 %), while, human-related ARGs presented a higher odds ratio to locate on plasmids. Soil VFs exhibited land use pattern and distinct distribution between chromosome and plasmids, but less mobile than ARGs. Analysis of 131,014 soil viral genomes indicated that they barely encoded ARGs, nevertheless, transduction of VLPs was implicated in the spread of ARGs. The results can be mutually verified in Xiamen and Dezhou datasets. Overall, the agricultural soils with dry-farming are hotspots for the clinical ARGs, and the transmission of clinical ARGs between human dominated environments and soil is primarily mediated by plasmids, rather than bacterial chromosomes, and the transduction of human-gut related viruses could participate the process. These results highlight the importance of tracking the fate of clinical ARGs for better evaluating the impacts of human activities on soil resistome.
Collapse
Affiliation(s)
- Hu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen-Song Duan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Ren Z, Luo W. Metagenomic analysis reveals the diversity and distribution of antibiotic resistance genes in thermokarst lakes of the Yellow River Source Area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120102. [PMID: 36075331 DOI: 10.1016/j.envpol.2022.120102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Thermokarst lakes form as the results of ice-rich permafrost thawing and act as important water resources in cold regions. However, the distributions of antibiotic resistance genes (ARGs) in thermokarst lakes are far less studied. Using metagenomic sequencing approach, we provided the first study to document ARGs in thermokarst lakes of the Yellow River Source Area on the Qinghai-Tibet Plateau (QTP). The results revealed that both sediment and water of the thermokarst lakes harbor diverse ARGs. Multidrug resistance genes were the most diverse, while rifamycin resistance genes were the most abundant with rpoB2 and rpoB genes having the highest proportion. Sediment samples contained more ARGs than water samples, but their composition differed between the two types of samples. However, the composition variations of sediment and water ARGs were closely correlated. The Sorensen dissimilarities of ARGs were controlled by strong turnover processes in sediment samples, and by turnover and nestedness in water samples. High contributions of nestedness were found between sediment and water samples. Moreover, ARGs in water had more significant relationships with environmental variables than that in sediment. Given the role of thermokarst lakes as important water resources in permafrost landscape, as well as intensifying influences of climate change and anthropogenetic activities, thermokarst lakes could bring potential ARG risks, warranting further investigation and evaluation.
Collapse
Affiliation(s)
- Ze Ren
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
49
|
Konwar AN, Hazarika SN, Bharadwaj P, Thakur D. Emerging Non-Traditional Approaches to Combat Antibiotic Resistance. Curr Microbiol 2022; 79:330. [PMID: 36155858 PMCID: PMC9510247 DOI: 10.1007/s00284-022-03029-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
An increasing number of bacterial pathogens are acquiring resistance to the commonly used antibiotics. This has spurred a global threat leading to a resistance era and has penetrated the consciousness of the common people and the clinicians alike. The delay in discovering new antibiotics has exacerbated the resistance problem, forcing researchers to focus on unconventional antimicrobial therapeutics that differ from conventional antibiotics. Alternative therapies have emerged in recent years, including antimicrobial peptides, phage therapy, efflux pump inhibitors, antibodies, and immunomodulatory agents, which have produced impressive results in both laboratory and in clinical trials. Additionally, ultra-narrow-spectrum therapeutics such as CRISPR-Cas system and peptide nucleic acids aided in the development of sequence-specific antimicrobials. Moreover, combinatorial therapies that combine these new approaches have been efficient enough to get approval for clinical use and have accelerated the discovery of novel combination approaches that enhance the performance of already in-use antibiotics. In this review, we provide an overview of these approaches along with studies that focus on the uncharted microbial territories that have been able to deliver some of the important new antibiotics of recent times. It is hoped that the information gathered in this article will provide an update on the current antibiotic resistance threat and encourage profound research.
Collapse
Affiliation(s)
- Aditya Narayan Konwar
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shabiha Nudrat Hazarika
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Studies in Science and Technology, Guwahati, Assam, 781035, India.
| |
Collapse
|
50
|
Li T, Li R, Cao Y, Tao C, Deng X, Ou Y, Liu H, Shen Z, Li R, Shen Q. Soil antibiotic abatement associates with the manipulation of soil microbiome via long-term fertilizer application. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129704. [PMID: 36104920 DOI: 10.1016/j.jhazmat.2022.129704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The effects of different fertilization on microbial communities and resistome in agricultural soils with a history of fresh manure application remains largely unclear. Here, soil antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and microbial communities were deciphered using metagenomics approach from a long-term field experiment with different fertilizer inputs. A total of 541 ARG subtypes were identified, with Multidrug, Macrolides-Lincosamides-Streptogramins (MLS), and Bacitracin resistance genes as the most universal ARG types. The abundance of ARGs detected in manure (2.52 ARGs/16 S rRNA) treated soils was higher than chemical fertilizer (2.42 ARGs/16 S rRNA) or compost (2.37 ARGs/16 S rRNA) amended soils. The higher abundance of MGEs and the enrichment of Proteobacteria were observed in manure treated soils than in chemical fertilizer or compost amended soils. Proteobacter and Actinobacter were recognized as the main potential hosts of ARGs revealed by network analysis. Further soil pH was identified as the key driver in determining the composition of both microbial community and resistome. The present study investigated the mechanisms driving the microbial community, MGEs and ARG profiles of long-term fertilized soils with ARGs contamination, and our findings could support strategies to manage the dissemination of soil ARGs.
Collapse
Affiliation(s)
- Tingting Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Ruochen Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yifan Cao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yannan Ou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|