1
|
Kim J, Kim E, Yang SM, Park SH, Kim HY. Direct On-Chip Diagnostics of Streptococcus bovis/ Streptococcus equinus Complex in Bovine Mastitis Using Bioinformatics-Driven Portable qPCR. Biomolecules 2024; 14:1624. [PMID: 39766331 PMCID: PMC11726764 DOI: 10.3390/biom14121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
This study introduces an innovative on-site diagnostic method for rapidly detecting the Streptococcus bovis/Streptococcus equinus complex (SBSEC), crucial for livestock health and food safety. Through a comprehensive genomic analysis of 206 genomes, this study identified genetic markers that improved classification and addressed misclassifications, particularly in genomes labeled S. equinus and S. lutetiensis. These markers were integrated into a portable quantitative polymerase chain reaction (qPCR) that can detect SBSEC species with high sensitivity (down to 101 or 100 colony-forming units/mL). The portable system featuring a flat chip and compact equipment allows immediate diagnosis within 30 min. The diagnostic method was validated in field conditions directly from cattle udders, farm environments, and dairy products. Among the 100 samples, 51 tested positive for bacteria associated with mastitis. The performance of this portable qPCR was comparable to laboratory methods, offering a reliable alternative to whole-genome sequencing for early detection in clinical, agricultural, and environmental settings.
Collapse
Affiliation(s)
- Jaewook Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
| | - Eiseul Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
| | - Seung-Min Yang
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
| | - Si Hong Park
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.K.); (E.K.); (S.-M.Y.); (S.H.P.)
| |
Collapse
|
2
|
Udaondo Z, Ramos JL, Abram K. Unraveling the genomic diversity of the Pseudomonas putida group: exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. FEMS Microbiol Rev 2024; 48:fuae025. [PMID: 39390673 PMCID: PMC11585281 DOI: 10.1093/femsre/fuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
The genus Pseudomonas is characterized by its rich genetic diversity, with over 300 species been validly recognized. This reflects significant progress made through sequencing and computational methods. Pseudomonas putida group comprises highly adaptable species that thrive in diverse environments and play various ecological roles, from promoting plant growth to being pathogenic in immunocompromised individuals. By leveraging the GRUMPS computational pipeline, we scrutinized 26 363 genomes labeled as Pseudomonas in the NCBI GenBank, categorizing all Pseudomonas spp. genomes into 435 distinct species-level clusters or cliques. We identified 224 strains deposited under the taxonomic identifier "Pseudomonas putida" distributed within 31 of these species-level clusters, challenging prior classifications. Nine of these 31 cliques contained at least six genomes labeled as "Pseudomonas putida" and were analysed in depth, particularly clique_1 (P. alloputida) and clique_2 (P. putida). Pangenomic analysis of a set of 413 P. putida group strains revealed over 2.2 million proteins and more than 77 000 distinct protein families. The core genome of these 413 strains includes 2226 protein families involved in essential biological processes. Intraspecific genetic homogeneity was observed within each clique, each possessing a distinct genomic identity. These cliques exhibit distinct core genes and diverse subgroups, reflecting adaptation to specific environments. Contrary to traditional views, nosocomial infections by P. alloputida, P. putida, and P. monteilii have been reported, with strains showing varied antibiotic resistance profiles due to diverse mechanisms. This review enhances the taxonomic understanding of key P. putida group species using advanced population genomics approaches and provides a comprehensive understanding of their genetic diversity, ecological roles, interactions, and potential applications.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
3
|
Yang Y, Shao Y, Pei C, Liu Y, Zhang M, Zhu X, Li J, Feng L, Li G, Li K, Liang Y, Li Y. Pangenome analyses of Clostridium butyricum provide insights into its genetic characteristics and industrial application. Genomics 2024; 116:110855. [PMID: 38703968 DOI: 10.1016/j.ygeno.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Clostridium butyricum is a Gram-positive anaerobic bacterium known for its ability to produce butyate. In this study, we conducted whole-genome sequencing and assembly of 14C. butyricum industrial strains collected from various parts of China. We performed a pan-genome comparative analysis of the 14 assembled strains and 139 strains downloaded from NCBI. We found that the genes related to critical industrial production pathways were primarily present in the core and soft-core gene categories. The phylogenetic analysis revealed that strains from the same clade of the phylogenetic tree possessed similar antibiotic resistance and virulence factors, with most of these genes present in the shell and cloud gene categories. Finally, we predicted the genes producing bacteriocins and botulinum toxins as well as CRISPR systems responsible for host defense. In conclusion, our research provides a desirable pan-genome database for the industrial production, food application, and genetic research of C. butyricum.
Collapse
Affiliation(s)
- Yicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Shao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Pei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshan Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lifei Feng
- Henan Jinbaihe Biotechnology Co., Ltd., Tangyin, Anyang 455000, China
| | - Guanghua Li
- Henan Jinbaihe Biotechnology Co., Ltd., Tangyin, Anyang 455000, China
| | - Keke Li
- Henan Jinbaihe Biotechnology Co., Ltd., Tangyin, Anyang 455000, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Sáez LP, Rodríguez-Caballero G, Olaya-Abril A, Cabello P, Moreno-Vivián C, Roldán MD, Luque-Almagro VM. Genomic Insights into Cyanide Biodegradation in the Pseudomonas Genus. Int J Mol Sci 2024; 25:4456. [PMID: 38674043 PMCID: PMC11049912 DOI: 10.3390/ijms25084456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Molecular studies about cyanide biodegradation have been mainly focused on the hydrolytic pathways catalyzed by the cyanide dihydratase CynD or the nitrilase NitC. In some Pseudomonas strains, the assimilation of cyanide has been linked to NitC, such as the cyanotrophic model strain Pseudomonas pseudoalcaligenes CECT 5344, which has been recently reclassified as Pseudomonas oleovorans CECT 5344. In this work, a phylogenomic approach established a more precise taxonomic position of the strain CECT 5344 within the species P. oleovorans. Furthermore, a pan-genomic analysis of P. oleovorans and other species with cyanotrophic strains, such as P. fluorescens and P. monteilii, allowed for the comparison and identification of the cioAB and mqoAB genes involved in cyanide resistance, and the nitC and cynS genes required for the assimilation of cyanide or cyanate, respectively. While cyanide resistance genes presented a high frequency among the analyzed genomes, genes responsible for cyanide or cyanate assimilation were identified in a considerably lower proportion. According to the results obtained in this work, an in silico approach based on a comparative genomic approach can be considered as an agile strategy for the bioprospection of putative cyanotrophic bacteria and for the identification of new genes putatively involved in cyanide biodegradation.
Collapse
Affiliation(s)
- Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| | - Víctor M. Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain; (L.P.S.); (G.R.-C.); (A.O.-A.); (C.M.-V.); (M.D.R.)
| |
Collapse
|
5
|
Scribani-Rossi C, Molina-Henares MA, Espinosa-Urgel M, Rinaldo S. Exploring the Metabolic Response of Pseudomonas putida to L-arginine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38429473 DOI: 10.1007/5584_2024_797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Beyond their role as protein-building units, amino acids are modulators of multiple behaviours in different microorganisms. In the root-colonizing beneficial bacterium Pseudomonas putida (recently proposed to be reclassified as alloputida) KT2440, current evidence suggests that arginine functions both as a metabolic indicator and as an environmental signal molecule, modulating processes such as chemotactic responses, siderophore-mediated iron uptake or the levels of the intracellular second messenger cyclic diguanylate (c-di-GMP). Using microcalorimetry and extracellular flux analysis, in this work we have studied the metabolic adaptation of P. putida KT2440 to the presence of L-arginine in the growth medium, and the influence of mutations related to arginine metabolism. Arginine causes rapid changes in the respiratory activity of P. putida, particularly magnified in a mutant lacking the transcriptional regulator ArgR. The metabolic activity of mutants affected in arginine transport and metabolism is also altered during biofilm formation in the presence of the amino acid. The results obtained here further support the role of arginine as a metabolic signal in P. putida and the relevance of ArgR in the adaptation to the amino acid. They also serve as proof of concept on the use of calorimetric and extracellular flux techniques to analyse metabolic responses in bacteria and the impact of different mutant backgrounds on such responses.
Collapse
Affiliation(s)
- Chiara Scribani-Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin, CSIC, Granada, Spain.
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
García-Franco A, Godoy P, Duque E, Ramos JL. Engineering styrene biosynthesis: designing a functional trans-cinnamic acid decarboxylase in Pseudomonas. Microb Cell Fact 2024; 23:69. [PMID: 38419048 PMCID: PMC10903017 DOI: 10.1186/s12934-024-02341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
We are interested in converting second generation feedstocks into styrene, a valuable chemical compound, using the solvent-tolerant Pseudomonas putida DOT-T1E as a chassis. Styrene biosynthesis takes place from L-phenylalanine in two steps: firstly, L-phenylalanine is converted into trans-cinnamic acid (tCA) by PAL enzymes and secondly, a decarboxylase yields styrene. This study focuses on designing and synthesizing a functional trans-cinnamic acid decarboxylase in Pseudomonas putida. To achieve this, we utilized the "wholesale" method, involving deriving two consensus sequences from multi-alignments of homologous yeast ferulate decarboxylase FDC1 sequences with > 60% and > 50% identity, respectively. These consensus sequences were used to design Pseudomonas codon-optimized genes named psc1 and psd1 and assays were conducted to test the activity in P. putida. Our results show that the PSC1 enzyme effectively decarboxylates tCA into styrene, whilst the PSD1 enzyme does not. The optimal conditions for the PSC1 enzyme, including pH and temperature were determined. The L-phenylalanine DOT-T1E derivative Pseudomonas putida CM12-5 that overproduces L-phenylalanine was used as the host for expression of pal/psc1 genes to efficiently convert L-phenylalanine into tCA, and the aromatic carboxylic acid into styrene. The highest styrene production was achieved when the pal and psc1 genes were co-expressed as an operon in P. putida CM12-5. This construction yielded styrene production exceeding 220 mg L-1. This study serves as a successful demonstration of our strategy to tailor functional enzymes for novel host organisms, thereby broadening their metabolic capabilities. This breakthrough opens the doors to the synthesis of aromatic hydrocarbons using Pseudomonas putida as a versatile biofactory.
Collapse
Affiliation(s)
- Ana García-Franco
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/ Profesor Albareda 1, 18008, Granada, Spain
- Programa de Doctorado en Bioquímica y Biología Molecular, Universidad de Granada, Granada, Spain
| | - Patricia Godoy
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/ Profesor Albareda 1, 18008, Granada, Spain
| | - Estrella Duque
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/ Profesor Albareda 1, 18008, Granada, Spain
| | - Juan L Ramos
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/ Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
7
|
Han S, Kim D, Kim Y, Yoon SH. Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12. BMC Genomics 2024; 25:63. [PMID: 38229031 DOI: 10.1186/s12864-023-09940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pseudomonas putida S12 is a gram-negative bacterium renowned for its high tolerance to organic solvents and metabolic versatility, making it attractive for various applications, including bioremediation and the production of aromatic compounds, bioplastics, biofuels, and value-added compounds. However, a metabolic model of S12 has yet to be developed. RESULTS In this study, we present a comprehensive and highly curated genome-scale metabolic network model of S12 (iSH1474), containing 1,474 genes, 1,436 unique metabolites, and 2,938 metabolic reactions. The model was constructed by leveraging existing metabolic models and conducting comparative analyses of genomes and phenomes. Approximately 2,000 different phenotypes were measured for S12 and its closely related KT2440 strain under various nutritional and environmental conditions. These phenotypic data, combined with the reported experimental data, were used to refine and validate the reconstruction. Model predictions quantitatively agreed well with in vivo flux measurements and the batch cultivation of S12, which demonstrated that iSH1474 accurately represents the metabolic capabilities of S12. Furthermore, the model was simulated to investigate the maximum theoretical metabolic capacity of S12 growing on toxic organic solvents. CONCLUSIONS iSH1474 represents a significant advancement in our understanding of the cellular metabolism of P. putida S12. The combined results of metabolic simulation and comparative genome and phenome analyses identified the genetic and metabolic determinants of the characteristic phenotypes of S12. This study could accelerate the development of this versatile organism as an efficient cell factory for various biotechnological applications.
Collapse
Affiliation(s)
- Sol Han
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dohyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Vogeleer P, Millard P, Arbulú ASO, Pflüger-Grau K, Kremling A, Létisse F. Metabolic impact of heterologous protein production in Pseudomonas putida: Insights into carbon and energy flux control. Metab Eng 2024; 81:26-37. [PMID: 37918614 DOI: 10.1016/j.ymben.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
For engineered microorganisms, the production of heterologous proteins that are often useless to host cells represents a burden on resources, which have to be shared with normal cellular processes. Within a certain metabolic leeway, this competitive process has no impact on growth. However, once this leeway, or free capacity, is fully utilized, the extra load becomes a metabolic burden that inhibits cellular processes and triggers a broad cellular response, reducing cell growth and often hindering the production of heterologous proteins. In this study, we sought to characterize the metabolic rearrangements occurring in the central metabolism of Pseudomonas putida at different levels of metabolic load. To this end, we constructed a P. putida KT2440 strain that expressed two genes encoding fluorescent proteins, one in the genome under constitutive expression to monitor the free capacity, and the other on an inducible plasmid to probe heterologous protein production. We found that metabolic fluxes are considerably reshuffled, especially at the level of periplasmic pathways, as soon as the metabolic load exceeds the free capacity. Heterologous protein production leads to the decoupling of anabolism and catabolism, resulting in large excess energy production relative to the requirements of protein biosynthesis. Finally, heterologous protein production was found to exert a stronger control on carbon fluxes than on energy fluxes, indicating that the flexible nature of P. putida's central metabolic network is solicited to sustain energy production.
Collapse
Affiliation(s)
- Philippe Vogeleer
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France
| | - Pierre Millard
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France; MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Ana-Sofia Ortega Arbulú
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Katharina Pflüger-Grau
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Andreas Kremling
- Technical University Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Systems Biotechnology, Germany
| | - Fabien Létisse
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, UPS, Toulouse, France.
| |
Collapse
|
9
|
Salvà-Serra F, Pérez-Pantoja D, Donoso RA, Jaén-Luchoro D, Fernández-Juárez V, Engström-Jakobsson H, Moore ERB, Lalucat J, Bennasar-Figueras A. Comparative genomics of Stutzerimonas balearica ( Pseudomonas balearica): diversity, habitats, and biodegradation of aromatic compounds. Front Microbiol 2023; 14:1159176. [PMID: 37275147 PMCID: PMC10234333 DOI: 10.3389/fmicb.2023.1159176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Stutzerimonas balearica (Pseudomonas balearica) has been found principally in oil-polluted environments. The capability of S. balearica to thrive from the degradation of pollutant compounds makes it a species of interest for potential bioremediation applications. However, little has been reported about the diversity of S. balearica. In this study, genome sequences of S. balearica strains from different origins were analyzed, revealing that it is a diverse species with an open pan-genome that will continue revealing new genes and functionalities as the genomes of more strains are sequenced. The nucleotide signatures and intra- and inter-species variation of the 16S rRNA genes of S. balearica were reevaluated. A strategy of screening 16S rRNA gene sequences in public databases enabled the detection of 158 additional strains, of which only 23% were described as S. balearica. The species was detected from a wide range of environments, although mostly from aquatic and polluted environments, predominantly related to petroleum oil. Genomic and phenotypic analyses confirmed that S. balearica possesses varied inherent capabilities for aromatic compounds degradation. This study increases the knowledge of the biology and diversity of S. balearica and will serve as a basis for future work with the species.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Raúl A. Donoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Hedvig Engström-Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Lalucat
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Antoni Bennasar-Figueras
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
10
|
García-Franco A, Godoy P, Duque E, Ramos JL. Insights into the susceptibility of Pseudomonas putida to industrially relevant aromatic hydrocarbons that it can synthesize from sugars. Microb Cell Fact 2023; 22:22. [PMID: 36732770 PMCID: PMC9893694 DOI: 10.1186/s12934-023-02028-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas putida DOT-T1E is a highly solvent tolerant strain for which many genetic tools have been developed. The strain represents a promising candidate host for the synthesis of aromatic compounds-opening a path towards a green alternative to petrol-derived chemicals. We have engineered this strain to produce phenylalanine, which can then be used as a raw material for the synthesis of styrene via trans-cinnamic acid. To understand the response of this strain to the bioproducts of interest, we have analyzed the in-depth physiological and genetic response of the strain to these compounds. We found that in response to the exposure to the toxic compounds that the strain can produce, the cell launches a multifactorial response to enhance membrane impermeabilization. This process occurs via the activation of a cis to trans isomerase that converts cis unsaturated fatty acids to their corresponding trans isomers. In addition, the bacterial cells initiate a stress response program that involves the synthesis of a number of chaperones and ROS removing enzymes, such as peroxidases and superoxide dismutases. The strain also responds by enhancing the metabolism of glucose through the specific induction of the glucose phosphorylative pathway, Entner-Doudoroff enzymes, Krebs cycle enzymes and Nuo. In step with these changes, the cells induce two efflux pumps to extrude the toxic chemicals. Through analyzing a wide collection of efflux pump mutants, we found that the most relevant pump is TtgGHI, which is controlled by the TtgV regulator.
Collapse
Affiliation(s)
- Ana García-Franco
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain
| | - Patricia Godoy
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain
| | - Estrella Duque
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain
| | - Juan Luis Ramos
- Estación Experimental del Zaidín. Consejo Superior de Investigaciones Científicas, c/Profesor Albareda nº 1, 18008, Granada, Spain.
| |
Collapse
|
11
|
Moreno R, Yuste L, Rojo F. The acetoin assimilation pathway of Pseudomonas putida KT2440 is regulated by overlapping global regulatory elements that respond to nutritional cues. Environ Microbiol 2023; 25:515-531. [PMID: 36482024 PMCID: PMC10107126 DOI: 10.1111/1462-2920.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Many microorganisms produce and excrete acetoin (3-hydroxy-2-butanone) when growing in environments that contain glucose or other fermentable carbon sources. This excreted compound can then be assimilated by other bacterial species such as pseudomonads. This work shows that acetoin is not a preferred carbon source of Pseudomonas putida, and that the induction of genes required for its assimilation is down-modulated by different, independent, global regulatory systems when succinate, glucose or components of the LB medium are also present. The expression of the acetoin degradation genes was found to rely on the RpoN alternative sigma factor and to be modulated by the Crc/Hfq, Cyo and PTSNtr regulatory elements, with the impact of the latter three varying according to the carbon source present in addition to acetoin. Pyruvate, a poor carbon source for P. putida, did not repress acetoin assimilation. Indeed, the presence of acetoin significantly improved growth on pyruvate, revealing these compounds to have a synergistic effect. This would provide a clear competitive advantage to P. putida when growing in environments in which all the preferred carbon sources have been depleted and pyruvate and acetoin remain as leftovers from the fermentation of sugars by other microorganisms.
Collapse
Affiliation(s)
- Renata Moreno
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| |
Collapse
|
12
|
Scribani-Rossi C, Molina-Henares MA, Angeli S, Cutruzzolà F, Paiardini A, Espinosa-Urgel M, Rinaldo S. The phosphodiesterase RmcA contributes to the adaptation of Pseudomonas putida to l-arginine. FEMS Microbiol Lett 2023; 370:fnad077. [PMID: 37550221 PMCID: PMC10423028 DOI: 10.1093/femsle/fnad077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Amino acids are crucial in nitrogen cycling and to shape the metabolism of microorganisms. Among them, arginine is a versatile molecule able to sustain nitrogen, carbon, and even ATP supply and to regulate multicellular behaviors such as biofilm formation. Arginine modulates the intracellular levels of 3'-5'cyclic diguanylic acid (c-di-GMP), a second messenger that controls biofilm formation, maintenance and dispersion. In Pseudomonas putida, KT2440, a versatile microorganism with wide biotechnological applications, modulation of c-di-GMP levels by arginine requires the transcriptional regulator ArgR, but the connections between arginine metabolism and c-di-GMP are not fully characterized. It has been recently demonstrated that arginine can be perceived by the opportunistic human pathogen Pseudomonas aeruginosa through the transducer RmcA protein (Redox regulator of c-di-GMP), which can directly decrease c-di-GMP levels and possibly affect biofilm architecture. A RmcA homolog is present in P. putida, but its function and involvement in arginine perceiving or biofilm life cycle had not been studied. Here, we present a preliminary characterization of the RmcA-dependent response to arginine in P. putida in modulating biofilm formation, c-di-GMP levels, and energy metabolism. This work contributes to further understanding the molecular mechanisms linking biofilm homeostasis and environmental adaptation.
Collapse
Affiliation(s)
- Chiara Scribani-Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - María Antonia Molina-Henares
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin
, CSIC, Profesor Albareda, 1, Granada, 18008, Spain
| | - Simone Angeli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Paiardini
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidin
, CSIC, Profesor Albareda, 1, Granada, 18008, Spain
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
13
|
Genomic Analysis of Pseudomonas asiatica JP233: An Efficient Phosphate-Solubilizing Bacterium. Genes (Basel) 2022; 13:genes13122290. [PMID: 36553557 PMCID: PMC9777792 DOI: 10.3390/genes13122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The bacterium Pseudomonas sp. strain JP233 has been reported to efficiently solubilize sparingly soluble inorganic phosphate, promote plant growth and significantly reduce phosphorus (P) leaching loss from soil. The production of 2-keto gluconic acid (2KGA) by strain JP233 was identified as the main active metabolite responsible for phosphate solubilization. However, the genetic basis of phosphate solubilization and plant-growth promotion remained unclear. As a result, the genome of JP233 was sequenced and analyzed in this study. The JP233 genome consists of a circular chromosome with a size of 5,617,746 bp and a GC content of 62.86%. No plasmids were detected in the genome. There were 5097 protein-coding sequences (CDSs) predicted in the genome. Phylogenetic analyses based on genomes of related Pseudomonas spp. identified strain JP233 as Pseudomonas asiatica. Comparative pangenomic analysis among 9 P. asiatica strains identified 4080 core gene clusters and 111 singleton genes present only in JP233. Genes associated with 2KGA production detected in strain JP233, included those encoding glucose dehydrogenase, pyrroloquinoline quinone and gluoconate dehydrogenase. Genes associated with mechanisms of plant-growth promotion and nutrient acquisition detected in JP233 included those involved in IAA biosynthesis, ethylene catabolism and siderophore production. Numerous genes associated with other properties beneficial to plant growth were also detected in JP233, included those involved in production of acetoin, 2,3-butanediol, trehalose, and resistance to heavy metals. This study provides the genetic basis to elucidate the plant-growth promoting and bio-remediation properties of strain JP233 and its potential applications in agriculture and industry.
Collapse
|
14
|
Duque E, Udaondo Z, Molina L, de la Torre J, Godoy P, Ramos JL. Providing octane degradation capability to Pseudomonas putida KT2440 through the horizontal acquisition of oct genes located on an integrative and conjugative element. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:934-946. [PMID: 35651318 PMCID: PMC9795978 DOI: 10.1111/1758-2229.13097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 05/17/2023]
Abstract
The extensive use of petrochemicals has produced serious environmental pollution problems; fortunately, bioremediation is considered an efficient way to fight against pollution. In line with Synthetic Biology is that robust microbial chassis with an expanded ability to remove environmental pollutants are desirable. Pseudomonas putida KT2440 is a robust lab microbe that has preserved the ability to survive in the environment and is the natural host for the self-transmissible TOL plasmid, which allows metabolism of toluene and xylenes to central metabolism. We show that the P. putida KT2440 (pWW0) acquired the ability to use octane as the sole C-source after acquisition of an almost 62-kb ICE from a microbial community that harbours an incomplete set of octane metabolism genes. The ICE bears genes for an alkane monooxygenase, a PQQ-dependent alcohol dehydrogenase and aldehyde dehydrogenase but lacks the electron donor enzymes required for the monooxygenase to operate. Host rubredoxin and rubredoxin reductase allow metabolism of octane to octanol. Proteomic assays and mutants unable to grow on octane or octanoic acid revealed that metabolism of octane is mediated by redundant host and ICE enzymes. Octane is oxidized to octanol, octanal and octanoic acid, the latter is subsequently acylated and oxidized to yield acetyl-CoA that is assimilated via the glyoxylate shunt; in fact, a knockout mutant in the aceA gene, encoding isocitrate lyase was unable to grow on octane or octanoic acid.
Collapse
Affiliation(s)
- Estrella Duque
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| | - Zulema Udaondo
- Department of Biomedical InformaticsUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Lázaro Molina
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| | - Jesús de la Torre
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| | - Patricia Godoy
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| | - Juan L. Ramos
- Department of Environmental ProtectionEstación Experimental del Zaidín, CSICGranadaSpain
| |
Collapse
|
15
|
Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:3-28. [DOI: 10.1007/978-3-031-08491-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Passarelli-Araujo H, Jacobs SH, Franco GR, Venancio TM. Phylogenetic analysis and population structure of Pseudomonas alloputida. Genomics 2021; 113:3762-3773. [PMID: 34530104 DOI: 10.1016/j.ygeno.2021.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
The Pseudomonas putida group comprises strains with biotechnological and clinical relevance. P. alloputida was proposed as a new species and highlighted the misclassification of P. putida. Nevertheless, the population structure of P. alloputida remained unexplored. We retrieved 11,025 Pseudomonas genomes and used P. alloputida Kh7T to delineate the species. The P. alloputida population structure comprises at least 7 clonal complexes (CCs). Clinical isolates are mainly found in CC4 and acquired resistance genes are present at low frequency in plasmids. Virulence profiles support the potential of CC7 members to outcompete other plant or human pathogens through a type VI secretion system. Finally, we found that horizontal gene transfer had an important role in shaping the ability of P. alloputida to bioremediate aromatic compounds such as toluene. Our results provide the grounds to understand P. alloputida genetic diversity and its potential for biotechnological applications.
Collapse
Affiliation(s)
- Hemanoel Passarelli-Araujo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | - Sarah H Jacobs
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
17
|
Whelan FJ, Hall RJ, McInerney JO. Evidence for Selection in the Abundant Accessory Gene Content of a Prokaryote Pangenome. Mol Biol Evol 2021; 38:3697-3708. [PMID: 33963386 PMCID: PMC8382901 DOI: 10.1093/molbev/msab139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A pangenome is the complete set of genes (core and accessory) present in a phylogenetic clade. We hypothesize that a pangenome's accessory gene content is structured and maintained by selection. To test this hypothesis, we interrogated the genomes of 40 Pseudomonas species for statistically significant coincident (i.e., co-occurring/avoiding) gene patterns. We found that 86.7% of common accessory genes are involved in ≥1 coincident relationship. Further, genes that co-occur and/or avoid each other-but are not vertically inherited-are more likely to share functional categories, are more likely to be simultaneously transcribed, and are more likely to produce interacting proteins, than would be expected by chance. These results are not due to coincident genes being adjacent to one another on the chromosome. Together, these findings suggest that the accessory genome is structured into sets of genes that function together within a given strain. Given the similarity of the Pseudomonas pangenome with open pangenomes of other prokaryotic species, we speculate that these results are generalizable.
Collapse
Affiliation(s)
- Fiona J Whelan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca J Hall
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James O McInerney
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
18
|
Godoy P, García-Franco A, Recio MI, Ramos JL, Duque E. Synthesis of aromatic amino acids from 2G lignocellulosic substrates. Microb Biotechnol 2021; 14:1931-1943. [PMID: 34403199 PMCID: PMC8449653 DOI: 10.1111/1751-7915.13844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida is a highly solvent‐resistant microorganism and useful chassis for the production of value‐added compounds from lignocellulosic residues, in particular aromatic compounds that are made from phenylalanine. The use of these agricultural residues requires a two‐step treatment to release the components of the polysaccharides of cellulose and hemicellulose as monomeric sugars, the most abundant monomers being glucose and xylose. Pan‐genomic studies have shown that Pseudomonas putida metabolizes glucose through three convergent pathways to yield 6‐phosphogluconate and subsequently metabolizes it through the Entner–Doudoroff pathway, but the strains do not degrade xylose. The valorization of both sugars is critical from the point of view of economic viability of the process. For this reason, a P. putida strain was endowed with the ability to metabolize xylose via the xylose isomerase pathway, by incorporating heterologous catabolic genes that convert this C5 sugar into intermediates of the pentose phosphate cycle. In addition, the open reading frame T1E_2822, encoding glucose dehydrogenase, was knocked‐out to avoid the production of the dead‐end product xylonate. We generated a set of DOT‐T1E‐derived strains that metabolized glucose and xylose simultaneously in culture medium and that reached high cell density with generation times of around 100 min with glucose and around 300 min with xylose. The strains grew in 2G hydrolysates from diluted acid and steam explosion pretreated corn stover and sugarcane straw. During growth, the strains metabolized > 98% of glucose, > 96% xylose and > 85% acetic acid. In 2G hydrolysates P. putida 5PL, a DOT‐T1E derivative strain that carries up to five independent mutations to avoid phenylalanine metabolism, accumulated this amino acid in the medium. We constructed P. putida 5PLΔgcd (xylABE) that produced up to 250 mg l−1 of phenylalanine when grown in 2G pretreated corn stover or sugarcane straw. These results support as a proof of concept the potential of P. putida as a chassis for 2G processes.
Collapse
Affiliation(s)
- Patricia Godoy
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Ana García-Franco
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - María-Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain.,BioEnterprise Master Program, School of Pharmacy, University of Granada, Granada, Spain
| | - Juan-Luis Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, c/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
19
|
Kozaeva E, Volkova S, Matos MRA, Mezzina MP, Wulff T, Volke DC, Nielsen LK, Nikel PI. Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A-dependent bioproduction in rewired Pseudomonas putida. Metab Eng 2021; 67:373-386. [PMID: 34343699 DOI: 10.1016/j.ymben.2021.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023]
Abstract
Pseudomonas putida is evolutionarily endowed with features relevant for bioproduction, especially under harsh operating conditions. The rich metabolic versatility of this species, however, comes at the price of limited formation of acetyl-coenzyme A (CoA) from sugar substrates. Since acetyl-CoA is a key metabolic precursor for a number of added-value products, in this work we deployed an in silico-guided rewiring program of central carbon metabolism for upgrading P. putida as a host for acetyl-CoA-dependent bioproduction. An updated kinetic model, integrating fluxomics and metabolomics datasets in addition to manually-curated information of enzyme mechanisms, identified targets that would lead to increased acetyl-CoA levels. Based on these predictions, a set of plasmids based on clustered regularly interspaced short palindromic repeats (CRISPR) and dead CRISPR-associated protein 9 (dCas9) was constructed to silence genes by CRISPR interference (CRISPRi). Dynamic reduction of gene expression of two key targets (gltA, encoding citrate synthase, and the essential accA gene, encoding subunit A of the acetyl-CoA carboxylase complex) mediated an 8-fold increase in the acetyl-CoA content of rewired P. putida. Poly(3-hydroxybutyrate) (PHB) was adopted as a proxy of acetyl-CoA availability, and two synthetic pathways were engineered for biopolymer accumulation. By including cell morphology as an extra target for the CRISPRi approach, fully rewired P. putida strains programmed for PHB accumulation had a 5-fold increase in PHB titers in bioreactor cultures using glucose. Thus, the strategy described herein allowed for rationally redirecting metabolic fluxes in P. putida from central metabolism towards product biosynthesis-especially relevant when deletion of essential pathways is not an option.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Svetlana Volkova
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Marta R A Matos
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mariela P Mezzina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
20
|
|
21
|
Castillo AI, Almeida RPP. Evidence of gene nucleotide composition favoring replication and growth in a fastidious plant pathogen. G3-GENES GENOMES GENETICS 2021; 11:6170658. [PMID: 33715000 PMCID: PMC8495750 DOI: 10.1093/g3journal/jkab076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022]
Abstract
Nucleotide composition (GC content) varies across bacteria species, genome regions, and specific genes. In Xylella fastidiosa, a vector-borne fastidious plant pathogen infecting multiple crops, GC content ranges between ∼51-52%; however, these values were gathered using limited genomic data. We evaluated GC content variations across X. fastidiosa subspecies fastidiosa (N = 194), subsp. pauca (N = 107), and subsp. multiplex (N = 39). Genomes were classified based on plant host and geographic origin; individual genes within each genome were classified based on gene function, strand, length, ortholog group, Core vs. Accessory, and Recombinant vs. Non-recombinant. GC content was calculated for each gene within each evaluated genome. The effects of genome and gene level variables were evaluated with a mixed effect ANOVA, and the marginal-GC content was calculated for each gene. Also, the correlation between gene-specific GC content vs. natural selection (dN/dS) and recombination/mutation (r/m) was estimated. Our analyses show that intra-genomic changes in nucleotide composition in X. fastidiosa are small and influenced by multiple variables. Higher AT-richness is observed in genes involved in replication and translation, and genes in the leading strand. In addition, we observed a negative correlation between high-AT and dN/dS in subsp. pauca. The relationship between recombination and GC content varied between core and accessory genes. We hypothesize that distinct evolutionary forces and energetic constraints both drive and limit these small variations in nucleotide composition.
Collapse
Affiliation(s)
- Andreina I Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Metagenomics of mine tailing rhizospheric communities and its selection for plant establishment towards bioremediation. Microbiol Res 2021; 247:126732. [PMID: 33743500 DOI: 10.1016/j.micres.2021.126732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
Mining operations often generate tailing dams that contain toxic residues and are a source of contamination when left unconfined. The establishment of a plant community over the tailings has been proposed as a containment strategy known as phytostabilization. Previously, we described naturally occurring mine tailing colonizing plants such as Acacia farnesiana, Brickellia coulteri, Baccharis sarothroides, and Gnaphalium leucocephalum without finding local adaptation. We explored the rhizosphere microbes as contributors in plant establishment and described both the culturable and in situ diversity of rhizospheric bacteria using the 16S rRNA gene and metagenomic shotgun sequencing. We built a synthetic community (SC) of culturable rhizosphere bacteria from the mine tailings. The SC was then the foundation for a serial passes experiment grown in plant-derived nutrient sources, selecting for heavy metals tolerance, community cooperation, and competition. The outcome of the serial passes was named the 'final synthetic community' (FSC). Overall, diversity decreased from in situ uncultivable microbes from roots (399 bacteria genera) to the cultivated communities (291 genera), the SC (94 genera), and the lowest diversity was in the FSC (43 genera). Metagenomic diversity clustered into 94,245 protein families, where we found plant growth promotion-related genes such as the csgBAC and entCEBAH, coded in a metagenome-assembled genome named Kosakonia sp. Nacozari. Finally, we used the FSC to inoculate mine tailing colonizing plants in a greenhouse experiment. The plants with the FSC inocula observed higher relative plant growth rates in sterile substrates. The FSC presents promising features that might make it useful for phytostabilization tailored strategies.
Collapse
|
23
|
Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM, Robeson MS, Ussery DW. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Commun Biol 2021; 4:117. [PMID: 33500552 PMCID: PMC7838162 DOI: 10.1038/s42003-020-01626-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
In this study, more than one hundred thousand Escherichia coli and Shigella genomes were examined and classified. This is, to our knowledge, the largest E. coli genome dataset analyzed to date. A Mash-based analysis of a cleaned set of 10,667 E. coli genomes from GenBank revealed 14 distinct phylogroups. A representative genome or medoid identified for each phylogroup was used as a proxy to classify 95,525 unassembled genomes from the Sequence Read Archive (SRA). We find that most of the sequenced E. coli genomes belong to four phylogroups (A, C, B1 and E2(O157)). Authenticity of the 14 phylogroups is supported by several different lines of evidence: phylogroup-specific core genes, a phylogenetic tree constructed with 2613 single copy core genes, and differences in the rates of gene gain/loss/duplication. The methodology used in this work is able to reproduce known phylogroups, as well as to identify previously uncharacterized phylogroups in E. coli species.
Collapse
Affiliation(s)
- Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Carissa Bleker
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Visanu Wanchai
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, 55576, Zotzenheim, Germany
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - David W Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
24
|
Ruiz-Roldán L, de Toro M, Sáenz Y. Whole Genome Analysis of Environmental Pseudomonas mendocina Strains: Virulence Mechanisms and Phylogeny. Genes (Basel) 2021; 12:115. [PMID: 33477842 PMCID: PMC7832885 DOI: 10.3390/genes12010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas mendocina is an environmental bacterium, rarely isolated in clinical specimens, although it has been described as producing endocarditis and sepsis. Little is known about its genome. Whole genome sequencing can be used to learn about the phylogeny, evolution, or pathogenicity of these isolates. Thus, the aim of this study was to analyze the resistome, virulome, and phylogenetic relationship of two P. mendocina strains, Ps542 and Ps799, isolated from a healthy Anas platyrhynchos fecal sample and a lettuce, respectively. Among all of the small number of P.mendocina genomes available in the National Center for Biotechnology Information (NCBI) repository, both strains were placed within one of two well-defined phylogenetic clusters. Both P. mendocina strains lacked antimicrobial resistance genes, but the Ps799 genome showed a MOBP3 family relaxase. Nevertheless, this study revealed that P. mendocina possesses an important number of virulence factors, including a leukotoxin, flagella, pili, and the Type 2 and Type 6 Secretion Systems, that could be responsible for their pathogenesis. More phenotypical and in vivo studies are needed to deepen the association with human infections and the potential P. mendocina pathogenicity.
Collapse
Affiliation(s)
- Lidia Ruiz-Roldán
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain;
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, Spain;
| |
Collapse
|
25
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
26
|
Fang H, Xu JB, Nie Y, Wu XL. Pan-genomic analysis reveals that the evolution of Dietzia species depends on their living habitats. Environ Microbiol 2020; 23:861-877. [PMID: 32715552 DOI: 10.1111/1462-2920.15176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
The bacterial genus Dietzia is widely distributed in various environments. The genomes of 26 diverse strains of Dietzia, including almost all the type strains, were analysed in this study. This analysis revealed a lipid metabolism gene richness, which could explain the ability of Dietzia to live in oil related environments. The pan-genome consists of 83,976 genes assigned into 10,327 gene families, 792 of which are shared by all the genomes of Dietzia. Mathematical extrapolation of the data suggests that the Dietzia pan-genome is open. Both gene duplication and gene loss contributed to the open pan-genome, while horizontal gene transfer was limited. Dietzia strains primarily gained their diverse metabolic capacity through more ancient gene duplications. Phylogenetic analysis of Dietzia isolated from aquatic and terrestrial environments showed two distinct clades from the same ancestor. The genome sizes of Dietzia strains from aquatic environments were significantly larger than those from terrestrial environments, which was mainly due to the occurrence of more gene loss events during the evolutionary progress of the strains from terrestrial environments. The evolutionary history of Dietzia was tightly coupled to environmental conditions, and iron concentrations should be one of the key factors shaping the genomes of the Dietzia lineages.
Collapse
Affiliation(s)
- Hui Fang
- College of Engineering, Peking University, Beijing, 100871, China
| | - Jin-Bo Xu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, 100871, China.,Institute of Ocean Research, Peking University, Beijing, 100871, China
| |
Collapse
|
27
|
Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. DIVERSITY 2020. [DOI: 10.3390/d12080289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core-orthologues. The subsequent phylogenomic analysis revealed two well-defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus-level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group-specific core proteins were also identified, with P. aeruginosa having the highest number of these and P. fluorescens having none. We identified several P. aeruginosa-specific core proteins (such as CntL, CntM, PlcB, Acp1, MucE, SrfA, Tse1, Tsi2, Tse3, and EsrC) that are known to play an important role in its pathogenicity. Finally, a holin family bacteriocin and a mitomycin-like biosynthetic protein were found to be core-specific for P. cholororaphis and we hypothesize that these proteins may confer a competitive advantage against other root-colonizers.
Collapse
|
28
|
Abstract
Pseudomonas putidais a fast-growing bacterium found mostly in temperate soil and water habitats. The metabolic versatility ofP. putidamakes this organism attractive for biotechnological applications such as biodegradation of environmental pollutants and synthesis of added-value chemicals (biocatalysis). This organism has been extensively studied in respect to various stress responses, mechanisms of genetic plasticity and transcriptional regulation of catabolic genes.P. putidais able to colonize the surface of living organisms, but is generally considered to be of low virulence. A number ofP. putidastrains are able to promote plant growth. The aim of this review is to give historical overview of the discovery of the speciesP. putidaand isolation and characterization ofP. putidastrains displaying potential for biotechnological applications. This review also discusses some major findings inP. putidaresearch encompassing regulation of catabolic operons, stress-tolerance mechanisms and mechanisms affecting evolvability of bacteria under conditions of environmental stress.
Collapse
|
29
|
Bollinger A, Thies S, Katzke N, Jaeger K. The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena. Microb Biotechnol 2020; 13:19-31. [PMID: 29943398 PMCID: PMC6922532 DOI: 10.1111/1751-7915.13288] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/20/2023] Open
Abstract
Marine habitats represent a prolific source for molecules of biotechnological interest. In particular, marine bacteria have attracted attention and were successfully exploited for industrial applications. Recently, a group of Pseudomonas species isolated from extreme habitats or living in association with algae or sponges were clustered in the newly established Pseudomonas pertucinogena lineage. Remarkably for the predominantly terrestrial genus Pseudomonas, more than half (9) of currently 16 species within this lineage were isolated from marine or saline habitats. Unlike other Pseudomonas species, they seem to have in common a highly specialized metabolism. Furthermore, the marine members apparently possess the capacity to produce biomolecules of biotechnological interest (e.g. dehalogenases, polyester hydrolases, transaminases). Here, we summarize the knowledge regarding the enzymatic endowment of the marine Pseudomonas pertucinogena bacteria and report on a genomic analysis focusing on the presence of genes encoding esterases, dehalogenases, transaminases and secondary metabolites including carbon storage compounds.
Collapse
Affiliation(s)
- Alexander Bollinger
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
| | - Stephan Thies
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
| | - Nadine Katzke
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich‐Heine‐University DüsseldorfForschungszentrum JülichD‐52425JülichGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHD‐52425JülichGermany
| |
Collapse
|
30
|
Molina L, Segura A, Duque E, Ramos JL. The versatility of Pseudomonas putida in the rhizosphere environment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:149-180. [PMID: 32386604 DOI: 10.1016/bs.aambs.2019.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article addresses the lifestyle of Pseudomonas and focuses on how Pseudomonas putida can be used as a model system for biotechnological processes in agriculture, and in the removal of pollutants from soils. In this chapter we aim to show how a deep analysis using genetic information and experimental tests has helped to reveal insights into the lifestyle of Pseudomonads. Pseudomonas putida is a Plant Growth Promoting Rhizobacteria (PGPR) that establishes commensal relationships with plants. The interaction involves a series of functions encoded by core genes which favor nutrient mobilization, prevention of pathogen development and efficient niche colonization. Certain Pseudomonas putida strains harbor accessory genes that confer specific biodegradative properties and because these microorganisms can thrive on the roots of plants they can be exploited to remove pollutants via rhizoremediation, making the consortium plant/Pseudomonas a useful tool to combat pollution.
Collapse
Affiliation(s)
- Lázaro Molina
- CSIC- Estación Experimental del Zaidín, Granada, Spain
| | - Ana Segura
- CSIC- Estación Experimental del Zaidín, Granada, Spain
| | | | | |
Collapse
|
31
|
Nogales J, Mueller J, Gudmundsson S, Canalejo FJ, Duque E, Monk J, Feist AM, Ramos JL, Niu W, Palsson BO. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ Microbiol 2019; 22:255-269. [PMID: 31657101 PMCID: PMC7078882 DOI: 10.1111/1462-2920.14843] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.
Collapse
Affiliation(s)
- Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Mueller
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Francisco J Canalejo
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Jonathan Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Lopes LD, Weisberg AJ, Davis EW, Varize CDS, Pereira e Silva MDC, Chang JH, Loper JE, Andreote FD. Genomic and metabolic differences between Pseudomonas putida populations inhabiting sugarcane rhizosphere or bulk soil. PLoS One 2019; 14:e0223269. [PMID: 31581220 PMCID: PMC6776310 DOI: 10.1371/journal.pone.0223269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas putida is one of 13 major groups of Pseudomonas spp. and contains numerous species occupying diverse niches and performing many functions such as plant growth promotion and bioremediation. Here we compared a set of 19 P. putida isolates obtained from sugarcane rhizosphere or bulk soil using a population genomics approach aiming to assess genomic and metabolic differences between populations from these habitats. Phylogenomics placed rhizosphere versus bulk soil strains in separate clades clustering with different type strains of the P. putida group. Multivariate analyses indicated that the rhizosphere and bulk soil isolates form distinct populations. Comparative genomics identified several genetic functions (GO-terms) significantly different between populations, including some exclusively present in the rhizosphere or bulk soil strains, such as D-galactonic acid catabolism and cellulose biosynthesis, respectively. The metabolic profiles of rhizosphere and bulk soil populations analyzed by Biolog Ecoplates also differ significantly, most notably by the higher oxidation of D-galactonic/D-galacturonic acid by the rhizosphere population. Accordingly, D-galactonate catabolism operon (dgo) was present in all rhizosphere isolates and absent in the bulk soil population. This study showed that sugarcane rhizosphere and bulk soil harbor different populations of P. putida and identified genes and functions potentially associated with their soil niches.
Collapse
Affiliation(s)
- Lucas Dantas Lopes
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
- * E-mail: (LDL); (FDA)
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Camila de S. Varize
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Michele de C. Pereira e Silva
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Fernando D. Andreote
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
- * E-mail: (LDL); (FDA)
| |
Collapse
|
33
|
Liu J, Zeng Q, Wang M, Cheng A, Liu M, Zhu D, Chen S, Jia R, Zhao XX, Wu Y, Yang Q, Zhang S, Liu Y, Yu Y, Zhang L, Chen X. Comparative genome-scale modelling of the pathogenic Flavobacteriaceae species Riemerella anatipestifer in China. Environ Microbiol 2019; 21:2836-2851. [PMID: 31004458 DOI: 10.1111/1462-2920.14635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Riemerella anatipestifer (RA) is a gram-negative bacterium that has a high potential to infect waterfowl. Although more and more genomes of RA have been generated comparaed to genomic analysis of RA still remains at the level of individual species. In this study, we analysed the pan-genome of 27 RA virulent isolates to reveal the intraspecies genomic diversity from various aspects. The multi-locus sequence typing (MLST) analysis suggests that the geographic origin of R. anatipestifer is Guangdong province, China. Results of pan-genome analysis revealed an open pan-genome for all 27 species with the sizes of 2967 genes. We identified 387 genes among 555 unique genes originated by horizontal gene transfer. Further studies showed 204 strain-specific HGT genes were predicted as virulent proteins. Screening the 1113 core genes in RA through subtractive genomic approach, 70 putative vaccine targets out of 125 non-cytoplasmic proteins have been predicted. Further analysis of these non A. platyrhynchos homologous proteins predicted that 56 essential proteins as drug target with more interaction partners were involved in unique metabolic pathways of RA. In conclusion, the present study indicated the essence and the diversity of RA and also provides useful information for identification of vaccine and drugs candidates in future.
Collapse
Affiliation(s)
- Jibin Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiurui Zeng
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
34
|
Kondakova T, Cronan JE. Transcriptional regulation of fatty acid cis-trans isomerization in the solvent-tolerant soil bacterium, Pseudomonas putida F1. Environ Microbiol 2019; 21:1659-1676. [PMID: 30702193 PMCID: PMC7357427 DOI: 10.1111/1462-2920.14546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
One key to the success of Pseudomonas spp. is their ability to reside in hostile environments. Pseudomonas spp. possess a cis-trans isomerase (Cti) an enzyme that converts the cis-unsaturated fatty acids (FAs) of the membrane lipids to their trans-isomers to rigidify the membrane and thereby resist stresses. Whereas the posttranslational Cti regulation has been previously reported, transcriptional cti regulation remains to be studied in more details. Here, we have studied cti transcriptional regulation in the solvent-tolerant strain Pseudomonas putida F1. Two cti transcriptional start sites (cti-279 and cti-77) were identified with cti-279 transcript being dominant. Expression of cti was found to increase with temperature increase, addition of the organic solvent, octanol and in the stationary growth phase. We found that cti expression was repressed by the cyclic-AMP receptor protein (Crp) and repression required the cyclic-AMP ligand of Crp. Production of trans-unsaturated FAs was found to decrease after 24 h of growth. Although this decrease was accompanied by an increase in cyclopropane FA content, this was not at the expense of trans-unsaturated FAs demonstrating the absence of competition between Cti and Cfa in FA modification.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
35
|
Abram KZ, Udaondo Z. Towards a better metabolic engineering reference: the microbial chassis. Microb Biotechnol 2018; 13:17-18. [PMID: 30589218 PMCID: PMC6922515 DOI: 10.1111/1751-7915.13363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 12/01/2022] Open
Affiliation(s)
- Kaleb Z Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
36
|
Nikel PI, de Lorenzo V. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metab Eng 2018; 50:142-155. [DOI: 10.1016/j.ymben.2018.05.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
|
37
|
Zoledowska S, Motyka-Pomagruk A, Sledz W, Mengoni A, Lojkowska E. High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes. BMC Genomics 2018; 19:751. [PMID: 30326842 PMCID: PMC6192338 DOI: 10.1186/s12864-018-5140-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pectobacterium parmentieri is a newly established species within the plant pathogenic family Pectobacteriaceae. Bacteria belonging to this species are causative agents of diseases in economically important crops (e.g. potato) in a wide range of different environmental conditions, encountered in Europe, North America, Africa, and New Zealand. Severe disease symptoms result from the activity of P. parmentieri virulence factors, such as plant cell wall degrading enzymes. Interestingly, we observe significant phenotypic differences among P. parmentieri isolates regarding virulence factors production and the abilities to macerate plants. To establish the possible genomic basis of these differences, we sequenced 12 genomes of P. parmentieri strains (10 isolated in Poland, 2 in Belgium) with the combined use of Illumina and PacBio approaches. De novo genome assembly was performed with the use of SPAdes software, while annotation was conducted by NCBI Prokaryotic Genome Annotation Pipeline. RESULTS The pan-genome study was performed on 15 genomes (12 de novo assembled and three reference strains: P. parmentieri CFBP 8475T, P. parmentieri SCC3193, P. parmentieri WPP163). The pan-genome includes 3706 core genes, a high number of accessory (1468) genes, and numerous unique (1847) genes. We identified the presence of well-known genes encoding virulence factors in the core genome fraction, but some of them were located in the dispensable genome. A significant fraction of horizontally transferred genes, virulence-related gene duplications, as well as different CRISPR arrays were found, which can explain the observed phenotypic differences. Finally, we found also, for the first time, the presence of a plasmid in one of the tested P. parmentieri strains isolated in Poland. CONCLUSIONS We can hypothesize that a large number of the genes in the dispensable genome and significant genomic variation among P. parmentieri strains could be the basis of the potential wide host range and widespread diffusion of P. parmentieri. The obtained data on the structure and gene content of P. parmentieri strains enabled us to speculate on the importance of high genomic plasticity for P. parmentieri adaptation to different environments.
Collapse
Affiliation(s)
- S Zoledowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - A Motyka-Pomagruk
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - W Sledz
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - A Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - E Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
38
|
Xu X, Zarecki R, Medina S, Ofaim S, Liu X, Chen C, Hu S, Brom D, Gat D, Porob S, Eizenberg H, Ronen Z, Jiang J, Freilich S. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME JOURNAL 2018; 13:494-508. [PMID: 30291327 DOI: 10.1038/s41396-018-0288-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022]
Abstract
Microbial communities play a vital role in biogeochemical cycles, allowing the biodegradation of a wide range of pollutants. The composition of the community and the interactions between its members affect degradation rate and determine the identity of the final products. Here, we demonstrate the application of sequencing technologies and metabolic modeling approaches towards enhancing biodegradation of atrazine-a herbicide causing environmental pollution. Treatment of agriculture soil with atrazine is shown to induce significant changes in community structure and functional performances. Genome-scale metabolic models were constructed for Arthrobacter, the atrazine degrader, and four other non-atrazine degrading species whose relative abundance in soil was changed following exposure to the herbicide. By modeling community function we show that consortia including the direct degrader and non-degrader differentially abundant species perform better than Arthrobacter alone. Simulations predict that growth/degradation enhancement is derived by metabolic exchanges between community members. Based on simulations we designed endogenous consortia optimized for enhanced degradation whose performances were validated in vitro and biostimulation strategies that were tested in pot experiments. Overall, our analysis demonstrates that understanding community function in its wider context, beyond the single direct degrader perspective, promotes the design of biostimulation strategies.
Collapse
Affiliation(s)
- Xihui Xu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.,Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Shany Ofaim
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shunli Hu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Brom
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Daniella Gat
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 8499000, Israel
| | - Seema Porob
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 8499000, Israel
| | - Hanan Eizenberg
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 8499000, Israel
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
39
|
Cho CH, Lee SB. Comparison of clinical characteristics and antibiotic susceptibility between Pseudomonas aeruginosa and P. putida keratitis at a tertiary referral center: a retrospective study. BMC Ophthalmol 2018; 18:204. [PMID: 30126384 PMCID: PMC6102849 DOI: 10.1186/s12886-018-0882-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To compare clinical characteristics and antibiotic susceptibilities in patients with Pseudomonas aeruginosa (PA) and P. putida (PP) keratitis at a tertiary referral center in South Korea. METHODS Forty-nine cases of inpatients with culture-proven PA and PP keratitis were reviewed retrospectively between January 1998 and December 2017. We excluded cases of polymicrobial infection. Epidemiology, predisposing factors, clinical characteristics, antibiotic susceptibilities, and treatment outcomes were compared between the PA and PP groups. The risk factors for poor clinical outcome were evaluated on the basis of the total cohort and analyzed using multivariate logistic regression. RESULTS A total of 33 eyes with PA keratitis and 16 eyes with PP keratitis were included. The mean age was 47.0 years in the PA group and 59.3 years in the PP group (p = 0.060). Differences were observed between the PA and PP groups in hypopyon (45.5% vs 6.3%, p = 0.006) and symptom duration (4.3 vs 9.5 days, p = 0.022). The most common predisposing factor for PA was wearing contact lenses (36.4%) and that for PP was corneal trauma (62.5%). No significant differences were observed in sex, previous topical steroid use, systemic disease, or duration of hospitalization between the two groups. The PA and PP groups both demonstrated good efficacy of colistin (both 100%), tobramycin (93.3%, 100%), ceftazidime (93.9%, 87.5%), and ciprofloxacin (96.6%, 87.5%). Imipenem (100% vs 81.3%, p = 0.030), piperacillin (96.6% vs 75%, p = 0.047), and ticarcillin (85% vs 0%, p < 0.001) showed significantly lower efficacy in the PP group than in the PA group. A poor clinical outcome was observed in 31.2% of the PA group and 37.5% of the PP group (p = 0.665). The risk factors for poor clinical outcome were previous ocular surface disease (odds ratio 10.79, p = 0.012) and hypopyon (odds ratio 9.02, p = 0.024). CONCLUSIONS The PA group was more closely associated with younger age, wearing contact lenses, shorter symptom duration, and hypopyon, whereas the PP group was more closely associated with elderly age, corneal trauma, and decreased efficacy of the beta-lactams. Clinical outcomes were not significantly different between the two groups. Previous ocular surface disease and hypopyon were the risk factors for poor clinical outcome.
Collapse
Affiliation(s)
- Chan Ho Cho
- Department of Ophthalmology, Yeungnam University College of Medicine, 170, Hyunchung-ro, Nam-gu, Daegu, 705-717 (42415), South Korea
| | - Sang-Bumm Lee
- Department of Ophthalmology, Yeungnam University College of Medicine, 170, Hyunchung-ro, Nam-gu, Daegu, 705-717 (42415), South Korea.
| |
Collapse
|
40
|
Sánchez-Hevia DL, Yuste L, Moreno R, Rojo F. Influence of the Hfq and Crc global regulators on the control of iron homeostasis inPseudomonas putida. Environ Microbiol 2018; 20:3484-3503. [DOI: 10.1111/1462-2920.14263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Dione L. Sánchez-Hevia
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco; Madrid, 28049 Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco; Madrid, 28049 Spain
| | - Renata Moreno
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco; Madrid, 28049 Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco; Madrid, 28049 Spain
| |
Collapse
|
41
|
Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, Hassan KA, Varghese N, Elbourne LDH, Paulsen IT, Kyrpides N, Woyke T, Loper JE. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142-2159. [PMID: 29633519 DOI: 10.1111/1462-2920.14130] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas is a large and diverse genus of Gammaproteobacteria. To provide a framework for discovery of evolutionary and taxonomic relationships of these bacteria, we compared the genomes of type strains of 163 species and 3 additional subspecies of Pseudomonas, including 118 genomes sequenced herein. A maximum likelihood phylogeny of the 166 type strains based on protein sequences of 100 single-copy orthologous genes revealed thirteen groups of Pseudomonas, composed of two to sixty three species each. Pairwise average nucleotide identities and alignment fractions were calculated for the data set of the 166 type strains and 1224 genomes of Pseudomonas available in public databases. Results revealed that 394 of the 1224 genomes were distinct from any type strain, suggesting that the type strains represent only a fraction of the genomic diversity of the genus. The core genome of Pseudomonas was determined to contain 794 genes conferring primarily housekeeping functions. The results of this study provide a phylogenetic framework for future studies aiming to resolve the classification and phylogenetic relationships, identify new gene functions and phenotypes, and explore the ecological and metabolic potential of the Pseudomonas spp.
Collapse
Affiliation(s)
- Cedar Hesse
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Frederik Schulz
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, Penn State, University Park, PA, USA
| | - Brenda T Shaffer
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Nicole Shapiro
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Karl A Hassan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Neha Varghese
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Liam D H Elbourne
- Department of Molecular Sciences, Macquarie University, NSW, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, NSW, Australia
| | - Nikos Kyrpides
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Joyce E Loper
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
42
|
Papadopoulou ES, Perruchon C, Vasileiadis S, Rousidou C, Tanou G, Samiotaki M, Molassiotis A, Karpouzas DG. Metabolic and Evolutionary Insights in the Transformation of Diphenylamine by a Pseudomonas putida Strain Unravelled by Genomic, Proteomic, and Transcription Analysis. Front Microbiol 2018; 9:676. [PMID: 29681895 PMCID: PMC5897751 DOI: 10.3389/fmicb.2018.00676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/22/2018] [Indexed: 11/19/2022] Open
Abstract
Diphenylamine (DPA) is a common soil and water contaminant. A Pseudomonas putida strain, recently isolated from a wastewater disposal site, was efficient in degrading DPA. Thorough knowledge of the metabolic capacity, genetic stability and physiology of bacteria during biodegradation of pollutants is essential for their future industrial exploitation. We employed genomic, proteomic, transcription analyses and plasmid curing to (i) identify the genetic network of P. putida driving the microbial transformation of DPA and explore its evolution and origin and (ii) investigate the physiological response of bacterial cells during degradation of DPA. Genomic analysis identified (i) two operons encoding a biphenyl (bph) and an aniline (tdn) dioxygenase, both flanked by transposases and (ii) two operons and several scattered genes encoding the ortho-cleavage of catechol. Proteomics identified 11 putative catabolic proteins, all but BphA1 up-regulated in DPA- and aniline-growing cells, and showed that the bacterium mobilized cellular mechanisms to cope with oxidative stress, probably induced by DPA and its derivatives. Transcription analysis verified the role of the selected genes/operons in the metabolic pathway: DPA was initially transformed to aniline and catechol by a biphenyl dioxygenase (DPA-dioxygenase); aniline was then transformed to catechol which was further metabolized via the ortho-cleavage pathway. Plasmid curing of P. putida resulted in loss of the DPA and aniline dioxygenase genes and the corresponding degradation capacities. Overall our findings provide novel insights into the evolution of the DPA degradation pathway and suggests that the degradation capacity of P. putida was acquired through recruitment of the bph and tdn operons via horizontal gene transfer.
Collapse
Affiliation(s)
- Evangelia S Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Chiara Perruchon
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Constantina Rousidou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | | | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
43
|
Lopes LD, Davis EW, Pereira E Silva MDC, Weisberg AJ, Bresciani L, Chang JH, Loper JE, Andreote FD. Tropical soils are a reservoir for fluorescent Pseudomonas spp. biodiversity. Environ Microbiol 2017; 20:62-74. [PMID: 29027341 DOI: 10.1111/1462-2920.13957] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 11/30/2022]
Abstract
Fluorescent Pseudomonas spp. are widely studied for their beneficial activities to plants. To explore the genetic diversity of Pseudomonas spp. in tropical regions, we collected 76 isolates from a Brazilian soil. Genomes were sequenced and compared to known strains, mostly collected from temperate regions. Phylogenetic analyses classified the isolates in the P. fluorescens (57) and P. putida (19) groups. Among the isolates in the P. fluorescens group, most (37) were classified in the P. koreensis subgroup and two in the P. jessenii subgroup. The remaining 18 isolates fell into two phylogenetic subclades distinct from currently recognized P. fluorescens subgroups, and probably represent new subgroups. Consistent with their phylogenetic distance from described subgroups, the genome sequences of strains in these subclades are asyntenous to the genome sequences of members of their neighbour subgroups. The tropical isolates have several functional genes also present in known fluorescent Pseudomonas spp. strains. However, members of the new subclades share exclusive genes not detected in other subgroups, pointing to the potential for novel functions. Additionally, we identified 12 potential new species among the 76 isolates from the tropical soil. The unexplored diversity found in the tropical soil is possibly related to biogeographical patterns.
Collapse
Affiliation(s)
- Lucas Dantas Lopes
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Edward W Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Michele de C Pereira E Silva
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Luana Bresciani
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Fernando D Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
44
|
Molina-Santiago C, Udaondo Z, Cordero BF, Ramos JL. Interspecies cross-talk between co-cultured Pseudomonas putida and Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:441-448. [PMID: 28585781 DOI: 10.1111/1758-2229.12553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Pseudomonas putida and Escherichia coli are ubiquitous microorganisms that can be isolated from soil rhizosphere, the surface of vegetables, fresh waters and wastewaters - environments in which they likely co-exist. Despite this, the potential interactions between these microbes have not been studied in detail. To analyse these interactions, we carried out RNA-seq transcriptomic analysis of these microbes as monocultures and as co-cultures. Our results show that co-culture of these microbes significantly alters transcriptional profiles. The most dramatic transcriptional changes in both microorganisms were involved in central carbon metabolism, as well as adhesion to surfaces and the activation of drug efflux pumps. We also found that acetate production was one of the mechanisms used by E. coli K-12 MG1655 in response to the presence of P. putida DOT-T1E.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Baldo F Cordero
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|
45
|
Li A, Qiu J, Chen D, Ye J, Wang Y, Tong L, Jiang J, Chen J. Characterization and Genome Analysis of a Nicotine and Nicotinic Acid-Degrading Strain Pseudomonas putida JQ581 Isolated from Marine. Mar Drugs 2017; 15:md15060156. [PMID: 28561771 PMCID: PMC5484106 DOI: 10.3390/md15060156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 05/25/2017] [Indexed: 11/17/2022] Open
Abstract
The presence of nicotine and nicotinic acid (NA) in the marine environment has caused great harm to human health and the natural environment. Therefore, there is an urgent need to use efficient and economical methods to remove such pollutants from the environment. In this study, a nicotine and NA-degrading bacterium—strain JQ581—was isolated from sediment from the East China Sea and identified as a member of Pseudomonas putida based on morphology, physio-biochemical characteristics, and 16S rDNA gene analysis. The relationship between growth and nicotine/NA degradation suggested that strain JQ581 was a good candidate for applications in the bioaugmentation treatment of nicotine/NA contamination. The degradation intermediates of nicotine are pseudooxynicotine (PN) and 3-succinoyl-pyridine (SP) based on UV, high performance liquid chromatography, and liquid chromatography-mass spectrometry analyses. However, 6-hydroxy-3-succinoyl-pyridine (HSP) was not detected. NA degradation intermediates were identified as 6-hydroxynicotinic acid (6HNA). The whole genome of strain JQ581 was sequenced and analyzed. Genome sequence analysis revealed that strain JQ581 contained the gene clusters for nicotine and NA degradation. This is the first report where a marine-derived Pseudomonas strain had the ability to degrade nicotine and NA simultaneously.
Collapse
Affiliation(s)
- Aiwen Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiguo Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dongzhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuhong Wang
- Nanjing Yuanheng Institute for Environmental Studies Co., Ltd., Nanjing 210049, China.
| | - Lu Tong
- Nanjing Yuanheng Institute for Environmental Studies Co., Ltd., Nanjing 210049, China.
| | - Jiandong Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
46
|
Udaondo Z, Duque E, Ramos JL. The pangenome of the genus Clostridium. Environ Microbiol 2017; 19:2588-2603. [PMID: 28321969 DOI: 10.1111/1462-2920.13732] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
The pangenome for the genus Clostridium sensu stricto, which was obtained using highly curated and annotated genomes from 16 species is presented; some of these cause disease, while others are used for the production of added-value chemicals. Multilocus sequencing analysis revealed that species of this genus group into at least two clades that include non-pathogenic and pathogenic strains, suggesting that pathogenicity is dispersed across the phylogenetic tree. The core genome of the genus includes 546 protein families, which mainly comprise those involved in protein translation and DNA repair. The GS-GOGAT may represent the central pathway for generating organic nitrogen from inorganic nitrogen sources. Glycerol and glucose metabolism genes are well represented in the core genome together with a set of energy conservation systems. A metabolic network comprising proteins/enzymes, RNAs and metabolites, whose topological structure is a non-random and scale-free network with hierarchically structured modules was built. These modules shed light on the interactions between RNAs, proteins and metabolites, revealing biological features of transcription and translation, cell wall biosynthesis, C1 metabolism and N metabolism. Network analysis identified four nodes that function as hubs and bottlenecks, namely, coenzyme A, HPr kinases, S-adenosylmethionine and the ribonuclease P-protein, suggesting pivotal roles for them in Clostridium.
Collapse
Affiliation(s)
- Zulema Udaondo
- Calle Energía Solar 1, Building D, Campus Palmas Altas, Abengoa Research, Biotechnology Technological Area, Sevilla, 41014, Spain.,Consejo Superior de Investigaciones Científicas, EEZ, Environmental Protection Department, C/Profesor Albareda 1, Granada, 18008, Spain
| | - Estrella Duque
- Calle Energía Solar 1, Building D, Campus Palmas Altas, Abengoa Research, Biotechnology Technological Area, Sevilla, 41014, Spain.,Consejo Superior de Investigaciones Científicas, EEZ, Environmental Protection Department, C/Profesor Albareda 1, Granada, 18008, Spain
| | - Juan-Luis Ramos
- Calle Energía Solar 1, Building D, Campus Palmas Altas, Abengoa Research, Biotechnology Technological Area, Sevilla, 41014, Spain.,Consejo Superior de Investigaciones Científicas, EEZ, Environmental Protection Department, C/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
47
|
Complete Genome Sequence of the Polychlorinated Biphenyl-Degrading Bacterium Pseudomonas putida KF715 (NBRC 110667) Isolated from Biphenyl-Contaminated Soil. GENOME ANNOUNCEMENTS 2017; 5:5/7/e01624-16. [PMID: 28209826 PMCID: PMC5313618 DOI: 10.1128/genomea.01624-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas putida KF715 (NBRC 110667) utilizes biphenyl as a sole source of carbon and degrades polychlorinated biphenyls (PCBs). Here, we report a complete genome sequence of the KF715 strain, which comprises a circular chromosome and four plasmids. Biphenyl catabolic genes were located on the largest plasmid, pKF715A.
Collapse
|
48
|
Affiliation(s)
- Fernando Rojo
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC, Campus UAM; Cantoblanco Madrid 28049 Spain
| |
Collapse
|
49
|
Molina L, Geoffroy VA, Segura A, Udaondo Z, Ramos JL. Iron Uptake Analysis in a Set of Clinical Isolates of Pseudomonas putida. Front Microbiol 2016; 7:2100. [PMID: 28082966 PMCID: PMC5187384 DOI: 10.3389/fmicb.2016.02100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida strains are frequent inhabitants of soil and aquatic niches and they are occasionally isolated from hospital environments. As the available iron sources in human tissues, edaphic, and aquatic niches are different, we have analyzed iron-uptake related genes in different P. putida strains that were isolated from all these environments. We found that these isolates can be grouped into different clades according to the genetics of siderophore biosynthesis and recycling. The pyoverdine locus of the six P. putida clinical isolates that have so far been completely sequenced, are not closely related; three strains (P. putida HB13667, HB3267, and NBRC14164T) are grouped in Clade I and the other three in Clade II, suggesting possible different origins and evolution. In one clinical strain, P. putida HB4184, the production of siderophores is induced under high osmolarity conditions. The pyoverdine locus in this strain is closely related to that of strain P. putida HB001 which was isolated from sandy shore soil of the Yellow Sea in Korean marine sand, suggesting their possible origin, and evolution. The acquisition of two unique TonB-dependent transporters for xenosiderophore acquisition, similar to those existing in the opportunistic pathogen P. aeruginosa PAO, is an interesting adaptation trait of the clinical strain P. putida H8234 that may confer adaptive advantages under low iron availability conditions.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Valérie A Geoffroy
- Centre National de la Recherche Scientifique, UMR 7242, Université de Strasbourg, (ESBS) Illkirch, France
| | - Ana Segura
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Zulema Udaondo
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Juan-Luis Ramos
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
50
|
Molina-Santiago C, Udaondo Z, Gómez-Lozano M, Molin S, Ramos JL. Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene. Environ Microbiol 2016; 19:645-658. [PMID: 27768818 DOI: 10.1111/1462-2920.13585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/17/2016] [Indexed: 12/23/2022]
Abstract
Pseudomonas putida strains are generally recognized as solvent tolerant, exhibiting varied sensitivity to organic solvents. Pan-genome analysis has revealed that 30% of genes belong to the core-genome of Pseudomonas. Accessory and unique genes confer high degree of adaptability and capabilities for the degradation and synthesis of a wide range of chemicals. For the use of these microbes in bioremediation and biocatalysis, it is critical to understand the mechanisms underlying these phenotypic differences. In this study, RNA-seq analysis compared the short- and long-term responses of the toluene-sensitive KT2440 strain and the highly tolerant DOT-T1E strain. The sensitive strain activates a larger number of genes in a higher magnitude than DOT-T1E. This is expected because KT2440 bears one toluene tolerant pump, while DOT-T1E encodes three of these pumps. Both strains activate membrane modifications to reduce toluene membrane permeability. The KT2440 strain activates the TCA cycle to generate energy, while avoiding energy-intensive processes such as flagellar biosynthesis. This suggests that KT2440 responds to toluene by focusing on survival mechanisms. The DOT-T1E strain activates toluene degradation pathways, using toluene as source of energy. Among the unique genes encoded by DOT-T1E is a 70 kb island composed of genes of unknown function induced in response to toluene.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - María Gómez-Lozano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Soren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Juan-Luis Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|