1
|
Lorrain C, Gonçalves Dos Santos KC, Germain H, Hecker A, Duplessis S. Advances in understanding obligate biotrophy in rust fungi. THE NEW PHYTOLOGIST 2019; 222:1190-1206. [PMID: 30554421 DOI: 10.1111/nph.15641] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/13/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1190 I. Introduction 1190 II. Rust fungi: a diverse and serious threat to agriculture 1191 III. The different facets of rust life cycles and unresolved questions about their evolution 1191 IV. The biology of rust infection 1192 V. Rusts in the genomics era: the ever-expanding list of candidate effector genes 1195 VI. Functional characterization of rust effectors 1197 VII. Putting rusts to sleep: Pucciniales research outlooks 1201 Acknowledgements 1202 References 1202 SUMMARY: Rust fungi (Pucciniales) are the largest group of plant pathogens and represent one of the most devastating threats to agricultural crops worldwide. Despite the economic importance of these highly specialized pathogens, many aspects of their biology remain obscure, largely because rust fungi are obligate biotrophs. The rise of genomics and advances in high-throughput sequencing technology have presented new options for identifying candidate effector genes involved in pathogenicity mechanisms of rust fungi. Transcriptome analysis and integrated bioinformatics tools have led to the identification of key genetic determinants of host susceptibility to infection by rusts. Thousands of genes encoding secreted proteins highly expressed during host infection have been reported for different rust species, which represents significant potential towards understanding rust effector function. Recent high-throughput in planta expression screen approaches (effectoromics) have pushed the field ahead even further towards predicting high-priority effectors and identifying avirulence genes. These new insights into rust effector biology promise to inform future research and spur the development of effective and sustainable strategies for managing rust diseases.
Collapse
Affiliation(s)
- Cécile Lorrain
- INRA Centre Grand Est - Nancy, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | | | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Quebec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Arnaud Hecker
- Université de Lorraine, UMR 1136 Université de Lorraine/INRA Interactions Arbres/Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- INRA Centre Grand Est - Nancy, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, 54280, France
| |
Collapse
|
2
|
Liu N, Jiang S, Feng S, Shang W, Xing G, Qiu R, Li C, Li S, Zheng W. A Duplex PCR Assay for Rapid Detection of Phytophthora nicotianae and Thielaviopsis basicola. THE PLANT PATHOLOGY JOURNAL 2019; 35:172-177. [PMID: 31007647 PMCID: PMC6464196 DOI: 10.5423/ppj.oa.09.2018.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/11/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
A duplex PCR method was developed for simultaneous detection and identification of tobacco root rot pathogens Phytophthora nicotianae and Thielaviopsis basicola. The specific primers for P. nicotianae were developed based on its internal transcribed spacer (ITS) regions of ribosomal gene, ras gene and hgd gene, while the specific primers for T. basicola were designed based on its ITS regions and β-tubulin gene. The specificity of the primers was determined using isolates of P. nicotianae, T. basicola and control samples. The results showed that the target pathogens could be detected from diseased tobacco plants by a combination of the specific primers. The sensitivity limitation was 100 fg/μl of pure genomic DNA of the pathogens. This new assay can be applied to screen out target pathogens rapidly and reliably in one PCR and will be an important tool for the identification and precise early prediction of these two destructive diseases of tobacco.
Collapse
Affiliation(s)
- Na Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002,
China
| | - Shijun Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002,
China
| | - Songli Feng
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002,
China
| | - Wenyan Shang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002,
China
| | - Guozhen Xing
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002,
China
| | - Rui Qiu
- Key Laboratory for green preservation & control of tobacco diseases and pests in Huanghuai Area, Tobacco Research Institute of Henan Academy of Agricultural Science, Xuchang 461000,
China
| | - Chengjun Li
- Key Laboratory for green preservation & control of tobacco diseases and pests in Huanghuai Area, Tobacco Research Institute of Henan Academy of Agricultural Science, Xuchang 461000,
China
| | - Shujun Li
- Key Laboratory for green preservation & control of tobacco diseases and pests in Huanghuai Area, Tobacco Research Institute of Henan Academy of Agricultural Science, Xuchang 461000,
China
| | - Wenming Zheng
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002,
China
| |
Collapse
|
3
|
Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J. Host-Induced Gene Silencing: A Powerful Strategy to Control Diseases of Wheat and Barley. Int J Mol Sci 2019; 20:E206. [PMID: 30626050 PMCID: PMC6337638 DOI: 10.3390/ijms20010206] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Wheat and barley are the most highly produced and consumed grains in the world. Various pathogens-viruses, bacteria, fungi, insect pests, and nematode parasites-are major threats to yield and economic losses. Strategies for the management of disease control mainly depend on resistance or tolerance breeding, chemical control, and biological control. The discoveries of RNA silencing mechanisms provide a transgenic approach for disease management. Host-induced gene silencing (HIGS) employing RNA silencing mechanisms and, specifically, silencing the targets of invading pathogens, has been successfully applied in crop disease prevention. Here, we cover recent studies that indicate that HIGS is a valuable tool to protect wheat and barley from diseases in an environmentally friendly way.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huan Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Yao J, Yu D, Cheng Y, Kang Z. Histological and cytological studies of plant infection by Erysiphe euonymi-japonici. PROTOPLASMA 2018; 255:1613-1620. [PMID: 29696381 DOI: 10.1007/s00709-018-1254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Powdery mildew caused by Erysiphe euonymi-japonici (Eej) is an increasingly serious fungal disease on Euonymus japonicus that is an important ornamental plant. However, little is currently known about infection and pathogenesis of Eej on E. japonicus. Here, we report plant infection by Eej at the histological and cytological levels. Eej caused severe disease symptoms with white and snow-like colonies on leaf surfaces of E. japonicus. Microscopic observations were conducted continuously to define infection process of Eej on E. japonicus. Eej conidia germinated to produce appressorial germ tubes on leaf surfaces and formed irregular haustoria in plant epidermal cells at 6 h post-inoculation (hpi) and 12 hpi, respectively. After uptaking nutrients from host cells by haustoria, Eej formed numerous hyphae and extensive colonization on leaf surfaces at 96 hpi and finally produced abundant conidiophores and new conidia on leaf surfaces at 168 hpi. In addition, there was consistently a single nucleus in different Eej infection structures and haustorial development could be divided into three major stages, including formation of penetration peg, formation of haustorial neck and initial haustorium, and maturation of haustorium. These results provide useful information for further determination of Eej pathogenesis and finally controlling the disease.
Collapse
Affiliation(s)
- Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- School of Life Sciences, Chongqing University, Chongqing, China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Qi T, Zhu X, Tan C, Liu P, Guo J, Kang Z, Guo J. Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:797-807. [PMID: 28881438 PMCID: PMC5814584 DOI: 10.1111/pbi.12829] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 05/18/2023]
Abstract
Rust fungi are devastating plant pathogens and cause a large economic impact on wheat production worldwide. To overcome this rapid loss of resistance in varieties, we generated stable transgenic wheat plants expressing short interfering RNAs (siRNAs) targeting potentially vital genes of Puccinia striiformis f. sp. tritici (Pst). Protein kinase A (PKA) has been proved to play important roles in regulating the virulence of phytopathogenic fungi. PsCPK1, a PKA catalytic subunit gene from Pst, is highly induced at the early infection stage of Pst. The instantaneous silencing of PsCPK1 by barley stripe mosaic virus (BSMV)-mediated host-induced gene silencing (HIGS) results in a significant reduction in the length of infection hyphae and disease phenotype. These results indicate that PsCPK1 is an important pathogenicity factor by regulating Pst growth and development. Two transgenic lines expressing the RNA interference (RNAi) construct in a normally susceptible wheat cultivar displayed high levels of stable and consistent resistance to Pst throughout the T3 to T4 generations. The presence of the interfering RNAs in transgenic wheat plants was confirmed by northern blotting, and these RNAs were found to efficiently down-regulate PsCPK1 expression in wheat. This study addresses important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control cereal rust diseases.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Chenlong Tan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
6
|
Zhu X, Jiao M, Guo J, Liu P, Tan C, Yang Q, Zhang Y, Thomas Voegele R, Kang Z, Guo J. A novel MADS-box transcription factor PstMCM1-1 is responsible for full virulence of Puccinia striiformis f. sp. tritici. Environ Microbiol 2018; 20:1452-1463. [PMID: 29393562 DOI: 10.1111/1462-2920.14054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/27/2017] [Accepted: 01/21/2018] [Indexed: 11/26/2022]
Abstract
In many eukaryotes, transcription factor MCM1 gene plays crucial roles in regulating mating processes and pathogenesis by interacting with other co-factors. However, little is known about the role of MCM1 in rust fungi. Here, we identified two MCM1 orthologs, PstMCM1-1 and PstMCM1-2, in the stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst). Sequence analysis indicated that both PstMCM1-1 and PstMCM1-2 contain conserved MADS domains and that PstMCM1-1 belongs to a group of SRF-like proteins that are evolutionarily specific to rust fungi. Yeast two-hybrid assays indicated that PstMCM1-1 interacts with transcription factors PstSTE12 and PstbE1. PstMCM1-1 was found to be highly induced during early infection stages in wheat and during pycniospore formation on the alternate host barberry (Berberis shensiana). PstMCM1-1 could complement the lethal phenotype and mating defects in a mcm1 mutant of Saccharomyces cerevisiae. In addition, it partially complemented the defects in appressorium formation and plant infection in a Magnaporthe oryzae Momcm1 mutant. Knock down of PstMCM1-1 resulted in a significant reduction of hyphal extension and haustorium formation and the virulence of Pst on wheat. Our results suggest that PstMCM1-1 plays important roles in the regulation of mating and pathogenesis of Pst most likely by interacting with co-factors.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenglong Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ralf Thomas Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, 70599, Germany
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
7
|
Cheng Y, Wu K, Yao J, Li S, Wang X, Huang L, Kang Z. PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity. Environ Microbiol 2017; 19:1717-1729. [PMID: 27871149 DOI: 10.1111/1462-2920.13610] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/16/2016] [Indexed: 11/26/2022]
Abstract
During the infection of host plants, pathogens can deliver virulence-associated 'effector' proteins to promote plant susceptibility. However, little is known about effector function in the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst) that is an important fungal pathogen in wheat production worldwide. Here, they report their findings on an in planta highly induced candidate effector from Pst, PSTha5a23. The PSTha5a23 gene is unique to Pst and shows a low level of intra-species polymorphism. It has a functional N-terminal signal peptide and is translocated to the host cytoplasm after infection. Overexpression of PSTha5a23 in Nicotiana benthamiana was found to suppress the programmed cell death triggered by BAX, PAMP-INF1 and two resistance-related mitogen-activated protein kinases (MKK1 and NPK1). Overexpression of PSTha5a23 in wheat also suppressed pattern-triggered immunity (PTI)-associated callose deposition. In addition, silencing of PSTha5a23 did not change Pst virulence phenotypes; however, overexpression of PSTha5a23 significantly enhanced Pst virulence in wheat. These results indicate that the Pst candidate effector PSTha5a23 plays an important role in plant defense suppression and rust pathogenicity, and also highlight the utility of gene overexpression in plants as a tool for studying effectors from obligate biotrophic pathogens.
Collapse
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Kuan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| |
Collapse
|
8
|
Cheng Y, Yao J, Zhang Y, Li S, Kang Z. Characterization of a Ran gene from Puccinia striiformis f. sp. tritici involved in fungal growth and anti-cell death. Sci Rep 2016; 6:35248. [PMID: 27734916 PMCID: PMC5062253 DOI: 10.1038/srep35248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022] Open
Abstract
Ran, an important family of small GTP-binding proteins, has been shown to regulate a variety of important cellular processes in many eukaryotes. However, little is known about Ran function in pathogenic fungi. In this study, we report the identification and functional analysis of a Ran gene (designated PsRan) from Puccinia striiformis f. sp. tritici (Pst), an important fungal pathogen affecting wheat production worldwide. The PsRan protein contains all conserved domains of Ran GTPases and shares more than 70% identity with Ran proteins from other organisms, indicating that Ran proteins are conserved in different organisms. PsRan shows a low level of intra-species polymorphism and is localized to the nucleus. qRT-PCR analysis showed that transcript level of PsRan was induced in planta during Pst infection. Silencing of PsRan did not alter Pst virulence phenotype but impeded fungal growth of Pst. In addition, heterologous overexpression of PsRan in plant failed to induce cell death but suppressed cell death triggered by a mouse BAX gene or a Pst Ras gene. Our results suggest that PsRan is involved in the regulation of fungal growth and anti-cell death, which provides significant insight into Ran function in pathogenic fungi.
Collapse
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanru Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|