1
|
Zhang Q, Liu X, Peng S, Dong W, Chen Z. One-year monitoring of grass-type architectural waterscapes with long-term operation: Water quality and microorganism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124849. [PMID: 39214442 DOI: 10.1016/j.envpol.2024.124849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Grass-type architectural waterscapes (GAWs) utilize submerged plants to enhance self-purification ability and maintain a clear-water state. However, knowledge about their long-term water quality and microbial community dynamics remains limited. This study monitored the water quality, microbial community composition, and networks in two GAWs. GAW1 consisted solely Hydrilla verticillata with a water depth of 0.70 m, while GAW2 primarily contained Vallisneria natans, Microsorum pteropus, and Aquarius grisebachii with a water depth of 0.30 m. Results show that both water depth and submerged plant species play crucial roles in GAW establishment. The water depth of 0.7 m enabled Hydrilla verticillata to thrive underwater despite temperature variations, which demonstrated excellent nutrient uptake capacity. Thus, GAW1 exhibited superior self-purification ability, consistently meeting Class III standard for surface water in China. In contrast, GAW2 had a shallow water depth and contained ornamental plants, only meeting Class V standard. Furthermore, microbial communities were shaped by water quality, with distinct enriched genera serving as potential "microbial indicators". Enrichment of the hgcI clade and Sporichthyaceae_unclassified indicated superior water quality in GAW1, while prevalence of Comamonadaceae_unclassified, Flavobacterium, Rhodoluna, and Pseudarcicella suggested poor water quality in GAW2. Additionally, highly complex and connected microbial networks suggested elevated pollutant levels in GAWs. This study emphasized the significance of submerged plant species and water depth in GAWs construction and highlighted microbial communities and networks as potential indicators of water quality.
Collapse
Affiliation(s)
- Quan Zhang
- Shenzhen Institute of Building Research Co., Ltd., 518049 Shenzhen, Guangdong, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, Guangdong, China.
| | - Xiang Liu
- Shenzhen Jianyan Testing Co., Ltd., 518031 Shenzhen, Guangdong, China
| | - Shijin Peng
- Shenzhen Institute of Building Research Co., Ltd., 518049 Shenzhen, Guangdong, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, Guangdong, China
| | - Zeguang Chen
- Shenzhen Institute of Building Research Co., Ltd., 518049 Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Donchev D, Ivanov IN, Stoikov I, Ivanova M. Metagenomic Investigation of the Short-Term Temporal and Spatial Dynamics of the Bacterial Microbiome and the Resistome Downstream of a Wastewater Treatment Plant in the Iskar River in Bulgaria. Microorganisms 2024; 12:1250. [PMID: 38930632 PMCID: PMC11207046 DOI: 10.3390/microorganisms12061250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Waste Water Treatment Plants (WWTP) aim to reduce contamination in effluent water; however, studies indicate antimicrobial resistance genes (ARGs) persist post-treatment, potentially leading to their spread from human populated areas into the environment. This study evaluated the impact of a large WWTP serving 125,000 people on the Iskar River in Bulgaria, by characterizing the spatial and short-term temporal dynamics in bacterial community dynamics and resistance profiles of the surface water. Pairs of samples were collected biweekly on four dates from two different locations, one about 800 m after the WWTP effluents and the other 10 km downstream. Taxonomic classification revealed the dominance of Pseudomonodota and Bacteriodota, notably the genera Flavobacterium, Aquirufa, Acidovorax, Polynucleobacter, and Limnohabitans. The taxonomic structure corresponded with both lentic and lotic freshwater habitats, with Flavobacterium exhibiting a significant decrease over the study period. Principal Coordinate Analysis revealed statistically significant differences in bacterial community composition between samples collected on different dates. Differential abundance analysis identified notable enrichment of Polynucleobacter and Limnohabitans. There were shifts within the enriched or depleted bacterial taxa between early and late sampling dates. High relative abundance of the genes erm(B), erm(F), mph(E), msr(E) (macrolides); tet(C), tet(O), tet(W), tet(Q) and tet(X) (tetracyclines); sul1 and sul2 (sulphonamides); and cfxA3, cfxA6 (beta-lactams) were detected, with trends of increased presence in the latest sampling dates and in the location closer to the WWTP. Of note, genes conferring resistance to carbapenems blaOXA-58 and blaIMP-33-like were identified. Co-occurrence analysis of ARGs and mobile genetic elements on putative plasmids showed few instances, and the estimated human health risk score (0.19) according to MetaCompare2.0 was low. In total, 29 metagenome-assembled genomes were recovered, with only a few harbouring ARGs. This study enhances our understanding of freshwater microbial community dynamics and antibiotic resistance profiles, highlighting the need for continued ARGs monitoring.
Collapse
Affiliation(s)
- Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Monika Ivanova
- Paralax Life Sciences, Sofia Center, 47 Bacho Kiro Str., 1202 Sofia, Bulgaria
| |
Collapse
|
3
|
Park H, Shabarova T, Salcher MM, Kosová L, Rychtecký P, Mukherjee I, Šimek K, Porcal P, Seďa J, Znachor P, Kasalický V. In the right place, at the right time: the integration of bacteria into the Plankton Ecology Group model. MICROBIOME 2023; 11:112. [PMID: 37210505 DOI: 10.1186/s40168-023-01522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/17/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Planktonic microbial communities have critical impacts on the pelagic food web and water quality status in freshwater ecosystems, yet no general model of bacterial community assembly linked to higher trophic levels and hydrodynamics has been assessed. In this study, we utilized a 2-year survey of planktonic communities from bacteria to zooplankton in three freshwater reservoirs to investigate their spatiotemporal dynamics. RESULTS We observed site-specific occurrence and microdiversification of bacteria in lacustrine and riverine environments, as well as in deep hypolimnia. Moreover, we determined recurrent bacterial seasonal patterns driven by both biotic and abiotic conditions, which could be integrated into the well-known Plankton Ecology Group (PEG) model describing primarily the seasonalities of larger plankton groups. Importantly, bacteria with different ecological potentials showed finely coordinated successions affiliated with four seasonal phases, including the spring bloom dominated by fast-growing opportunists, the clear-water phase associated with oligotrophic ultramicrobacteria, the summer phase characterized by phytoplankton bloom-associated bacteria, and the fall/winter phase driven by decay-specialists. CONCLUSIONS Our findings elucidate the major principles driving the spatiotemporal microbial community distribution in freshwater ecosystems. We suggest an extension to the original PEG model by integrating new findings on recurrent bacterial seasonal trends. Video Abstract.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- 20-12496X Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 19-23469S Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 22-33245S Grantová Agentura České Republiky
- 20-12496X Grantová Agentura České Republiky
Collapse
Affiliation(s)
- Hongjae Park
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Lenka Kosová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Porcal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jaromír Seďa
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
5
|
Chiriac MC, Bulzu PA, Andrei AS, Okazaki Y, Nakano SI, Haber M, Kavagutti VS, Layoun P, Ghai R, Salcher MM. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. MICROBIOME 2022; 10:84. [PMID: 35659305 PMCID: PMC9166423 DOI: 10.1186/s40168-022-01274-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome, and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters; however, their diversity, abundance, and role in surface freshwaters is largely unexplored. Here, we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages in freshwater samples. RESULTS A total of 174 dereplicated metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (162 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02-14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and potential lifestyles, ranging from what appear to be free-living lineages to host- or particle-associated groups. Although some complexes of the electron transport chain were present in the CPR MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. CONCLUSIONS A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation is mostly host-associated, we also observed organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be unattached to any other organisms or were associated with 'lake snow' particles (ABY1, Gracilibacteria), suggesting a broad range of potential life-strategies in this phylum. Video Abstract.
Collapse
Affiliation(s)
- Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Shin-ichi Nakano
- Center of Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga Japan
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Michaela M. Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
6
|
Kim S, Islam MR, Kang I, Cho JC. Cultivation of Dominant Freshwater Bacterioplankton Lineages Using a High-Throughput Dilution-to-Extinction Culturing Approach Over a 1-Year Period. Front Microbiol 2021; 12:700637. [PMID: 34385989 PMCID: PMC8353197 DOI: 10.3389/fmicb.2021.700637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Although many culture-independent molecular analyses have elucidated a great diversity of freshwater bacterioplankton, the ecophysiological characteristics of several abundant freshwater bacterial groups are largely unknown due to the scarcity of cultured representatives. Therefore, a high-throughput dilution-to-extinction culturing (HTC) approach was implemented herein to enable the culture of these bacterioplankton lineages using water samples collected at various seasons and depths from Lake Soyang, an oligotrophic reservoir located in South Korea. Some predominant freshwater bacteria have been isolated from Lake Soyang via HTC (e.g., the acI lineage); however, large-scale HTC studies encompassing different seasons and water depths have not been documented yet. In this HTC approach, bacterial growth was detected in 14% of 5,376 inoculated wells. Further, phylogenetic analyses of 16S rRNA genes from a total of 605 putatively axenic bacterial cultures indicated that the HTC isolates were largely composed of Actinobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. Importantly, the isolates were distributed across diverse taxa including phylogenetic lineages that are widely known cosmopolitan and representative freshwater bacterial groups such as the acI, acIV, LD28, FukuN57, MNG9, and TRA3-20 lineages. However, some abundant bacterial groups including the LD12 lineage, Chloroflexi, and Acidobacteria could not be domesticated. Among the 71 taxonomic groups in the HTC isolates, representative strains of 47 groups could either form colonies on agar plates or be revived from frozen glycerol stocks. Additionally, season and water depth significantly affected bacterial community structure, as demonstrated by 16S rRNA gene amplicon sequencing analyses. Therefore, our study successfully implemented a dilution-to-extinction cultivation strategy to cultivate previously uncultured or underrepresented freshwater bacterial groups, thus expanding the basis for future multi-omic studies.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Md Rashedul Islam
- Bacteriophage Biology Laboratory, Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ilnam Kang
- Department of Biological Sciences, Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| |
Collapse
|
7
|
Shabarova T, Salcher MM, Porcal P, Znachor P, Nedoma J, Grossart HP, Seďa J, Hejzlar J, Šimek K. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat Microbiol 2021; 6:479-488. [PMID: 33510474 DOI: 10.1038/s41564-020-00852-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Small lakes and ponds occupy an enormous surface area of inland freshwater and represent an important terrestrial-water interface. Disturbances caused by extreme weather events can have substantial effects on these ecosystems. Here, we analysed the dynamics of nutrients and the entire plankton community in two flood events and afterwards, when quasi-stable conditions were established, to investigate the effect of such disturbances on a small forest pond. We show that floodings result in repeated washout of resident organisms and hundredfold increases in nutrient load. Despite this, the microbial community recovers to a predisturbance state within two weeks of flooding through four well-defined succession phases. Reassembly of phytoplankton and especially zooplankton takes up to two times longer and features repetitive and adaptive patterns. Release of dissolved nutrients from the pond is associated with inflow rates and community recovery, and returns to predisturbance levels before microbial compositions recover. Our findings shed light on the mechanisms underlying functional resilience of small waterbodies and are relevant to global change-induced increases in weather extremes.
Collapse
Affiliation(s)
- Tanja Shabarova
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Porcal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jiří Nedoma
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Biology and Inland Fisheries (IGB), Stechlin, Germany.,Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Jaromír Seďa
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Josef Hejzlar
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
8
|
Light and Primary Production Shape Bacterial Activity and Community Composition of Aerobic Anoxygenic Phototrophic Bacteria in a Microcosm Experiment. mSphere 2020; 5:5/4/e00354-20. [PMID: 32611696 PMCID: PMC7333569 DOI: 10.1128/msphere.00354-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phytoplankton is a key component of aquatic microbial communities, and metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon (DOC). Yet, the impact of primary production on bacterial activity and community composition remains largely unknown, as, for example, in the case of aerobic anoxygenic phototrophic (AAP) bacteria that utilize both phytoplankton-derived DOC and light as energy sources. Here, we studied how reduction of primary production in a natural freshwater community affects the bacterial community composition and its activity, focusing primarily on AAP bacteria. The bacterial respiration rate was the lowest when photosynthesis was reduced by direct inhibition of photosystem II and the highest in ambient light condition with no photosynthesis inhibition, suggesting that it was limited by carbon availability. However, bacterial assimilation rates of leucine and glucose were unaffected, indicating that increased bacterial growth efficiency (e.g., due to photoheterotrophy) can help to maintain overall bacterial production when low primary production limits DOC availability. Bacterial community composition was tightly linked to light intensity, mainly due to the increased relative abundance of light-dependent AAP bacteria. This notion shows that changes in bacterial community composition are not necessarily reflected by changes in bacterial production or growth and vice versa. Moreover, we demonstrated for the first time that light can directly affect bacterial community composition, a topic which has been neglected in studies of phytoplankton-bacteria interactions.IMPORTANCE Metabolic coupling between phytoplankton and bacteria determines the fate of dissolved organic carbon in aquatic environments, and yet how changes in the rate of primary production affect the bacterial activity and community composition remains understudied. Here, we experimentally limited the rate of primary production either by lowering light intensity or by adding a photosynthesis inhibitor. The induced decrease had a greater influence on bacterial respiration than on bacterial production and growth rate, especially at an optimal light intensity. This suggests that changes in primary production drive bacterial activity, but the effect on carbon flow may be mitigated by increased bacterial growth efficiencies, especially of light-dependent AAP bacteria. Bacterial activities were independent of changes in bacterial community composition, which were driven by light availability and AAP bacteria. This direct effect of light on composition of bacterial communities has not been documented previously.
Collapse
|
9
|
Temperature and Nutrient Levels Correspond with Lineage-Specific Microdiversification in the Ubiquitous and Abundant Freshwater Genus Limnohabitans. Appl Environ Microbiol 2020; 86:AEM.00140-20. [PMID: 32169939 DOI: 10.1128/aem.00140-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/10/2020] [Indexed: 11/20/2022] Open
Abstract
Most freshwater bacterial communities are characterized by a few dominant taxa that are often ubiquitous across freshwater biomes worldwide. Our understanding of the genomic diversity within these taxonomic groups is limited to a subset of taxa. Here, we investigated the genomic diversity that enables Limnohabitans, a freshwater genus key in funneling carbon from primary producers to higher trophic levels, to achieve abundance and ubiquity. We reconstructed eight putative Limnohabitans metagenome-assembled genomes (MAGs) from stations located along broad environmental gradients existing in Lake Michigan, part of Earth's largest surface freshwater system. De novo strain inference analysis resolved a total of 23 strains from these MAGs, which strongly partitioned into two habitat-specific clusters with cooccurring strains from different lineages. The largest number of strains belonged to the abundant LimB lineage, for which robust in situ strain delineation had not previously been achieved. Our data show that temperature and nutrient levels may be important environmental parameters associated with microdiversification within the Limnohabitans genus. In addition, strains predominant in low- and high-phosphorus conditions had larger genomic divergence than strains abundant under different temperatures. Comparative genomics and gene expression analysis yielded evidence for the ability of LimB populations to exhibit cellular motility and chemotaxis, a phenotype not yet associated with available Limnohabitans isolates. Our findings broaden historical marker gene-based surveys of Limnohabitans microdiversification and provide in situ evidence of genome diversity and its functional implications across freshwater gradients.IMPORTANCE Limnohabitans is an important bacterial taxonomic group for cycling carbon in freshwater ecosystems worldwide. Here, we examined the genomic diversity of different Limnohabitans lineages. We focused on the LimB lineage of this genus, which is globally distributed and often abundant, and its abundance has shown to be largely invariant to environmental change. Our data show that the LimB lineage is actually comprised of multiple cooccurring populations for which the composition and genomic characteristics are associated with variations in temperature and nutrient levels. The gene expression profiles of this lineage suggest the importance of chemotaxis and motility, traits that had not yet been associated with the Limnohabitans genus, in adapting to environmental conditions.
Collapse
|
10
|
Bacterial and Eukaryotic Small-Subunit Amplicon Data Do Not Provide a Quantitative Picture of Microbial Communities, but They Are Reliable in the Context of Ecological Interpretations. mSphere 2020; 5:5/2/e00052-20. [PMID: 32132159 PMCID: PMC7056804 DOI: 10.1128/msphere.00052-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-throughput sequencing (HTS) of amplified fragments of rRNA genes provides unprecedented insight into the diversity of prokaryotic and eukaryotic microorganisms. Unfortunately, HTS data are prone to quantitative biases, which may lead to an erroneous picture of microbial community composition and thwart efforts to advance its understanding. These concerns motivated us to investigate how accurately HTS data characterize the variability of microbial communities, the relative abundances of specific phylotypes, and their relationships with environmental factors in comparison to an established microscopy-based method. We compared results obtained by HTS and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) from three independent aquatic time series for both prokaryotic and eukaryotic microorganisms (almost 900 data points, the largest obtained with both methods so far). HTS and CARD-FISH data disagree with regard to relative abundances of bacterial and eukaryotic phylotypes but identify similar environmental drivers shaping bacterial and eukaryotic communities. High-throughput sequencing (HTS) of gene amplicons is a preferred method of assessing microbial community composition, because it rapidly provides information from a large number of samples at high taxonomic resolution and low costs. However, mock community studies show that HTS data poorly reflect the actual relative abundances of individual phylotypes, casting doubt on the reliability of subsequent statistical analysis and data interpretation. We investigated how accurately HTS data reflect the variability of bacterial and eukaryotic community composition and their relationship with environmental factors in natural samples. For this, we compared results of HTS from three independent aquatic time series (n = 883) with those from an established, quantitative microscopic method (catalyzed reporter deposition-fluorescence in situ hybridization [CARD-FISH]). Relative abundances obtained by CARD-FISH and HTS disagreed for most bacterial and eukaryotic phylotypes. Nevertheless, the two methods identified the same environmental drivers to shape bacterial and eukaryotic communities. Our results show that amplicon data do provide reliable information for their ecological interpretations. Yet, when studying specific phylogenetic groups, it is advisable to combine HTS with quantification using microscopy and/or the addition of internal standards. IMPORTANCE High-throughput sequencing (HTS) of amplified fragments of rRNA genes provides unprecedented insight into the diversity of prokaryotic and eukaryotic microorganisms. Unfortunately, HTS data are prone to quantitative biases, which may lead to an erroneous picture of microbial community composition and thwart efforts to advance its understanding. These concerns motivated us to investigate how accurately HTS data characterize the variability of microbial communities, the relative abundances of specific phylotypes, and their relationships with environmental factors in comparison to an established microscopy-based method. We compared results obtained by HTS and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) from three independent aquatic time series for both prokaryotic and eukaryotic microorganisms (almost 900 data points, the largest obtained with both methods so far). HTS and CARD-FISH data disagree with regard to relative abundances of bacterial and eukaryotic phylotypes but identify similar environmental drivers shaping bacterial and eukaryotic communities.
Collapse
|
11
|
Nuy JK, Hoetzinger M, Hahn MW, Beisser D, Boenigk J. Ecological Differentiation in Two Major Freshwater Bacterial Taxa Along Environmental Gradients. Front Microbiol 2020; 11:154. [PMID: 32117171 PMCID: PMC7031163 DOI: 10.3389/fmicb.2020.00154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 12/05/2022] Open
Abstract
Polynucleobacter (Burkholderiaceae, Betaproteobacteria) and Limnohabitans (Comamonadaceae, Betaproteobacteria) are abundant freshwater bacteria comprising large genetic and taxonomic diversities, with species adapted to physico-chemically distinct types of freshwater systems. The relative importance of environmental drivers, i.e., physico-chemistry, presence of microeukaryotes and geographic position for the diversity and prevalence has not been investigated for both taxa before. Here, we present the first pan-European study on this topic, comprising 255 freshwater lakes. We investigated Limnohabitans and Polynucleobacter using an amplicon sequencing approach of partial 16S rRNA genes along environmental gradients. We show that physico-chemical factors had the greatest impact on both genera. Analyses on environmental gradients revealed an exceptionally broad ecological spectrum of operational taxonomic units (OTUs). Despite the coarse resolution of the genetic marker, we found OTUs with contrasting environmental preferences within Polynucleobacter and Limnohabitans subclusters. Such an ecological differentiation has been characterized for PnecC and LimC before but was so far unknown for less well studied subclusters such as PnecA and PnecB. Richness and abundance of OTUs are geographically clustered, suggesting that geographic diversity patterns are attributable to region-specific physico-chemical characteristics (e.g., pH and temperature) rather than latitudinal gradients or lake sizes.
Collapse
Affiliation(s)
- Julia K Nuy
- Department of Biodiversity, University of Duisburg Essen, Essen, Germany
| | - Matthias Hoetzinger
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Daniela Beisser
- Department of Biodiversity, University of Duisburg Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg Essen, Essen, Germany
| |
Collapse
|
12
|
Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria. Sci Rep 2019; 9:18766. [PMID: 31822744 PMCID: PMC6904477 DOI: 10.1038/s41598-019-55210-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023] Open
Abstract
The anoxygenic phototrophic bacteria (APB) are an active component of aquatic microbial communities. While DNA-based studies have delivered a detailed picture of APB diversity, they cannot provide any information on the activity of individual species. Therefore, we focused on the expression of a photosynthetic gene by APB communities in two freshwater lakes (Cep lake and the Římov Reservoir) in the Czech Republic. First, we analyzed expression levels of pufM during the diel cycle using RT-qPCR. The transcription underwent a strong diel cycle and was inhibited during the day in both lakes. Then, we compared DNA- (total) and RNA-based (active) community composition by sequencing pufM amplicon libraries. We observed large differences in expression activity among different APB phylogroups. While the total APB community in the Římov Reservoir was dominated by Betaproteobacteria, Alphaproteobacteria prevailed in the active library. A different situation was encountered in the oligotrophic lake Cep where Betaproteobacteria (order Burkholderiales) dominated both the DNA and RNA libraries. Interestingly, in Cep lake we found smaller amounts of highly active uncultured phototrophic Chloroflexi, as well as phototrophic Gemmatimonadetes. Despite the large diversity of APB communities, light repression of pufM expression seems to be a common feature of all aerobic APB present in the studied lakes.
Collapse
|
13
|
Breton-Deval L, Sanchez-Flores A, Juárez K, Vera-Estrella R. Integrative study of microbial community dynamics and water quality along The Apatlaco River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113158. [PMID: 31521989 DOI: 10.1016/j.envpol.2019.113158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The increasing demand for clean water resources for human consumption, is raising concerning about the sustainable worldwide provisioning. In Mexico, rivers near to high-density urbanizations are subject to irrational exploitation where polluted water is a risk for human health. Therefore, the aims of this study are to analyze water quality parameters and bacterial community dynamics to understand the relation between them, in the Apatlaco river, which presents a clear environmental perturbance. Parameters such as total coliforms, chemical oxygen demand, harness, ammonium, nitrite, nitrate, total Kjeldahl nitrogen, dissolved oxygen, total phosphorus, total dissolved solids, and temperature were analyzed in 17 sampling points along the river. The high pollution level was registered in the sampling point 10 with 480 mg/L chemical oxygen demand, 7 mg/L nitrite, 34 mg/L nitrate, 2 mg/L dissolved oxygen, and 299 mg/L of total dissolved solids. From these sites, we selected four samples for DNA extraction and performed a metagenomic analysis using a whole metagenome shotgun approach, to compare the microbial communities between polluted and non-polluted sites. In general, Proteobacteria was the most representative phylum in all sites. However, the clean water reference point was enriched with microorganism from the Limnohabitans genus, a planktonic bacterium widespread in freshwater ecosystems. Nevertheless, in the polluted sampled sites, we found a high abundance of potential opportunistic pathogen genera such as Acinetobacter, Arcobacter, and Myroides, among others. This suggests that in addition to water contamination, an imminent human health risk due to pathogenic bacteria can potentially affect a population of ∼1.6 million people dwelling nearby. These results will contribute to the knowledge regarding anthropogenic pollution on the microbial population dynamic and how they affect human health and life quality.
Collapse
Affiliation(s)
- Luz Breton-Deval
- Cátedras-Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Katy Juárez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
14
|
Okazaki Y, Salcher MM, Callieri C, Nakano SI. The Broad Habitat Spectrum of the CL500-11 Lineage (Phylum Chloroflexi), a Dominant Bacterioplankton in Oxygenated Hypolimnia of Deep Freshwater Lakes. Front Microbiol 2018; 9:2891. [PMID: 30542336 PMCID: PMC6277806 DOI: 10.3389/fmicb.2018.02891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 12/04/2022] Open
Abstract
CL500-11 (phylum Chloroflexi) is one of the most ubiquitous and abundant bacterioplankton lineages in deep freshwater lakes inhabiting the oxygenated hypolimnion. While metagenomics predicted possible eco-physiological characteristics of this uncultured lineage, no consensus on their ecology has so far been reached, partly because their niche is not clearly understood due to a limited number of quantitative field observations. This study investigated the abundance and distribution of CL500-11 in seven deep perialpine lakes using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Samples were taken vertically (5–12 depths in each lake) and temporally (in two lakes) at the deepest point of the lakes located in Switzerland, Italy, and Austria with varying depth, trophic state, mixing regime, and water retention time. The results showed a dominance of CL500-11 in all the lakes; their proportion to total prokaryotes ranged from 4.3% (Mondsee) to 24.3% (Lake Garda) and their abundance ranged from 0.65 × 105 (Mondsee) to 1.77 × 105 (Lake Garda) cells mL-1. By summarizing available information on CL500-11 occurrence to date, we demonstrated their broad habitat spectrum, ranging from ultra-oligotrophic to meso-eutrophic lakes, while low abundances or complete absence was observed in lakes with shallow depth, low pH, and/or short water retention time (<1 year). Together with available metagenomic and geochemical evidences from literatures, here we reviewed potential substrates supporting growth of CL500-11. Overall, the present study further endorsed ubiquity and quantitative significance of CL500-11 in deep freshwater systems and narrowed the focus on their physiological characteristics and ecological importance.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, Otsu, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Michaela M Salcher
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Cristiana Callieri
- CNR-IRSA Institute of Water Research, Microbial Ecology Group, Verbania, Italy
| | | |
Collapse
|
15
|
Piwosz K, Shabarova T, Tomasch J, Šimek K, Kopejtka K, Kahl S, Pieper DH, Koblížek M. Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS). THE ISME JOURNAL 2018; 12:2640-2654. [PMID: 29980795 PMCID: PMC6194029 DOI: 10.1038/s41396-018-0213-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 01/07/2023]
Abstract
The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
Collapse
Affiliation(s)
- Kasia Piwosz
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic
| | - Tanja Shabarova
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 37005, Česke Budějovice, Czech Republic
| | - Jürgen Tomasch
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Karel Šimek
- Biology Centre CAS, Institute of Hydrobiology, Na Sádkách 7, 37005, Česke Budějovice, Czech Republic
| | - Karel Kopejtka
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, CZ-37005, České Budějovice, Czech Republic
| | - Silke Kahl
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Dietmar H Pieper
- Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology CAS, Novohradská 237, 37981, Třeboň, Czech Republic.
- Faculty of Science, University of South Bohemia in České Budějovice, CZ-37005, České Budějovice, Czech Republic.
| |
Collapse
|
16
|
Bock C, Salcher M, Jensen M, Pandey RV, Boenigk J. Synchrony of Eukaryotic and Prokaryotic Planktonic Communities in Three Seasonally Sampled Austrian Lakes. Front Microbiol 2018; 9:1290. [PMID: 29963032 PMCID: PMC6014231 DOI: 10.3389/fmicb.2018.01290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023] Open
Abstract
Freshwater systems are characterized by an enormous diversity of eukaryotic protists and prokaryotic taxa. The community structures in different lakes are thereby influenced by factors such as habitat size, lake chemistry, biotic interactions, and seasonality. In our study, we used high throughput 454 sequencing to study the diversity and temporal changes of prokaryotic and eukaryotic planktonic communities in three Austrian lakes during the ice-free season. In the following year, one lake was sampled again with a reduced set of sampling dates to observe reoccurring patterns. Cluster analyses (based on SSU V9 (eukaryotic) and V4 (prokaryotic) OTU composition) grouped samples according to their origin followed by separation into seasonal clusters, indicating that each lake has a unique signature based on OTU composition. These results suggest a strong habitat-specificity of microbial communities and in particular of community patterns at the OTU level. A comparison of the prokaryotic and eukaryotic datasets via co-inertia analysis (CIA) showed a consistent clustering of prokaryotic and eukaryotic samples, probably reacting to the same environmental forces (e.g., pH, conductivity). In addition, the shifts in eukaryotic and bacterioplanktonic communities generally occurred at the same time and on the same scale. Regression analyses revealed a linear relationship between an increase in Bray-Curtis dissimilarities and elapsed time. Our study shows a pronounced coupling between bacteria and eukaryotes in seasonal samplings of the three analyzed lakes. However, our temporal resolution (biweekly sampling) and data on abiotic factors were insufficient to determine if this was caused by direct biotic interactions or by reacting to the same seasonally changing environmental forces.
Collapse
Affiliation(s)
- Christina Bock
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Michaela Salcher
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.,Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Manfred Jensen
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Ram Vinay Pandey
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Vienna, Austria.,Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jens Boenigk
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Cryptophyta as major bacterivores in freshwater summer plankton. ISME JOURNAL 2018; 12:1668-1681. [PMID: 29463895 PMCID: PMC6018765 DOI: 10.1038/s41396-018-0057-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Small bacterivorous eukaryotes play a cardinal role in aquatic food webs and their taxonomic classification is currently a hot topic in aquatic microbial ecology. Despite increasing interest in their diversity, core questions regarding predator–prey specificity remain largely unanswered, e.g., which heterotrophic nanoflagellates (HNFs) are the main bacterivores in freshwaters and which prokaryotes support the growth of small HNFs. To answer these questions, we fed natural communities of HNFs from Římov reservoir (Czech Republic) with five different bacterial strains of the ubiquitous betaproteobacterial genera Polynucleobacter and Limnohabitans. We combined amplicon sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting eukaryotic 18 S rRNA genes to track specific responses of the natural HNF community to prey amendments. While amplicon sequencing provided valuable qualitative data and a basis for designing specific probes, the number of reads was insufficient to accurately quantify certain eukaryotic groups. We also applied a double-hybridization technique that allows simultaneous phylogenetic identification of both predator and prey. Our results show that community composition of HNFs is strongly dependent upon prey type. Surprisingly, Cryptophyta were the most abundant bacterivores, although this phylum has been so far assumed to be mainly autotrophic. Moreover, the growth of a small lineage of Cryptophyta (CRY1 clade) was strongly stimulated by one Limnohabitans strain in our experiment. Thus, our study is the first report that colorless Cryptophyta are major bacterivores in summer plankton samples and can play a key role in the carbon transfer from prokaryotes to higher trophic levels.
Collapse
|
18
|
The Limnohabitans Genus Harbors Generalistic and Opportunistic Subtypes: Evidence from Spatiotemporal Succession in a Canyon-Shaped Reservoir. Appl Environ Microbiol 2017; 83:AEM.01530-17. [PMID: 28842542 DOI: 10.1128/aem.01530-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
We studied the diversity of Limnohabitans using reverse line blot hybridization with Limnohabitans lineage-specific probes in the freshwater canyon-shaped Římov reservoir (Czech Republic). To examine the succession of distinct lineages, we performed (i) a study of an intensive spring sampling program at the lacustrine part of the Římov reservoir (from ice melt through a phytoplankton peak to the clear-water phase), and (ii) a seasonal study (April to November) when the occurrence of distinct Limnohabitans lineages was related to the inherent longitudinal heterogeneity of the reservoir. Significant spatiotemporal changes in the compositions of distinct Limnohabitans lineages allowed for the identification of "generalists" that were always present throughout the whole season as well as "specialists" that appeared in the reservoir only for limited periods of time or irregularly. Our results indicate that some phytoplankton groups, such as cryptophytes or cyanobacteria, and zooplankton composition were the major factors modulating the distribution and dynamics of distinct Limnohabitans lineages. The highest Limnohabitans diversity was observed during the spring algal bloom, whereas the lowest was during the summer cyanobacterial bloom. The microdiversity also markedly increased upstream in the reservoir, being highest at the inflow, and thus likely reflecting strong influences of the watershed.IMPORTANCE The genus Limnohabitans is a typical freshwater bacterioplankton and is believed to play a significant role in inland freshwater habitats. This work is unique in detecting and tracing different closely related lineages of this bacterial genus in its natural conditions using the semiquantitative reverse line blot hybridization method and in discovering the factors influencing the microdiversity, subtype alternations, and seasonality.
Collapse
|
19
|
Horňák K, Kasalický V, Šimek K, Grossart HP. Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ Microbiol 2017; 19:4519-4535. [PMID: 28856804 DOI: 10.1111/1462-2920.13900] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
We investigated changes in quality and quantity of extracellular and biomass-derived organic matter (OM) from three axenic algae (genera Rhodomonas, Chlamydomonas, Coelastrum) during growth of Limnohabitans parvus, Limnohabitans planktonicus and Polynucleobacter acidiphobus representing important clusters of freshwater planktonic Betaproteobacteria. Total extracellular and biomass-derived OM concentrations from each alga were approximately 20 mg l-1 and 1 mg l-1 respectively, from which up to 9% could be identified as free carbohydrates, polyamines, or free and combined amino acids. Carbohydrates represented 54%-61% of identified compounds of the extracellular OM from each alga. In biomass-derived OM of Rhodomonas and Chlamydomonas 71%-77% were amino acids and polyamines, while in that of Coelastrum 85% were carbohydrates. All bacteria grew on alga-derived OM of Coelastrum, whereas only Limnohabitans strains grew on OM from Rhodomonas and Chlamydomonas. Bacteria consumed 24%-76% and 38%-82% of all identified extracellular and biomass-derived OM compounds respectively, and their consumption was proportional to the concentration of each OM compound in the different treatments. The bacterial biomass yield was higher than the total identifiable OM consumption indicating that bacteria also utilized other unidentified alga-derived OM compounds. Bacteria, however, also produced specific OM compounds suggesting enzymatic polymer degradation or de novo exudation.
Collapse
Affiliation(s)
- Karel Horňák
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Seestrasse 187, Kilchberg CH-8802, Switzerland
| | - Vojtěch Kasalický
- Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| | - Karel Šimek
- Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Limnology of Stratified Lakes, Alte Fisherhütte 2, OT Neuglobsow, Stechlin D-16775, Germany.,Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam D-14468, Germany
| |
Collapse
|
20
|
Bertilsson S. How to see more: double hybridization to reveal ecological differentiation among close bacterial relatives. Environ Microbiol 2017; 19:2110-2111. [DOI: 10.1111/1462-2920.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory; Uppsala University; Norbyv. 18D Uppsala SE 75236 Sweden
| |
Collapse
|