1
|
Kubik BC, Holden JF. Non-thermodynamic factors affect competition between thermophilic chemolithoautotrophs from deep-sea hydrothermal vents. Appl Environ Microbiol 2024; 90:e0029224. [PMID: 39012100 PMCID: PMC11337833 DOI: 10.1128/aem.00292-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Various environmental factors, including H2 availability, metabolic tradeoffs, optimal growth temperature, stochasticity, and hydrology, were examined to determine if they affect microbial competition between three autotrophic thermophiles. The thiosulfate reducer Desulfurobacterium thermolithotrophum (Topt72°C) was grown in mono- and coculture separately with the methanogens Methanocaldococcus jannaschii (Topt82°C) at 72°C and Methanothermococcus thermolithotrophicus (Topt65°C) at 65°C at high and low H2 concentrations. Both methanogens showed a metabolic tradeoff shifting from high growth rate-low cell yield at high H2 concentrations to low growth rate-high cell yield at low H2 concentrations and when grown in coculture with the thiosulfate reducer. In 1:1 initial ratios, D. thermolithotrophum outcompeted both methanogens at high and low H2, no H2S was detected on low H2, and it grew with only CO2 as the electron acceptor indicating a similar metabolic tradeoff with low H2. When the initial methanogen-to-thiosulfate reducer ratio varied from 1:1 to 104:1 with high H2, D. thermolithotrophum always outcompeted M. jannaschii at 72°C. However, M. thermolithotrophicus outcompeted D. thermolithotrophum at 65°C when the ratio was 103:1. A reactive transport model that mixed pure hydrothermal fluid with cold seawater showed that hyperthermophilic methanogens dominated in systems where the residence time of the mixed fluid above 72°C was sufficiently high. With shorter residence times, thermophilic thiosulfate reducers dominated. If residence times increased with decreasing fluid temperature along the flow path, then thermophilic methanogens could dominate. Thermophilic methanogen dominance spread to previously thiosulfate-reducer-dominated conditions if the initial ratio of thermophilic methanogen-to-thiosulfate reducer increased. IMPORTANCE The deep subsurface is the largest reservoir of microbial biomass on Earth and serves as an analog for life on the early Earth and extraterrestrial environments. Methanogenesis and sulfur reduction are among the more common chemolithoautotrophic metabolisms found in hot anoxic hydrothermal vent environments. Competition between H2-oxidizing sulfur reducers and methanogens is primarily driven by the thermodynamic favorability of redox reactions with the former outcompeting methanogens. This study demonstrated that competition between the hydrothermal vent chemolithoautotrophs Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Desulfurobacterium thermolithotrophum is also influenced by other overlapping factors such as staggered optimal growth temperatures, stochasticity, and hydrology. By modeling all aspects of microbial competition coupled with field data, a better understanding is gained on how methanogens can outcompete thiosulfate reducers in hot anoxic environments and how the deep subsurface contributes to biogeochemical cycling.
Collapse
Affiliation(s)
- Briana C. Kubik
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Murray L, Fullerton H, Moyer CL. Microbial metabolic potential of hydrothermal vent chimneys along the submarine ring of fire. Front Microbiol 2024; 15:1399422. [PMID: 39165569 PMCID: PMC11333457 DOI: 10.3389/fmicb.2024.1399422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Hydrothermal vents host a diverse community of microorganisms that utilize chemical gradients from the venting fluid for their metabolisms. The venting fluid can solidify to form chimney structures that these microbes adhere to and colonize. These chimney structures are found throughout many different locations in the world's oceans. In this study, comparative metagenomic analyses of microbial communities on five chimney structures from around the Pacific Ocean were elucidated focusing on the core taxa and genes that are characteristic of each of these hydrothermal vent chimneys. The differences among the taxa and genes found at each chimney due to parameters such as physical characteristics, chemistry, and activity of the vents were highlighted. DNA from the chimneys was sequenced, assembled into contigs, and annotated for gene function. Genes used for carbon, oxygen, sulfur, nitrogen, iron, and arsenic metabolisms were found at varying abundances at each of the chimneys, largely from either Gammaproteobacteria or Campylobacteria. Many taxa shared an overlap of these functional metabolic genes, indicating that functional redundancy is critical for life at these hydrothermal vents. A high relative abundance of oxygen metabolism genes coupled with a low abundance of carbon fixation genes could be used as a unique identifier for inactive chimneys. Genes used for DNA repair, chemotaxis, and transposases were found at high abundances at each of these hydrothermal chimneys allowing for enhanced adaptations to the ever-changing chemical and physical conditions encountered.
Collapse
Affiliation(s)
- Laura Murray
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Craig L. Moyer
- Department of Biology, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
3
|
Yu M, Zhang M, Zeng R, Cheng R, Zhang R, Hou Y, Kuang F, Feng X, Dong X, Li Y, Shao Z, Jin M. Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments. Nat Commun 2024; 15:3228. [PMID: 38622147 PMCID: PMC11018836 DOI: 10.1038/s41467-024-47600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Seamounts are globally distributed across the oceans and form one of the major oceanic biomes. Here, we utilized combined analyses of bulk metagenome and virome to study viral communities in seamount sediments in the western Pacific Ocean. Phylogenetic analyses and the protein-sharing network demonstrate extensive diversity and previously unknown viral clades. Inference of virus-host linkages uncovers extensive interactions between viruses and dominant prokaryote lineages, and suggests that viruses play significant roles in carbon, sulfur, and nitrogen cycling by compensating or augmenting host metabolisms. Moreover, temperate viruses are predicted to be prevalent in seamount sediments, which tend to carry auxiliary metabolic genes for host survivability. Intriguingly, the geographical features of seamounts likely compromise the connectivity of viral communities and thus contribute to the high divergence of viral genetic spaces and populations across seamounts. Altogether, these findings provides knowledge essential for understanding the biogeography and ecological roles of viruses in globally widespread seamounts.
Collapse
Affiliation(s)
- Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Menghui Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Ruolin Cheng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Fangfang Kuang
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Xuejin Feng
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Xiyang Dong
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Yinfang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, China.
| |
Collapse
|
4
|
Fullerton H, Smith L, Enriquez A, Butterfield D, Wheat CG, Moyer CL. Seafloor incubation experiments at deep-sea hydrothermal vents reveal distinct biogeographic signatures of autotrophic communities. FEMS Microbiol Ecol 2024; 100:fiae001. [PMID: 38200713 PMCID: PMC10808952 DOI: 10.1093/femsec/fiae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/20/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
The discharge of hydrothermal vents on the seafloor provides energy sources for dynamic and productive ecosystems, which are supported by chemosynthetic microbial populations. These populations use the energy gained by oxidizing the reduced chemicals contained within the vent fluids to fix carbon and support multiple trophic levels. Hydrothermal discharge is ephemeral and chemical composition of such fluids varies over space and time, which can result in geographically distinct microbial communities. To investigate the foundational members of the community, microbial growth chambers were placed within the hydrothermal discharge at Axial Seamount (Juan de Fuca Ridge), Magic Mountain Seamount (Explorer Ridge), and Kama'ehuakanaloa Seamount (Hawai'i hotspot). Campylobacteria were identified within the nascent communities, but different amplicon sequence variants were present at Axial and Kama'ehuakanaloa Seamounts, indicating that geography in addition to the composition of the vent effluent influences microbial community development. Across these vent locations, dissolved iron concentration was the strongest driver of community structure. These results provide insights into nascent microbial community structure and shed light on the development of diverse lithotrophic communities at hydrothermal vents.
Collapse
Affiliation(s)
- Heather Fullerton
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - Lindsey Smith
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| | - Alejandra Enriquez
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, United States
| | - David Butterfield
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington and NOAA/PMEL, John M. Wallace Hall, 3737 Brooklyn Ave NE, Seattle, WA 98105, United States
| | - C Geoffrey Wheat
- Institute of Marine Studies, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2150 Koyukuk Drive, 245 O’Neill Building, PO Box 757220, Fairbanks, Alaska 99775-7220, United States
| | - Craig L Moyer
- Department of Biology, Western Washington University, 516 High St, Bellingham, WA 98225, United States
| |
Collapse
|
5
|
Hu SK, Anderson RE, Pachiadaki MG, Edgcomb VP, Serres MH, Sylva SP, German CR, Seewald JS, Lang SQ, Huber JA. Microbial eukaryotic predation pressure and biomass at deep-sea hydrothermal vents. THE ISME JOURNAL 2024; 18:wrae004. [PMID: 38366040 PMCID: PMC10939315 DOI: 10.1093/ismejo/wrae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024]
Abstract
Deep-sea hydrothermal vent geochemistry shapes the foundation of the microbial food web by fueling chemolithoautotrophic microbial activity. Microbial eukaryotes (or protists) play a critical role in hydrothermal vent food webs as consumers and hosts of symbiotic bacteria, and as a nutritional source to higher trophic levels. We measured microbial eukaryotic cell abundance and predation pressure in low-temperature diffuse hydrothermal fluids at the Von Damm and Piccard vent fields along the Mid-Cayman Rise in the Western Caribbean Sea. We present findings from experiments performed under in situ pressure that show cell abundances and grazing rates higher than those done at 1 atmosphere (shipboard ambient pressure); this trend was attributed to the impact of depressurization on cell integrity. A relationship between the protistan grazing rate, prey cell abundance, and temperature of end-member hydrothermal vent fluid was observed at both vent fields, regardless of experimental approach. Our results show substantial protistan biomass at hydrothermally fueled microbial food webs, and when coupled with improved grazing estimates, suggest an important contribution of grazers to the local carbon export and supply of nutrient resources to the deep ocean.
Collapse
Affiliation(s)
- Sarah K Hu
- Department of Oceanography, Texas A&M University, College Station, TX 77843, United States
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, MN 55057, United States
| | - Maria G Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Virginia P Edgcomb
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Margrethe H Serres
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Sean P Sylva
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Christopher R German
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Jeffrey S Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Susan Q Lang
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| |
Collapse
|
6
|
Hu SK, Smith AR, Anderson RE, Sylva SP, Setzer M, Steadmon M, Frank KL, Chan EW, Lim DSS, German CR, Breier JA, Lang SQ, Butterfield DA, Fortunato CS, Seewald JS, Huber JA. Globally-distributed microbial eukaryotes exhibit endemism at deep-sea hydrothermal vents. Mol Ecol 2023; 32:6580-6598. [PMID: 36302092 DOI: 10.1111/mec.16745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Single-celled microbial eukaryotes inhabit deep-sea hydrothermal vent environments and play critical ecological roles in the vent-associated microbial food web. 18S rRNA amplicon sequencing of diffuse venting fluids from four geographically- and geochemically-distinct hydrothermal vent fields was applied to investigate community diversity patterns among protistan assemblages. The four vent fields include Axial Seamount at the Juan de Fuca Ridge, Sea Cliff and Apollo at the Gorda Ridge, all in the NE Pacific Ocean, and Piccard and Von Damm at the Mid-Cayman Rise in the Caribbean Sea. We describe species diversity patterns with respect to hydrothermal vent field and sample type, identify putative vent endemic microbial eukaryotes, and test how vent fluid geochemistry may influence microbial community diversity. At a semi-global scale, microbial eukaryotic communities at deep-sea vents were composed of similar proportions of dinoflagellates, ciliates, Rhizaria, and stramenopiles. Individual vent fields supported distinct and highly diverse assemblages of protists that included potentially endemic or novel vent-associated strains. These findings represent a census of deep-sea hydrothermal vent protistan communities. Protistan diversity, which is shaped by the hydrothermal vent environment at a local scale, ultimately influences the vent-associated microbial food web and the broader deep-sea carbon cycle.
Collapse
Affiliation(s)
- Sarah K Hu
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Amy R Smith
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Bard College at Simon's Rock, Great Barrington, Massachusetts, USA
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | - Sean P Sylva
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Michaela Setzer
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, Hawai'i, USA
| | - Maria Steadmon
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, Hawai'i, USA
| | - Kiana L Frank
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Eric W Chan
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | | | - Christopher R German
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - John A Breier
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Susan Q Lang
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - David A Butterfield
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington and NOAA/PMEL, Seattle, Washington, USA
| | | | - Jeffrey S Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
7
|
Hauer MA, Breusing C, Trembath-Reichert E, Huber JA, Beinart RA. Geography, not lifestyle, explains the population structure of free-living and host-associated deep-sea hydrothermal vent snail symbionts. MICROBIOME 2023; 11:106. [PMID: 37189129 DOI: 10.1186/s40168-023-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/11/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Marine symbioses are predominantly established through horizontal acquisition of microbial symbionts from the environment. However, genetic and functional comparisons of free-living populations of symbionts to their host-associated counterparts are sparse. Here, we assembled the first genomes of the chemoautotrophic gammaproteobacterial symbionts affiliated with the deep-sea snail Alviniconcha hessleri from two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used phylogenomic and population genomic methods to assess sequence and gene content variation between free-living and host-associated symbionts. RESULTS Our phylogenomic analyses show that the free-living and host-associated symbionts of A. hessleri from both vent fields are populations of monophyletic strains from a single species. Furthermore, genetic structure and gene content analyses indicate that these symbiont populations are differentiated by vent field rather than by lifestyle. CONCLUSION Together, this work suggests that, despite the potential influence of host-mediated acquisition and release processes on horizontally transmitted symbionts, geographic isolation and/or adaptation to local habitat conditions are important determinants of symbiont population structure and intra-host composition. Video Abstract.
Collapse
Affiliation(s)
- Michelle A Hauer
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, USA
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.
| |
Collapse
|
8
|
Zhou Z, Tran PQ, Adams AM, Kieft K, Breier JA, Fortunato CS, Sheik CS, Huber JA, Li M, Dick GJ, Anantharaman K. Sulfur cycling connects microbiomes and biogeochemistry in deep-sea hydrothermal plumes. THE ISME JOURNAL 2023:10.1038/s41396-023-01421-0. [PMID: 37179442 DOI: 10.1038/s41396-023-01421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In globally distributed deep-sea hydrothermal vent plumes, microbiomes are shaped by the redox energy landscapes created by reduced hydrothermal vent fluids mixing with oxidized seawater. Plumes can disperse over thousands of kilometers and their characteristics are determined by geochemical sources from vents, e.g., hydrothermal inputs, nutrients, and trace metals. However, the impacts of plume biogeochemistry on the oceans are poorly constrained due to a lack of integrated understanding of microbiomes, population genetics, and geochemistry. Here, we use microbial genomes to understand links between biogeography, evolution, and metabolic connectivity, and elucidate their impacts on biogeochemical cycling in the deep sea. Using data from 36 diverse plume samples from seven ocean basins, we show that sulfur metabolism defines the core microbiome of plumes and drives metabolic connectivity in the microbial community. Sulfur-dominated geochemistry influences energy landscapes and promotes microbial growth, while other energy sources influence local energy landscapes. We further demonstrated the consistency of links among geochemistry, function, and taxonomy. Amongst all microbial metabolisms, sulfur transformations had the highest MW-score, a measure of metabolic connectivity in microbial communities. Additionally, plume microbial populations have low diversity, short migration history, and gene-specific sweep patterns after migrating from background seawater. Selected functions include nutrient uptake, aerobic oxidation, sulfur oxidation for higher energy yields, and stress responses for adaptation. Our findings provide the ecological and evolutionary bases of change in sulfur-driven microbial communities and their population genetics in adaptation to changing geochemical gradients in the oceans.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Freshwater and Marine Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alyssa M Adams
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John A Breier
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | | | - Cody S Sheik
- Department of Biology and Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, 55812, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Lu Y, Lv Y, Zhang Y, Liu Q, Xu X, Xiao X, Xu J. Metatranscriptomes reveal the diverse responses of Thaumarchaeota ecotypes to environmental variations in the northern slope of the South China Sea. Environ Microbiol 2023; 25:410-427. [PMID: 36448268 DOI: 10.1111/1462-2920.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Thaumarchaeota are among the most abundant prokaryotes in the ocean, playing important roles in carbon and nitrogen cycling. Marine Thaumarchaeota ecotypes exhibit depth-related diversification and seasonal changes. However, transcriptomic activities concerning niche partitioning among thaumarchaeal ecotypes remain unclear. Here, we examined the variations in the distribution and transcriptomic activity of marine Thaumarchaeota ecotypes. Three primary ecotypes were identified: a Nitrosopumilus-like clade; a Nitrosopelagicus-like water column A (WCA) clade, thriving in epipelagic water; and a water column B (WCB) clade, dominant in deep water. Depth-related partitioning of the three ecotypes and the seasonal variability of the WCA and WCB ecotypes were observed. Nutrient concentrations, chlorophyll α and salinity were the primary environmental factors. The relative abundance of the WCA ecotype and its transcript abundance of amoA gene were positively correlated with chlorophyll α and salinity, while the WCB ecotype was positively correlated with nitrate and phosphate. Based on high-quality metagenome-assembled genomes, transcriptomic analysis revealed that the three ecotypes exhibited various co-occurring expression patterns of the elemental cycling genes in the nitrogen, carbon, phosphorus, and sulfur cycles. Our results provide transcriptomic evidence of the niche differentiation of marine Thaumarchaeota ecotypes, highlighting the diverse roles of ecotypes and WCA subclades in biogeochemical cycles.
Collapse
Affiliation(s)
- Ye Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yongxin Lv
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Holden JF, Sistu H. Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs. Front Microbiol 2023; 14:1093018. [PMID: 36950162 PMCID: PMC10025317 DOI: 10.3389/fmicb.2023.1093018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Extremely thermophilic methanogens in the Methanococci and heterotrophs in the Thermococci are common in deep-sea hydrothermal vents. All Methanococci use H2 as an electron donor, and a few species can also use formate. Most Methanococci have a coenzyme F420-reducing formate dehydrogenase. All Thermococci reduce S0 but have hydrogenases and produce H2 in the absence of S0. Some Thermococci have formate hydrogenlyase (Fhl) that reversibly converts H2 and CO2 to formate or an NAD(P)+-reducing formate dehydrogenase (Nfd). Questions remain if Methanococci or Thermococci use or produce formate in nature, why only certain species can grow on or produce formate, and what the physiological role of formate is? Formate forms abiotically in hydrothermal fluids through chemical equilibrium with primarily H2, CO2, and CO and is strongly dependent upon H2 concentration, pH, and temperature. Formate concentrations are highest in hydrothermal fluids where H2 concentrations are also high, such as in ultramafic systems where serpentinization reactions occur. In nature, Methanococci are likely to use formate as an electron donor when H2 is limiting. Thermococci with Fhl likely convert H2 and CO2 to formate when H2 concentrations become inhibitory for growth. They are unlikely to grow on formate in nature unless formate is more abundant than H2 in the environment. Nearly all Methanococci and Thermococci have a gene for at least one formate dehydrogenase catalytic subunit, which may be used to provide free formate for de novo purine biosynthesis. However, only species with a membrane-bound formate transporter can grow on or secrete formate. Interspecies H2 transfer occurs between Thermococci and Methanococci. This and putative interspecies formate transfer may support Methanococci in low H2 environments, which in turn may prevent growth inhibition of Thermococci by its own H2. Future research directions include understanding when, where, and how formate is used and produced by these organisms in nature, and how transcription of Thermococci genes encoding formate-related enzymes are regulated.
Collapse
|
11
|
Zhou Z, St John E, Anantharaman K, Reysenbach AL. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. MICROBIOME 2022; 10:241. [PMID: 36572924 PMCID: PMC9793634 DOI: 10.1186/s40168-022-01424-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/11/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND When deep-sea hydrothermal fluids mix with cold oxygenated fluids, minerals precipitate out of solution and form hydrothermal deposits. These actively venting deep-sea hydrothermal deposits support a rich diversity of thermophilic microorganisms which are involved in a range of carbon, sulfur, nitrogen, and hydrogen metabolisms. Global patterns of thermophilic microbial diversity in deep-sea hydrothermal ecosystems have illustrated the strong connectivity between geological processes and microbial colonization, but little is known about the genomic diversity and physiological potential of these novel taxa. Here we explore this genomic diversity in 42 metagenomes from four deep-sea hydrothermal vent fields and a deep-sea volcano collected from 2004 to 2018 and document their potential implications in biogeochemical cycles. RESULTS Our dataset represents 3635 metagenome-assembled genomes encompassing 511 novel and recently identified genera from deep-sea hydrothermal settings. Some of the novel bacterial (107) and archaeal genera (30) that were recently reported from the deep-sea Brothers volcano were also detected at the deep-sea hydrothermal vent fields, while 99 bacterial and 54 archaeal genera were endemic to the deep-sea Brothers volcano deposits. We report some of the first examples of medium- (≥ 50% complete, ≤ 10% contaminated) to high-quality (> 90% complete, < 5% contaminated) MAGs from phyla and families never previously identified, or poorly sampled, from deep-sea hydrothermal environments. We greatly expand the novel diversity of Thermoproteia, Patescibacteria (Candidate Phyla Radiation, CPR), and Chloroflexota found at deep-sea hydrothermal vents and identify a small sampling of two potentially novel phyla, designated JALSQH01 and JALWCF01. Metabolic pathway analysis of metagenomes provides insights into the prevalent carbon, nitrogen, sulfur, and hydrogen metabolic processes across all sites and illustrates sulfur and nitrogen metabolic "handoffs" in community interactions. We confirm that Campylobacteria and Gammaproteobacteria occupy similar ecological guilds but their prevalence in a particular site is driven by shifts in the geochemical environment. CONCLUSION Our study of globally distributed hydrothermal vent deposits provides a significant expansion of microbial genomic diversity associated with hydrothermal vent deposits and highlights the metabolic adaptation of taxonomic guilds. Collectively, our results illustrate the importance of comparative biodiversity studies in establishing patterns of shared phylogenetic diversity and physiological ecology, while providing many targets for enrichment and cultivation of novel and endemic taxa. Video Abstract.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily St John
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
12
|
Cheng R, Li X, Jiang L, Gong L, Geslin C, Shao Z. Virus diversity and interactions with hosts in deep-sea hydrothermal vents. MICROBIOME 2022; 10:235. [PMID: 36566239 PMCID: PMC9789665 DOI: 10.1186/s40168-022-01441-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The deep sea harbors many viruses, yet their diversity and interactions with hosts in hydrothermal ecosystems are largely unknown. Here, we analyzed the viral composition, distribution, host preference, and metabolic potential in different habitats of global hydrothermal vents, including vent plumes, background seawater, diffuse fluids, and sediments. RESULTS From 34 samples collected at eight vent sites, a total of 4662 viral populations (vOTUs) were recovered from the metagenome assemblies, encompassing diverse phylogenetic groups and defining many novel lineages. Apart from the abundant unclassified viruses, tailed phages are most predominant across the global hydrothermal vents, while single-stranded DNA viruses, including Microviridae and small eukaryotic viruses, also constitute a significant part of the viromes. As revealed by protein-sharing network analysis, hydrothermal vent viruses formed many novel genus-level viral clusters and are highly endemic to specific vent sites and habitat types. Only 11% of the vOTUs can be linked to hosts, which are the key microbial taxa of hydrothermal habitats, such as Gammaproteobacteria and Campylobacterota. Intriguingly, vent viromes share some common metabolic features in that they encode auxiliary genes that are extensively involved in the metabolism of carbohydrates, amino acids, cofactors, and vitamins. Specifically, in plume viruses, various auxiliary genes related to methane, nitrogen, and sulfur metabolism were observed, indicating their contribution to host energy conservation. Moreover, the prevalence of sulfur-relay pathway genes indicated the significant role of vent viruses in stabilizing the tRNA structure, which promotes host adaptation to steep environmental gradients. CONCLUSIONS The deep-sea hydrothermal systems hold untapped viral diversity with novelty. They may affect both vent prokaryotic and eukaryotic communities and modulate host metabolism related to vent adaptability. More explorations are needed to depict global vent virus diversity and its roles in this unique ecosystem. Video Abstract.
Collapse
Affiliation(s)
- Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xiaofeng Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Claire Geslin
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280, Plouzané, France
- Sino-French Laboratory of Deep-Sea Microbiology (MICROBSEA-LIA), Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Sino-French Laboratory of Deep-Sea Microbiology (MICROBSEA-LIA), Plouzané, France.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
13
|
Liao M, Xie Y, Shi M, Cui J. Over two decades of research on the marine RNA virosphere. IMETA 2022; 1:e59. [PMID: 38867898 PMCID: PMC10989941 DOI: 10.1002/imt2.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
RNA viruses (realm: Riboviria), including RNA phages and eukaryote-infecting RNA viruses, are essential components of marine ecosystems. A large number of marine RNA viruses have been discovered in the last two decades because of the rapid development of next-generation sequencing (NGS) technology. Indeed, the combination of NGS and state-of-the-art meta-omics methods (viromics, the study of all viruses in a specific environment) has led to a fundamental understanding of the taxonomy and genetic diversity of RNA viruses in the sea, suggesting the complex ecological roles played by RNA viruses in this complex ecosystem. Furthermore, comparisons of viromes in the context of highly variable marine niches reveal the biogeographic patterns and ecological impact of marine RNA viruses, whose role in global ecology is becoming increasingly clearer. In this review, we summarize the characteristics of the global marine RNA virosphere and outline the taxonomic hierarchy of RNA viruses with a specific focus on their ancient evolutionary history. We also review the development of methodology and the major progress resulting from its applications in RNA viromics. The aim of this review is not only to provide an in-depth understanding of multifaceted aspects of marine RNA viruses, but to offer future perspectives on developing a better methodology for discovery, and exploring the evolutionary origin and major ecological significance of marine RNA virosphere.
Collapse
Affiliation(s)
- Meng‐en Liao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yunyi Xie
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mang Shi
- School of MedicineSun Yat‐sen UniversityShenzhen Campus of Sun Yat‐sen UniversityShenzhenChina
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega‐ScienceChinese Academy of SciencesShanghaiChina
- Laboatory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| |
Collapse
|
14
|
Zhang Y, Huang N, Jing H. Biogeography and Population Divergence of Microeukaryotes Associated with Fluids and Chimneys in the Hydrothermal Vents of the Southwest Indian Ocean. Microbiol Spectr 2022; 10:e0263221. [PMID: 36121256 PMCID: PMC9603758 DOI: 10.1128/spectrum.02632-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Deep-sea hydrothermal vents have been proposed as oases for microbes, but microeukaryotes as key components of the microbial loop have not been well studied. Based on high-throughput sequencing and network analysis of the 18S rRNA gene, distinct biogeographical distribution patterns and impacting factors were revealed from samples in the three hydrothermal fields of the southwest Indian Ocean, where higher gene abundance of microeukaryotes appeared in chimneys. The microeukaryotes in the fluids might be explained by hydrogeochemical heterogeneity, especially that of the nitrate and silicate concentrations, while the microeukaryotes in the chimneys coated with either Fe oxides or Fe-Si oxyhydroxides might be explained by potentially different associated prokaryotic groups. Population divergence of microeukaryotes, especially clades of parasitic Syndiniales, was observed among different hydrothermal fluids and chimneys and deserves further exploration to gain a deeper understanding of the trophic relationships and potential ecological function of microeukaryotes in the deep-sea extreme ecosystems, especially in the complex deep-sea chemoautotrophic habitats. IMPORTANCE Deep-sea hydrothermal vents have been proposed as oases for microbes, but microeukaryotes as key components of the microbial loop have not been well studied. Based on high-throughput sequencing and network analysis of the 18S rRNA gene, population divergence of microeukaryotes, especially clades of parasitic Syndiniales, was observed among different hydrothermal fields. This might be attributed to the hydrogeochemical heterogeneity of fluids and to the potentially different associated prokaryotic groups in chimneys.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ning Huang
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
15
|
Chen X, Tang K, Zhang M, Liu S, Chen M, Zhan P, Fan W, Chen CTA, Zhang Y. Genome-centric insight into metabolically active microbial population in shallow-sea hydrothermal vents. MICROBIOME 2022; 10:170. [PMID: 36242065 PMCID: PMC9563475 DOI: 10.1186/s40168-022-01351-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Geothermal systems have contributed greatly to both our understanding of the functions of extreme life and the evolutionary history of life itself. Shallow-sea hydrothermal systems are ecological intermediates of deep-sea systems and terrestrial springs, harboring unique and complexed ecosystems, which are well-lit and present physicochemical gradients. The microbial communities of deep-sea and terrestrial geothermal systems have been well-studied at the population genome level, yet little is known about the communities inhabiting the shallow-sea hydrothermal systems and how they compare to those inhabiting other geothermal systems. RESULTS Here, we used genome-resolved metagenomic and metaproteomic approaches to probe into the genetic potential and protein expression of microorganisms from the shallow-sea vent fluids off Kueishantao Island. The families Nautiliaceae and Campylobacteraceae within the Epsilonbacteraeota and the Thiomicrospiraceae within the Gammaproteobacteria were prevalent in vent fluids over a 3-year sampling period. We successfully reconstructed the in situ metabolic modules of the predominant populations within the Epsilonbacteraeota and Gammaproteobacteria by mapping the metaproteomic data back to metagenome-assembled genomes. Those active bacteria could use the reductive tricarboxylic acid cycle or Calvin-Benson-Bassham cycle for autotrophic carbon fixation, with the ability to use reduced sulfur species, hydrogen or formate as electron donors, and oxygen as a terminal electron acceptor via cytochrome bd oxidase or cytochrome bb3 oxidase. Comparative metagenomic and genomic analyses revealed dramatic differences between submarine and terrestrial geothermal systems, including microbial functional potentials for carbon fixation and energy conversion. Furthermore, shallow-sea hydrothermal systems shared many of the major microbial genera that were first isolated from deep-sea and terrestrial geothermal systems, while deep-sea and terrestrial geothermal systems shared few genera. CONCLUSIONS The metabolic machinery of the active populations within Epsilonbacteraeota and Gammaproteobacteria at shallow-sea vents can mirror those living at deep-sea vents. With respect to specific taxa and metabolic potentials, the microbial realm in the shallow-sea hydrothermal system presented ecological linkage to both deep-sea and terrestrial geothermal systems. Video Abstract.
Collapse
Affiliation(s)
- Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China.
| | - Mu Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Shujing Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Mingming Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Peiwen Zhan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Wei Fan
- Ocean College, Zhejiang University, Zhoushan, China
| | - Chen-Tung Arthur Chen
- Institute of Marine Geology and Chemistry, National Sun Yat-Sen University, Taiwan, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Du R, Gao D, Wang Y, Liu L, Cheng J, Liu J, Zhang XH, Yu M. Heterotrophic Sulfur Oxidation of Halomonas titanicae SOB56 and Its Habitat Adaptation to the Hydrothermal Environment. Front Microbiol 2022; 13:888833. [PMID: 35774465 PMCID: PMC9237845 DOI: 10.3389/fmicb.2022.888833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Halomonas bacteria are ubiquitous in global marine environments, however, their sulfur-oxidizing abilities and survival adaptations in hydrothermal environments are not well understood. In this study, we characterized the sulfur oxidation ability and metabolic mechanisms of Halomonas titanicae SOB56, which was isolated from the sediment of the Tangyin hydrothermal field in the Southern Okinawa Trough. Physiological characterizations showed that it is a heterotrophic sulfur-oxidizing bacterium that can oxidize thiosulfate to tetrathionate, with the Na2S2O3 degradation reaching 94.86%. Two potential thiosulfate dehydrogenase-related genes, tsdA and tsdB, were identified as encoding key catalytic enzymes, and their expression levels in strain SOB56 were significantly upregulated. Nine of fifteen examined Halomonas genomes possess TsdA- and TsdB-homologous proteins, whose amino acid sequences have two typical Cys-X2-Cys-His heme-binding regions. Moreover, the thiosulfate oxidation process in H. titanicae SOB56 might be regulated by quorum sensing, and autoinducer-2 synthesis protein LuxS was identified in its genome. Regarding the mechanisms underlying adaptation to hydrothermal environment, strain SOB56 was capable of forming biofilms and producing EPS. In addition, genes related to complete flagellum assembly system, various signal transduction histidine kinases, heavy metal transporters, anaerobic respiration, and variable osmotic stress regulation were also identified. Our results shed light on the potential functions of heterotrophic Halomonas bacteria in hydrothermal sulfur cycle and revealed possible adaptations for living at deep-sea hydrothermal fields by H. titanicae SOB56.
Collapse
Affiliation(s)
- Rui Du
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Di Gao
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yiting Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Lijun Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jingguang Cheng
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Yu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- *Correspondence: Min Yu,
| |
Collapse
|
17
|
Kashyap S, Musa M, Neat KA, Leopo DA, Holden JF. Desulfovulcanus ferrireducens gen. nov., sp. nov., a thermophilic autotrophic iron and sulfate-reducing bacterium from subseafloor basalt that grows on akaganéite and lepidocrocite minerals. Extremophiles 2022; 26:13. [PMID: 35190935 PMCID: PMC8860800 DOI: 10.1007/s00792-022-01263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022]
Abstract
A deep-sea thermophilic bacterium, strain Ax17T, was isolated from 25 °C hydrothermal fluid at Axial Seamount. It was obligately anaerobic and autotrophic, oxidized molecular hydrogen and formate, and reduced synthetic nanophase Fe(III) (oxyhydr)oxide minerals, sulfate, sulfite, thiosulfate, and elemental sulfur for growth. It produced up to 20 mM Fe2+ when grown on ferrihydrite but < 5 mM Fe2+ when grown on akaganéite, lepidocrocite, hematite, and goethite. It was a straight to curved rod that grew at temperatures ranging from 35 to 70 °C (optimum 65 °C) and a minimum doubling time of 7.1 h, in the presence of 1.5-6% NaCl (optimum 3%) and pH 5-9 (optimum 8.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was 90-92% identical to other genera of the family Desulfonauticaceae in the phylum Pseudomonadota. The genome of Ax17T was sequenced, which yielded 2,585,834 bp and contained 2407 protein-coding sequences. Based on overall genome relatedness index analyses and its unique phenotypic characteristics, strain Ax17T is suggested to represent a novel genus and species, for which the name Desulfovulcanus ferrireducens is proposed. The type strain is Ax17T (= DSM 111878T = ATCC TSD-233T).
Collapse
Affiliation(s)
- Srishti Kashyap
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA
- Department of Geological Sciences, University of Colorado, Boulder, CO, 80309, USA
| | - Masroque Musa
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA
| | - Kaylee A Neat
- Department of Astronomy, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Deborah A Leopo
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA.
| |
Collapse
|
18
|
Hoffert M, Anderson RE, Reveillaud J, Murphy LG, Stepanauskas R, Huber JA. Genomic Variation Influences Methanothermococcus Fitness in Marine Hydrothermal Systems. Front Microbiol 2021; 12:714920. [PMID: 34489903 PMCID: PMC8417812 DOI: 10.3389/fmicb.2021.714920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Hydrogenotrophic methanogens are ubiquitous chemoautotrophic archaea inhabiting globally distributed deep-sea hydrothermal vent ecosystems and associated subseafloor niches within the rocky subseafloor, yet little is known about how they adapt and diversify in these habitats. To determine genomic variation and selection pressure within methanogenic populations at vents, we examined five Methanothermococcus single cell amplified genomes (SAGs) in conjunction with 15 metagenomes and 10 metatranscriptomes from venting fluids at two geochemically distinct hydrothermal vent fields on the Mid-Cayman Rise in the Caribbean Sea. We observed that some Methanothermococcus lineages and their transcripts were more abundant than others in individual vent sites, indicating differential fitness among lineages. The relative abundances of lineages represented by SAGs in each of the samples matched phylogenetic relationships based on single-copy universal genes, and genes related to nitrogen fixation and the CRISPR/Cas immune system were among those differentiating the clades. Lineages possessing these genes were less abundant than those missing that genomic region. Overall, patterns in nucleotide variation indicated that the population dynamics of Methanothermococcus were not governed by clonal expansions or selective sweeps, at least in the habitats and sampling times included in this study. Together, our results show that although specific lineages of Methanothermococcus co-exist in these habitats, some outcompete others, and possession of accessory metabolic functions does not necessarily provide a fitness advantage in these habitats in all conditions. This work highlights the power of combining single-cell, metagenomic, and metatranscriptomic datasets to determine how evolution shapes microbial abundance and diversity in hydrothermal vent ecosystems.
Collapse
Affiliation(s)
- Michael Hoffert
- Biology Department, Carleton College, Northfield, MN, United States.,Finch Therapeutics Group, Somerville, MA, United States
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, MN, United States
| | - Julie Reveillaud
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Développement, Montpellier, France
| | | | | | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
19
|
Complete genome sequence of Crassaminicella sp. 143-21,isolated from a deep-sea hydrothermal vent. Mar Genomics 2021; 62:100899. [DOI: 10.1016/j.margen.2021.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022]
|
20
|
Xue CX, Lin H, Zhu XY, Liu J, Zhang Y, Rowley G, Todd JD, Li M, Zhang XH. DiTing: A Pipeline to Infer and Compare Biogeochemical Pathways From Metagenomic and Metatranscriptomic Data. Front Microbiol 2021; 12:698286. [PMID: 34408730 PMCID: PMC8367434 DOI: 10.3389/fmicb.2021.698286] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metagenomics and metatranscriptomics are powerful methods to uncover key micro-organisms and processes driving biogeochemical cycling in natural ecosystems. Databases dedicated to depicting biogeochemical pathways (for example, metabolism of dimethylsulfoniopropionate (DMSP), which is an abundant organosulfur compound) from metagenomic/metatranscriptomic data are rarely seen. Additionally, a recognized normalization model to estimate the relative abundance and environmental importance of pathways from metagenomic and metatranscriptomic data has not been organized to date. These limitations impact the ability to accurately relate key microbial-driven biogeochemical processes to differences in environmental conditions. Thus, an easy-to-use, specialized tool that infers and visually compares the potential for biogeochemical processes, including DMSP cycling, is urgently required. To solve these issues, we developed DiTing, a tool wrapper to infer and compare biogeochemical pathways among a set of given metagenomic or metatranscriptomic reads in one step, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and a manually created DMSP cycling gene database. Accurate and specific formulae for over 100 pathways were developed to calculate their relative abundance. Output reports detail the relative abundance of biogeochemical pathways in both text and graphical format. DiTing was applied to simulated metagenomic data and resulted in consistent genetic features of simulated benchmark genomic data. Subsequently, when applied to natural metagenomic and metatranscriptomic data from hydrothermal vents and the Tara Ocean project, the functional profiles predicted by DiTing were correlated with environmental condition changes. DiTing can now be confidently applied to wider metagenomic and metatranscriptomic datasets, and it is available at https://github.com/xuechunxu/DiTing.
Collapse
Affiliation(s)
- Chun-Xu Xue
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heyu Lin
- School of Earth Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Xiao-Yu Zhu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
21
|
Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. Proc Natl Acad Sci U S A 2021; 118:2102674118. [PMID: 34266956 DOI: 10.1073/pnas.2102674118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator-prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling.
Collapse
|
22
|
Bacterial community structure and functional profiling of high Arctic fjord sediments. World J Microbiol Biotechnol 2021; 37:133. [PMID: 34255189 DOI: 10.1007/s11274-021-03098-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Kongsfjorden, an Arctic fjord is significantly affected by the glacier melt and Atlantification, both the processes driven by accelerated warming in the Arctic. This has lead to changes in primary production, carbon pool and microbial communities, especially that in the sediment. In this study, we have examined the bacterial community structure of surface (0-2 cm) and subsurface (3-9 cm) sediments of Kongsfjorden using the high throughput sequencing analysis. Results revealed that bacterial community structure of Kongsfjorden sediments were dominated by phylum Proteobacteria followed by Bacteroidetes and Epsilonbacteraeota. While α- and γ-Proteobacterial class were dominant in surface sediments; δ-Proteobacteria were found to be predominant in subsurface sediments. The bacterial community structure in the surface and subsurface sediments showed significant variations (p ≤ 0.05). Total organic carbon could be one of the major parameters controlling the bacterial diversity in the surface and subsurface sediments. Functional prediction analysis indicated that the bacterial community could be involved in the degradation of complex organic compounds such as glycans, glycosaminoglycans, polycyclic aromatic hydrocarbons and also in the biosynthesis of secondary metabolites.
Collapse
|
23
|
Abstract
In the ocean, viruses impact microbial mortality, regulate biogeochemical cycling, and alter the metabolic potential of microbial lineages. At deep-sea hydrothermal vents, abundant viruses infect a wide range of hosts among the archaea and bacteria that inhabit these dynamic habitats. However, little is known about viral diversity, host range, and biogeography across different vent ecosystems, which has important implications for how viruses manipulate microbial function and evolution. Here, we examined viral diversity, viral and host distribution, and virus-host interactions in microbial metagenomes generated from venting fluids from several vent sites within three different geochemically and geographically distinct hydrothermal systems: Piccard and Von Damm vent fields at the Mid-Cayman Rise in the Caribbean Sea, and at several vent sites within Axial Seamount in the Pacific Ocean. Analysis of viral sequences and clustered regularly interspaced short palindromic repeat (CRISPR) spacers revealed highly diverse viral assemblages and evidence of active infection. Network analysis revealed that viral host range was relatively narrow, with very few viruses infecting multiple microbial lineages. Viruses were largely endemic to individual vent sites, indicating restricted dispersal, and in some cases, viral assemblages persisted over time. Thus, we show that hydrothermal vent fluids are home to novel, diverse viral assemblages that are highly localized to specific regions and taxa. IMPORTANCE Viruses play important roles in manipulating microbial communities and their evolution in the ocean, yet not much is known about viruses in deep-sea hydrothermal vents. However, viral ecology and evolution are of particular interest in hydrothermal vent habitats because of their unique nature: previous studies have indicated that most viruses in hydrothermal vents are temperate rather than lytic, and it has been established that rates of horizontal gene transfer (HGT) are particularly high among thermophilic vent microbes, and viruses are common vectors for HGT. If viruses have broad host range or are widespread across vent sites, they have increased potential to act as gene-sharing "highways" between vent sites. By examining viral diversity, distribution, and infection networks across disparate vent sites, this study provides the opportunity to better characterize and constrain the viral impact on hydrothermal vent microbial communities. We show that viruses in hydrothermal vents are diverse and apparently active, but most have restricted host range and are not widely distributed among vent sites. Thus, the impacts of viral infection are likely to be highly localized and constrained to specific taxa in these habitats.
Collapse
|
24
|
Murphy CL, Biggerstaff J, Eichhorn A, Ewing E, Shahan R, Soriano D, Stewart S, VanMol K, Walker R, Walters P, Elshahed MS, Youssef NH. Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the phylum. Environ Microbiol 2021; 23:4326-4343. [PMID: 34056821 DOI: 10.1111/1462-2920.15614] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/01/2022]
Abstract
We report on the genomic characterization of three novel classes in the phylum Desulfobacterota. One class (proposed name Candidatus 'Anaeroferrophillalia') was characterized by heterotrophic growth capacity, either fermentatively or utilizing polysulfide, tetrathionate or thiosulfate as electron acceptors. In the absence of organic carbon sources, autotrophic growth via the Wood-Ljungdahl (WL) pathway and using hydrogen or Fe(II) as an electron donor is also inferred for members of the 'Anaeroferrophillalia'. The second class (proposed name Candidatus 'Anaeropigmentia') was characterized by its capacity for growth at low oxygen concentration, and the capacity to synthesize the methyl/alkyl carrier CoM, an ability that is prevalent in the archaeal but rare in the bacterial domain. Pigmentation is inferred from the capacity for carotenoid (lycopene) production. The third class (proposed name Candidatus 'Zymogenia') was characterized by fermentative heterotrophic growth capacity, broad substrate range and the adaptation of some of its members to hypersaline habitats. Analysis of the distribution pattern of all three classes showed their occurrence as rare community members in multiple habitats, with preferences for anaerobic terrestrial, freshwater and marine environments over oxygenated (e.g. pelagic ocean and agricultural land) settings. Special preference for some members of the class Candidatus 'Zymogenia' for hypersaline environments such as hypersaline microbial mats and lagoons was observed.
Collapse
Affiliation(s)
- Chelsea L Murphy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - James Biggerstaff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Alexis Eichhorn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Essences Ewing
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Ryan Shahan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Diana Soriano
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Sydney Stewart
- Department of Animal Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kaitlynn VanMol
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Ross Walker
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Payton Walters
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
25
|
Seafloor Incubation Experiment with Deep-Sea Hydrothermal Vent Fluid Reveals Effect of Pressure and Lag Time on Autotrophic Microbial Communities. Appl Environ Microbiol 2021; 87:AEM.00078-21. [PMID: 33608294 PMCID: PMC8091007 DOI: 10.1128/aem.00078-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Diverse microbial communities drive biogeochemical cycles in Earth’s ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. Depressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed a remotely operated vehicle (ROV)-powered incubator instrument to carry out and compare results from in situ and shipboard RNA stable isotope probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labeled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes, suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations, suggesting that depressurization induced thermal stress in the metabolically active microbes in these incubations. Together, the results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under nearly native conditions in the ocean. IMPORTANCE Diverse microbial communities drive biogeochemical cycles in Earth’s ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. We carried out identical stable isotope probing experiments coupled to RNA sequencing both on the seafloor and on the ship to examine thermophilic, microbial autotrophs in venting fluids from an active submarine volcano. Our results indicate that microbial communities were significantly impacted by the effects of depressurization and sample processing delays, with shipboard microbial communities being more stressed than seafloor incubations. Differences in metabolism were also apparent and are likely linked to the chemistry of the fluid at the beginning of the experiment. Microbial experimentation in the natural habitat provides new insights into understanding microbial activities in the ocean.
Collapse
|
26
|
Aerobic and anaerobic iron oxidizers together drive denitrification and carbon cycling at marine iron-rich hydrothermal vents. ISME JOURNAL 2020; 15:1271-1286. [PMID: 33328652 PMCID: PMC8114936 DOI: 10.1038/s41396-020-00849-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022]
Abstract
In principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.
Collapse
|
27
|
Wang CH, Gulmann LK, Zhang T, Farfan GA, Hansel CM, Sievert SM. Microbial colonization of metal sulfide minerals at a diffuse-flow deep-sea hydrothermal vent at 9°50'N on the East Pacific Rise. GEOBIOLOGY 2020; 18:594-605. [PMID: 32336020 DOI: 10.1111/gbi.12396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Metal sulfide minerals, including mercury sulfides (HgS), are widespread in hydrothermal vent systems where sulfur-oxidizing microbes are prevalent. Questions remain as to the impact of mineral composition and structure on sulfur-oxidizing microbial populations at deep-sea hydrothermal vents, including the possible role of microbial activity in remobilizing elemental Hg from HgS. In the present study, metal sulfides varying in metal composition, structure, and surface area were incubated for 13 days on and near a diffuse-flow hydrothermal vent at 9°50'N on the East Pacific Rise. Upon retrieval, incubated minerals were examined by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and epifluorescence microscopy (EFM). DNA was extracted from mineral samples, and the 16S ribosomal RNA gene sequenced to characterize colonizing microbes. Sulfur-oxidizing genera common to newly exposed surfaces (Sulfurimonas, Sulfurovum, and Arcobacter) were present on all samples. Differences in their relative abundance between and within incubation sites point to constraining effects of the immediate environment and the minerals themselves. Greater variability in colonizing community composition on off-vent samples suggests that the bioavailability of mineral-derived sulfide (as influenced by surface area, crystal structure, and reactivity) exerted greater control on microbial colonization in the ambient environment than in the vent environment, where dissolved sulfide is more abundant. The availability of mineral-derived sulfide as an electron donor may thus be a key control on the activity and proliferation of deep-sea chemosynthetic communities, and this interpretation supports the potential for microbial dissolution of HgS at hydrothermal vents.
Collapse
Affiliation(s)
- Chloe H Wang
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Chemistry, Haverford College, Haverford, PA, USA
| | - Lara K Gulmann
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Tong Zhang
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| | - Gabriela A Farfan
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Mineral Sciences, Smithsonian Institution, Washington, DC, USA
| | - Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Stefan M Sievert
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
28
|
Abiotic redox reactions in hydrothermal mixing zones: Decreased energy availability for the subsurface biosphere. Proc Natl Acad Sci U S A 2020; 117:20453-20461. [PMID: 32817473 PMCID: PMC7456078 DOI: 10.1073/pnas.2003108117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hydrothermal fluid geochemistry exerts a key control on subseafloor microbial community structure and function. However, the effects of microbial metabolic activity, thermal decomposition of biomass, and abiotic reactions on geochemistry remain unconstrained. Depletions in molecular hydrogen and enrichments in methane in submarine hydrothermal mixing zones have been interpreted to reflect the influence of an active subseafloor biosphere. In contrast, our work reveals that these chemical shifts are driven by abiotic and thermogenic processes at temperatures beyond the limit for life. These findings have critical implications for constraining the extent to which global geochemical cycles can sustain a deep biosphere, and for the global molecular hydrogen budget. Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42−) reduction produces large depletions in H2. The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42− reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.
Collapse
|
29
|
Uritskiy G, Tisza MJ, Gelsinger DR, Munn A, Taylor J, DiRuggiero J. Cellular life from the three domains and viruses are transcriptionally active in a hypersaline desert community. Environ Microbiol 2020; 23:3401-3417. [DOI: 10.1111/1462-2920.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/12/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Gherman Uritskiy
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
| | - Michael J. Tisza
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
- Laboratory of Cellular Oncology NCI, NIH Bethesda MD 20892‐4263 USA
| | | | - Adam Munn
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
| | - James Taylor
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
- Department of Computer Science Johns Hopkins University Baltimore MD 21218 USA
| | - Jocelyne DiRuggiero
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
- Department of Earth and Planetary Sciences Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
30
|
Moulana A, Anderson RE, Fortunato CS, Huber JA. Selection Is a Significant Driver of Gene Gain and Loss in the Pangenome of the Bacterial Genus Sulfurovum in Geographically Distinct Deep-Sea Hydrothermal Vents. mSystems 2020; 5:e00673-19. [PMID: 32291353 PMCID: PMC7159903 DOI: 10.1128/msystems.00673-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Microbial genomes have highly variable gene content, and the evolutionary history of microbial populations is shaped by gene gain and loss mediated by horizontal gene transfer and selection. To evaluate the influence of selection on gene content variation in hydrothermal vent microbial populations, we examined 22 metagenome-assembled genomes (MAGs) (70 to 97% complete) from the ubiquitous vent Epsilonbacteraeota genus Sulfurovum that were recovered from two deep-sea hydrothermal vent regions, Axial Seamount in the northeastern Pacific Ocean (13 MAGs) and the Mid-Cayman Rise in the Caribbean Sea (9 MAGs). Genes involved in housekeeping functions were highly conserved across Sulfurovum lineages. However, genes involved in environment-specific functions, and in particular phosphate regulation, were found mostly in Sulfurovum genomes from the Mid-Cayman Rise in the low-phosphate Atlantic Ocean environment, suggesting that nutrient limitation is an important selective pressure for these bacteria. Furthermore, genes that were rare within the pangenome were more likely to undergo positive selection than genes that were highly conserved in the pangenome, and they also appeared to have experienced gene-specific sweeps. Our results suggest that selection is a significant driver of gene gain and loss for dominant microbial lineages in hydrothermal vents and highlight the importance of factors like nutrient limitation in driving microbial adaptation and evolution.IMPORTANCE Microbes can alter their gene content through the gain and loss of genes. However, there is some debate as to whether natural selection or neutral processes play a stronger role in molding the gene content of microbial genomes. In this study, we examined variation in gene content for the Epsilonbacteraeota genus Sulfurovum from deep-sea hydrothermal vents, which are dynamic habitats known for extensive horizontal gene transfer within microbial populations. Our results show that natural selection is a strong driver of Sulfurovum gene content and that nutrient limitation in particular has shaped the Sulfurovum genome, leading to differences in gene content between ocean basins. Our results also suggest that recently acquired genes undergo stronger selection than genes that were acquired in the more distant past. Overall, our results highlight the importance of natural selection in driving the evolution of microbial populations in these dynamic habitats.
Collapse
Affiliation(s)
- Alief Moulana
- Biology Department, Carleton College, Northfield, Minnesota, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | | | - Julie A Huber
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
31
|
Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 2020; 17:271-283. [PMID: 30867583 DOI: 10.1038/s41579-019-0160-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents in 1977 changed our view of biology. Chemosynthetic bacteria and archaea form the foundation of vent ecosystems by exploiting the chemical disequilibrium between reducing hydrothermal fluids and oxidizing seawater, harnessing this energy to fix inorganic carbon into biomass. Recent research has uncovered fundamental aspects of these microbial communities, including their relationships with underlying geology and hydrothermal geochemistry, interactions with animals via symbiosis and distribution both locally in various habitats within vent fields and globally across hydrothermal systems in diverse settings. Although 'black smokers' and symbioses between microorganisms and macrofauna attract much attention owing to their novelty and the insights they provide into life under extreme conditions, habitats such as regions of diffuse flow, subseafloor aquifers and hydrothermal plumes have important roles in the global cycling of elements through hydrothermal systems. Owing to sharp contrasts in physical and chemical conditions between these various habitats and their dynamic, extreme and geographically isolated nature, hydrothermal vents provide a valuable window into the environmental and ecological forces that shape microbial communities and insights into the limits, origins and evolution of microbial life.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Genome- and Community-Level Interaction Insights into Carbon Utilization and Element Cycling Functions of Hydrothermarchaeota in Hydrothermal Sediment. mSystems 2020; 5:5/1/e00795-19. [PMID: 31911466 PMCID: PMC6946796 DOI: 10.1128/msystems.00795-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hydrothermal vents release reduced compounds and small organic carbon compounds into the surrounding seawater, providing essential substrates for microbial growth and bioenergy transformations. Despite the wide distribution of the marine benthic group E archaea (referred to as Hydrothermarchaeota) in the hydrothermal environment, little is known about their genomic repertoires and biogeochemical significance. Here, we studied four highly complete (>80%) metagenome-assembled genomes (MAGs) from a black smoker chimney and the surrounding sulfur-rich sediments on the South Atlantic Mid-Ocean Ridge and publicly available data sets (the Integrated Microbial Genomes system of the U.S. Department of Energy-Joint Genome Institute and NCBI SRA data sets). Genomic analysis suggested a wide carbon metabolic diversity of Hydrothermarchaeota members, including the utilization of proteins, lactate, and acetate; the anaerobic degradation of aromatics; the oxidation of C1 compounds (CO, formate, and formaldehyde); the utilization of methyl compounds; CO2 incorporation by the tetrahydromethanopterin-based Wood-Ljungdahl pathway; and participation in the type III ribulose-1,5-bisphosphate carboxylase/oxygenase-based Calvin-Benson-Bassham cycle. These microbes also potentially oxidize sulfur, arsenic, and hydrogen and engage in anaerobic respiration based on sulfate reduction and denitrification. Among the 140 MAGs reconstructed from the black smoker chimney microbial community (including Hydrothermarchaeota MAGs), community-level metabolic predictions suggested a redundancy of carbon utilization and element cycling functions and interactive syntrophic and sequential utilization of substrates. These processes might make various carbon and energy sources widely accessible to the microorganisms. Further, the analysis suggested that Hydrothermarchaeota members contained important functional components obtained from the community via lateral gene transfer, becoming a distinctive clade. This might serve as a niche-adaptive strategy for metabolizing heavy metals, C1 compounds, and reduced sulfur compounds. Collectively, the analysis provides comprehensive metabolic insights into the Hydrothermarchaeota IMPORTANCE This study provides comprehensive metabolic insights into the Hydrothermarchaeota from comparative genomics, evolution, and community-level perspectives. Members of the Hydrothermarchaeota synergistically participate in a wide range of carbon-utilizing and element cycling processes with other microorganisms in the community. We expand the current understanding of community interactions within the hydrothermal sediment and chimney, suggesting that microbial interactions based on sequential substrate metabolism are essential to nutrient and element cycling.
Collapse
|
33
|
Galambos D, Anderson RE, Reveillaud J, Huber JA. Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Environ Microbiol 2019; 21:4395-4410. [PMID: 31573126 PMCID: PMC6899741 DOI: 10.1111/1462-2920.14806] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The structure and function of microbial communities inhabiting the subseafloor near hydrothermal systems are influenced by fluid geochemistry, geologic setting and fluid flux between vent sites, as well as biological interactions. Here, we used genome-resolved metagenomics and metatranscriptomics to examine patterns of gene abundance and expression and assess potential niche differentiation in microbial communities in venting fluids from hydrothermal vent sites at the Mid-Cayman Rise. We observed similar patterns in gene and transcript abundance between two geochemically distinct vent fields at the community level but found that each vent site harbours a distinct microbial community with differing transcript abundances for individual microbial populations. Through an analysis of metabolic pathways in 64 metagenome-assembled genomes (MAGs), we show that MAG transcript abundance can be tied to differences in metabolic pathways and to potential metabolic interactions between microbial populations, allowing for niche-partitioning and divergence in both population distribution and activity. Our results illustrate that most microbial populations have a restricted distribution within the seafloor, and that the activity of those microbial populations is tied to both genome content and abiotic factors.
Collapse
Affiliation(s)
- David Galambos
- Biology DepartmentCarleton CollegeNorthfieldMinnesotaUSA
| | | | | | - Julie A. Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| |
Collapse
|
34
|
Zhao Y, Chen C, Gu HJ, Zhang J, Sun L. Characterization of the Genome Feature and Toxic Capacity of a Bacillus wiedmannii Isolate From the Hydrothermal Field in Okinawa Trough. Front Cell Infect Microbiol 2019; 9:370. [PMID: 31750261 PMCID: PMC6842932 DOI: 10.3389/fcimb.2019.00370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The Bacillus cereus group is frequently isolated from soil, plants, food, and other environments. In this study, we report the first isolation and characterization of a B. cereus group member, Bacillus wiedmannii SR52, from the hydrothermal field in the Iheya Ridge of Okinawa Trough. SR52 was isolated from the gills of shrimp Alvinocaris longirostris, an invertebrate species found abundantly in the ecosystems of the hydrothermal vents, and is most closely related to B. wiedmannii FSL W8-0169. SR52 is aerobic, motile, and able to form endospores. SR52 can grow in NaCl concentrations up to 9%. SR52 has a circular chromosome of 5,448,361 bp and a plasmid of 137,592 bp, encoding 5,709 and 189 genes, respectively. The chromosome contains 297 putative virulence genes, including those encoding enterotoxins and hemolysins. Fourteen rRNA operons, 107 tRNAs, and 5 sRNAs are present in the chromosome, and 7 tRNAs are present in the plasmid. SR52 possesses 13 genomic islands (GIs), all on the chromosome. Comparing to FSL W8-0169, SR52 exhibits several streaking features in its genome, notably an exceedingly large number of non-coding RNAs and GIs. In vivo studies showed that following intramuscular injection into fish, SR52 was able to disseminate in tissues and cause mortality; when inoculated into mice, SR52 induced acute mortality and disseminated transiently in tissues. In vitro studies showed that SR52 possessed hemolytic activity, and the extracellular product of SR52 exhibited a strong cytotoxic effect. These results provided the first insight into the cytotoxicity and genomic feature of B. wiedmannii from the deep-sea hydrothermal environment.
Collapse
Affiliation(s)
- Yan Zhao
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Chen
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Jie Gu
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
35
|
Stewart LC, Algar CK, Fortunato CS, Larson BI, Vallino JJ, Huber JA, Butterfield DA, Holden JF. Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents. THE ISME JOURNAL 2019; 13:1711-1721. [PMID: 30842565 PMCID: PMC6776001 DOI: 10.1038/s41396-019-0382-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/03/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
Abstract
The size and biogeochemical impact of the subseafloor biosphere in oceanic crust remain largely unknown due to sampling limitations. We used reactive transport modeling to estimate the size of the subseafloor methanogen population, volume of crust occupied, fluid residence time, and nature of the subsurface mixing zone for two low-temperature hydrothermal vents at Axial Seamount. Monod CH4 production kinetics based on chemostat H2 availability and batch-culture Arrhenius growth kinetics for the hyperthermophile Methanocaldococcus jannaschii and thermophile Methanothermococcus thermolithotrophicus were used to develop and parameterize a reactive transport model, which was constrained by field measurements of H2, CH4, and metagenome methanogen concentration estimates in 20-40 °C hydrothermal fluids. Model results showed that hyperthermophilic methanogens dominate in systems where a narrow flow path geometry is maintained, while thermophilic methanogens dominate in systems where the flow geometry expands. At Axial Seamount, the residence time of fluid below the surface was 29-33 h. Only 1011 methanogenic cells occupying 1.8-18 m3 of ocean crust per m2 of vent seafloor area were needed to produce the observed CH4 anomalies. We show that variations in local geology at diffuse vents can create fluid flow paths that are stable over space and time, harboring persistent and distinct microbial communities.
Collapse
Affiliation(s)
- Lucy C Stewart
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
- GNS Science, Wellington, 5010, New Zealand
| | | | | | - Benjamin I Larson
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA, 98195, USA
| | - Joseph J Vallino
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - David A Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA, 98195, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
36
|
Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa. ISME JOURNAL 2019; 13:2264-2279. [PMID: 31073213 PMCID: PMC6775965 DOI: 10.1038/s41396-019-0431-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
There are many unknowns regarding the distribution, activity, community composition, and metabolic repertoire of microbial communities in the subseafloor of deep-sea hydrothermal vents. Here we provide the first characterization of subseafloor microbial communities from venting fluids along the central Mariana back-arc basin (15.5–18°N), where the slow-spreading rate, depth, and variable geochemistry along the back-arc distinguish it from other spreading centers. Results indicated that diverse Epsilonbacteraeota were abundant across all sites, with a population of high temperature Aquificae restricted to the northern segment. This suggests that differences in subseafloor populations along the back-arc are associated with local geologic setting and resultant geochemistry. Metatranscriptomics coupled to stable isotope probing revealed bacterial carbon fixation linked to hydrogen oxidation, denitrification, and sulfide or thiosulfate oxidation at all sites, regardless of community composition. NanoSIMS (nanoscale secondary ion mass spectrometry) incubations at 80 °C show only a small portion of the microbial community took up bicarbonate, but those autotrophs had the highest overall rates of activity detected across all experiments. By comparison, acetate was more universally utilized to sustain growth, but within a smaller range of activity. Together, results indicate that microbial communities in venting fluids from the Mariana back-arc contain active subseafloor communities reflective of their local conditions with metabolisms commonly shared across geologically disparate spreading centers throughout the ocean.
Collapse
|
37
|
Topçuoğlu BD, Meydan C, Nguyen TB, Lang SQ, Holden JF. Growth Kinetics, Carbon Isotope Fractionation, and Gene Expression in the Hyperthermophile Methanocaldococcus jannaschii during Hydrogen-Limited Growth and Interspecies Hydrogen Transfer. Appl Environ Microbiol 2019; 85:e00180-19. [PMID: 30824444 PMCID: PMC6495749 DOI: 10.1128/aem.00180-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 11/20/2022] Open
Abstract
Hyperthermophilic methanogens are often H2 limited in hot subseafloor environments, and their survival may be due in part to physiological adaptations to low H2 conditions and interspecies H2 transfer. The hyperthermophilic methanogen Methanocaldococcus jannaschii was grown in monoculture at high (80 to 83 μM) and low (15 to 27 μM) aqueous H2 concentrations and in coculture with the hyperthermophilic H2 producer Thermococcus paralvinellae The purpose was to measure changes in growth and CH4 production kinetics, CH4 fractionation, and gene expression in M. jannaschii with changes in H2 flux. Growth and cell-specific CH4 production rates of M. jannaschii decreased with decreasing H2 availability and decreased further in coculture. However, cell yield (cells produced per mole of CH4 produced) increased 6-fold when M. jannaschii was grown in coculture rather than monoculture. Relative to high H2 concentrations, isotopic fractionation of CO2 to CH4 (εCO2-CH4) was 16‰ larger for cultures grown at low H2 concentrations and 45‰ and 56‰ larger for M. jannaschii growth in coculture on maltose and formate, respectively. Gene expression analyses showed H2-dependent methylene-tetrahydromethanopterin (H4MPT) dehydrogenase expression decreased and coenzyme F420-dependent methylene-H4MPT dehydrogenase expression increased with decreasing H2 availability and in coculture growth. In coculture, gene expression decreased for membrane-bound ATP synthase and hydrogenase. The results suggest that H2 availability significantly affects the CH4 and biomass production and CH4 fractionation by hyperthermophilic methanogens in their native habitats.IMPORTANCE Hyperthermophilic methanogens and H2-producing heterotrophs are collocated in high-temperature subseafloor environments, such as petroleum reservoirs, mid-ocean ridge flanks, and hydrothermal vents. Abiotic flux of H2 can be very low in these environments, and there is a gap in our knowledge about the origin of CH4 in these habitats. In the hyperthermophile Methanocaldococcus jannaschii, growth yields increased as H2 flux, growth rates, and CH4 production rates decreased. The same trend was observed increasingly with interspecies H2 transfer between M. jannaschii and the hyperthermophilic H2 producer Thermococcus paralvinellae With decreasing H2 availability, isotopic fractionation of carbon during methanogenesis increased, resulting in isotopically more negative CH4 with a concomitant decrease in H2-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression and increase in F420-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression. The significance of our research is in understanding the nature of hyperthermophilic interspecies H2 transfer and identifying biogeochemical and molecular markers for assessing the physiological state of methanogens and possible source of CH4 in natural environments.
Collapse
Affiliation(s)
- Begüm D Topçuoğlu
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Cem Meydan
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Tran B Nguyen
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - Susan Q Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
38
|
Tremblay J, Fortin N, Elias M, Wasserscheid J, King TL, Lee K, Greer CW. Metagenomic and metatranscriptomic responses of natural oil degrading bacteria in the presence of dispersants. Environ Microbiol 2019; 21:2307-2319. [PMID: 30927379 DOI: 10.1111/1462-2920.14609] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 01/02/2023]
Abstract
Oil biodegradation has been extensively studied in the wake of the deepwater horizon spill, but the application of dispersant to oil spills in marine environments remains controversial. Here, we report metagenomic (MG) and metatranscriptomic (MT) data mining from microcosm experiments investigating the oil degrading potential of Canadian west and east coasts to estimate the gene abundance and activity of oil degrading bacteria in the presence of dispersant. We found that the addition of dispersant to crude oil mainly favours the abundance of Thalassolituus in the summer and Oleispira in the winter, two key natural oil degrading bacteria. We found a high abundance of genes related not only to n-alkane and aromatics degradation but also associated with transporters, two-component systems, bacterial motility, secretion systems and bacterial chemotaxis.
Collapse
Affiliation(s)
- Julien Tremblay
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| | - Nathalie Fortin
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| | - Miria Elias
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| | - Jessica Wasserscheid
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| | - Thomas L King
- Centre for Offshore Oil, Gas and Energy Research (COOGER), Fisheries and Oceans Canada, Dartmouth, Nova Scotia, B2Y4A2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, PO Box 1006, Dartmouth, Nova Scotia, B2Y4A2, Canada
| | - Charles W Greer
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P2R2, Canada
| |
Collapse
|
39
|
Castelán-Sánchez HG, Lopéz-Rosas I, García-Suastegui WA, Peralta R, Dobson ADW, Batista-García RA, Dávila-Ramos S. Extremophile deep-sea viral communities from hydrothermal vents: Structural and functional analysis. Mar Genomics 2019; 46:16-28. [PMID: 30857856 DOI: 10.1016/j.margen.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
Ten publicly available metagenomic data sets from hydrothermal vents were analyzed to determine the taxonomic structure of the viral communities present, as well as their potential metabolic functions. The type of natural selection on two auxiliary metabolic genes was also analyzed. The structure of the virome in the hydrothermal vents was quite different in comparison with the viruses present in sediments, with specific populations being present in greater abundance in the plume samples when compared with the sediment samples. ssDNA genomes such as Circoviridae and Microviridae were predominantly present in the sediment samples, with Caudovirales which are dsDNA being present in the vent samples. Genes potentially encoding enzymes that participate in carbon, nitrogen and sulfur metabolic pathways were found in greater abundance, than those involved in the oxygen cycle, in the hydrothermal vents. Functional profiling of the viromes, resulted in the discovery of genes encoding proteins involved in bacteriophage capsids, DNA synthesis, nucleotide synthesis, DNA repair, as well as viral auxiliary metabolic genes such as cytitidyltransferase and ribonucleotide reductase. These auxiliary metabolic genes participate in the synthesis of phospholipids and nucleotides respectively and are likely to contribute to enhancing the fitness of their bacterial hosts within the hydrothermal vent communities. Finally, evolutionary analysis suggested that these auxiliary metabolic genes are highly conserved and evolve under purifying selection, and are thus maintained in their genome.
Collapse
Affiliation(s)
- Hugo G Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico
| | - Itzel Lopéz-Rosas
- CONACyT Research fellow-Colegio de Postgraduados Campus Campeche, Carretera Haltunchén - Edzná Km 17.5. Colonia Sihochac. Champotón, Campeche 24450, Mexico
| | - Wendy A García-Suastegui
- Laboratorio de Toxicología Molecular, Departamento de Biología y Toxicología de la Reproducción, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P., 72570, Mexico
| | - Raúl Peralta
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico
| | - Alan D W Dobson
- School of Microbiology, University College Cork. Cork, Ireland; Environmental Research Institute, University College, Cork, Ireland
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Morelos. Av. Universidad 1001. Col. Chamilpa. Cuernavca, Morelos. C.P, Cuernavaca 62209, Mexico.
| |
Collapse
|
40
|
Dick JM, Yu M, Tan J, Lu A. Changes in Carbon Oxidation State of Metagenomes Along Geochemical Redox Gradients. Front Microbiol 2019; 10:120. [PMID: 30804909 PMCID: PMC6378307 DOI: 10.3389/fmicb.2019.00120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/18/2019] [Indexed: 01/01/2023] Open
Abstract
There is widespread interest in how geochemistry affects the genomic makeup of microbial communities, but the possible impacts of oxidation-reduction (redox) conditions on the chemical composition of biomacromolecules remain largely unexplored. Here we document systematic changes in the carbon oxidation state, a metric derived from the chemical formulas of biomacromolecular sequences, using published metagenomic and metatranscriptomic datasets from 18 studies representing different marine and terrestrial environments. We find that the carbon oxidation states of DNA, as well as proteins inferred from coding sequences, follow geochemical redox gradients associated with mixing and cooling of hot spring fluids in Yellowstone National Park (USA) and submarine hydrothermal fluids. Thermodynamic calculations provide independent predictions for the environmental shaping of the gene and protein composition of microbial communities in these systems. On the other hand, the carbon oxidation state of DNA is negatively correlated with oxygen concentration in marine oxygen minimum zones. In this case, a thermodynamic model is not viable, but the low carbon oxidation state of DNA near the ocean surface reflects a low GC content, which can be attributed to genome reduction in organisms adapted to low-nutrient conditions. We also present evidence for a depth-dependent increase of oxidation state at the species level, which might be associated with alteration of DNA through horizontal gene transfer and/or selective degradation of relatively reduced (AT-rich) extracellular DNA by heterotrophic bacteria. Sediments exhibit even more complex behavior, where carbon oxidation state minimizes near the sulfate-methane transition zone and rises again at depth; markedly higher oxidation states are also associated with older freshwater-dominated sediments in the Baltic Sea that are enriched in iron oxides and have low organic carbon. This geobiochemical study of carbon oxidation state reveals a new aspect of environmental information in metagenomic sequences, and provides a reference frame for future studies that may use ancient DNA sequences as a paleoredox indicator.
Collapse
Affiliation(s)
- Jeffrey M. Dick
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha, China
- School of Geosciences and Info-Physics, Central South University, Changsha, China
| | - Miao Yu
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha, China
- School of Geosciences and Info-Physics, Central South University, Changsha, China
| | - Jingqiang Tan
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha, China
- School of Geosciences and Info-Physics, Central South University, Changsha, China
| | - Anhuai Lu
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha, China
- School of Geosciences and Info-Physics, Central South University, Changsha, China
- School of Earth and Space Sciences, Peking University, Beijing, China
| |
Collapse
|
41
|
Adam N, Perner M. Microbially Mediated Hydrogen Cycling in Deep-Sea Hydrothermal Vents. Front Microbiol 2018; 9:2873. [PMID: 30532749 PMCID: PMC6265342 DOI: 10.3389/fmicb.2018.02873] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
Deep-sea hydrothermal vents may provide one of the largest reservoirs on Earth for hydrogen-oxidizing microorganisms. Depending on the type of geological setting, hydrothermal environments can be considerably enriched in hydrogen (up to millimolar concentrations). As hot, reduced hydrothermal fluids ascend to the seafloor they mix with entrained cold, oxygenated seawater, forming thermal and chemical gradients along their fluid pathways. Consequently, in these thermally and chemically dynamic habitats biochemically distinct hydrogenases (adapted to various temperature regimes, oxygen and hydrogen concentrations) from physiologically and phylogenetically diverse Bacteria and Archaea can be expected. Hydrogen oxidation is one of the important inorganic energy sources in these habitats, capable of providing relatively large amounts of energy (237 kJ/mol H2) for driving ATP synthesis and autotrophic CO2 fixation. Therefore, hydrogen-oxidizing organisms play a key role in deep-sea hydrothermal vent ecosystems as they can be considerably involved in light-independent primary biomass production. So far, the specific role of hydrogen-utilizing microorganisms in deep-sea hydrothermal ecosystems has been investigated by isolating hydrogen-oxidizers, measuring hydrogen consumption (ex situ), studying hydrogenase gene distribution and more recently by analyzing metatranscriptomic and metaproteomic data. Here we summarize this available knowledge and discuss the advent of new techniques for the identification of novel hydrogen-uptake and -evolving enzymes from hydrothermal vent microorganisms.
Collapse
Affiliation(s)
| | - Mirjam Perner
- Geomicrobiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
42
|
Sharma S, Ding Y, Jarrell KF, Brockhausen I. Identification and characterization of the 4-epimerase AglW from the archaeon Methanococcus maripaludis. Glycoconj J 2018; 35:525-535. [PMID: 30293150 DOI: 10.1007/s10719-018-9845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 11/27/2022]
Abstract
Archaea are ubiquitous single-cell microorganisms that have often adapted to harsh conditions and play important roles in biogeochemical cycles with potential applications in biotechnology. Methanococcus maripaludis, a methane-producing archaeon, is motile through multiple archaella on its cell surface. The major structural proteins (archaellins) of the archaellum are glycoproteins, modified with N-linked tetrasaccharides that are essential for the proper assembly and function of archaella. The aglW gene, encoding the putative 4-epimerase AglW, plays a key role in the synthesis of the tetrasaccharide. The goal of our work was to biochemically demonstrate the 4-epimerase activity of AglW, and to develop assays to determine its substrate specificity and properties. We carried out assays using UDP-Galactose, UDP-Glucose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and N-acetylglucosamine/N-acetylgalactosamine-diphosphate - lipid as substrates, coupled with specific glycosyltransferases. We showed that AglW has a broad specificity towards UDP-sugars and that Tyr151 within a conserved YxxxK sequon is essential for the 4-epimerase function of AglW. The glycosyltransferase-coupled assays are generally useful for the identification and specificity studies of novel 4-epimerases.
Collapse
Affiliation(s)
- Sulav Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|