1
|
Iwai S. A simple model and rules for the evolution of microbial mutualistic symbiosis with positive fitness feedbacks. Theor Popul Biol 2024; 160:14-24. [PMID: 39384161 DOI: 10.1016/j.tpb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
The evolution of microbe-microbe mutualistic symbiosis is considered to be promoted by repeated exchanges of fitness benefits, which can generate positive fitness feedbacks ('partner fidelity feedback') between species. However, previous evolutionary models for mutualism have not captured feedback dynamics or coupling of fitness between species. Here, a simple population model is developed to understand the evolution of mutualistic symbiosis in which two microbial species (host and symbiont) continuously grow and exchange fitness benefits to generate feedback dynamics but do not strictly control each other. The assumption that individual microbes provide constant amounts of resources, which are equally divided among interacting partner individual, enables us to reveal a simple rule for the evolution of costly mutualism with positive fitness feedbacks: the product of the benefit-to-cost ratios for each species exceeds one. When this condition holds, high cooperative investment levels are favored in both species regardless of the amount invested by each partner. The model is then extended to examine how symbiont mutation, immigration, or switching affects the spread of selfish or cooperative symbionts, which decrease and increase their investment levels, respectively. In particular, when a host associates with numerous symbionts without enforcement, neither mutation nor immigration but rather random switching would allow the spread of cooperative symbionts. Examples using symbiont switching for evolution would include large ciliates hosting numerous intracellular endosymbionts. The simple model and rules would provide a basis for understanding the evolution of microbe-microbe mutualistic symbiosis with positive fitness feedbacks and without enforcement mechanisms.
Collapse
Affiliation(s)
- Sosuke Iwai
- Department of Biology, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan.
| |
Collapse
|
2
|
Li R, Zhuang W, Feng X, Zhu X, Hu X. Morphology and molecular phylogeny of three Parasonderia species including a new species (Ciliophora, Plagiopylea). Eur J Protistol 2024; 94:126087. [PMID: 38761673 DOI: 10.1016/j.ejop.2024.126087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Ciliates of the class Plagiopylea play a vital role in various anaerobic environments as consumers of prokaryotes. Yet, the diversity and phylogeny of this group of ciliates, especially marine representatives, remain poorly known. In this study, three Parasonderia species, viz., Parasonderia elongata spec. nov., and the already known P. cyclostoma and P. vestita, discovered in anaerobic sediments from various intertidal zones in China, were investigated based on their living morphology, infraciliature, and small subunit ribosomal rRNA gene sequences. Parasonderia elongata can be recognized by its larger body size, elongated body shape, oval oral opening, number of oral kineties, and significantly shortened leftmost postbuccal polykineties on the cell surface. Improved diagnosis and redescription of P. cyclostoma is provided for the first time, including data on infraciliature and molecular sequence. Phylogenetic analyses revealed that the three species cluster together and with the sequence of a Chinese population of P. vestita already present in the GenBank database, forming a robust clade.
Collapse
Affiliation(s)
- Ran Li
- College of Fisheries, & Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wenbao Zhuang
- College of Fisheries, & Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaochen Feng
- College of Fisheries, & Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaoxuan Zhu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaozhong Hu
- College of Fisheries, & Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Zhuang W, Feng X, Li R, Al-Farraj SA, Hu X. Morphogenesis of an anaerobic ciliate Heterometopus palaeformis (Kahl, 1927) Foissner, 2016 (Ciliophora, Armophorea) with notes on its morphological and molecular characterization. Protist 2024; 175:126007. [PMID: 38141417 DOI: 10.1016/j.protis.2023.126007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
The morphology, morphogenesis, and molecular phylogeny of Heterometopus palaeformis (Kahl, 1927) Foissner, 2016 were studied using microscopical observations on live and protargol-stained specimens as well SSU rRNA gene sequencing. The morphogenetic data for the genus are presented for the first time. Compared to other metopids, the morphogenesis of H. palaeformis is distinct since its (1) perizonal stripe rows 4 and 5 are involved in the formation of the opisthe's adoral polykinetids; (2) perizonal stripe rows 3-5 and two adjacent preoral dome kineties contribute to most of the opisthe's paroral membrane while perizonal stripe rows 1 and 2 contribute very little; (3) four kinety rows are formed to the left of the opisthe's adoral zone of polykinetids. The Chinese population resembles the original and neotype populations well in terms of general morphology - characterized by a life size of 55-120 × 10-20 μm, an elongate ellipsoidal body with a hardly spiralized flat preoral dome, about 18 somatic kineties and 20 adoral polykinetids. The SSU rDNA sequence of the present population exhibits a disparity of 1.33%-2.22% divergence from sequences of other populations. Nevertheless, phylogenetic analysis reveals that populations of H. palaeformis form a separate, stable cluster within the paraphyletic Metopidae clade.
Collapse
Affiliation(s)
- Wenbao Zhuang
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaochen Feng
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ran Li
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiaozhong Hu
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Méndez-Sánchez D, Schrecengost A, Rotterová J, Koštířová K, Beinart RA, Čepička I. Methanogenic symbionts of anaerobic ciliates are host and habitat specific. THE ISME JOURNAL 2024; 18:wrae164. [PMID: 39163261 PMCID: PMC11378729 DOI: 10.1093/ismejo/wrae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/29/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
The association between anaerobic ciliates and methanogenic archaea has been recognized for over a century. Nevertheless, knowledge of these associations is limited to a few ciliate species, and so the identification of patterns of host-symbiont specificity has been largely speculative. In this study, we integrated microscopy and genetic identification to survey the methanogenic symbionts of 32 free-living anaerobic ciliate species, mainly from the order Metopida. Based on Sanger and Illumina sequencing of the 16S rRNA gene, our results show that a single methanogenic symbiont population, belonging to Methanobacterium, Methanoregula, or Methanocorpusculum, is dominant in each host strain. Moreover, the host's taxonomy (genus and above) and environment (i.e. endobiotic, marine/brackish, or freshwater) are linked with the methanogen identity at the genus level, demonstrating a strong specificity and fidelity in the association. We also established cultures containing artificially co-occurring anaerobic ciliate species harboring different methanogenic symbionts. This revealed that the host-methanogen relationship is stable over short timescales in cultures without evidence of methanogenic symbiont exchanges, although our intraspecific survey indicated that metopids also tend to replace their methanogens over longer evolutionary timescales. Therefore, anaerobic ciliates have adapted a mixed transmission mode to maintain and replace their methanogenic symbionts, allowing them to thrive in oxygen-depleted environments.
Collapse
Affiliation(s)
- Daniel Méndez-Sánchez
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Anna Schrecengost
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, United States
| | - Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, United States
- Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, PR 00680, United States
| | - Kateřina Koštířová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, United States
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| |
Collapse
|
5
|
Schrecengost A, Rotterová J, Poláková K, Čepička I, Beinart RA. Divergent marine anaerobic ciliates harbor closely related Methanocorpusculum endosymbionts. THE ISME JOURNAL 2024; 18:wrae125. [PMID: 38982749 PMCID: PMC11253715 DOI: 10.1093/ismejo/wrae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
Ciliates are a diverse group of protists known for their ability to establish various partnerships and thrive in a wide variety of oxygen-depleted environments. Most anaerobic ciliates harbor methanogens, one of the few known archaea living intracellularly. These methanogens increase the metabolic efficiency of host fermentation via syntrophic use of host end-product in methanogenesis. Despite the ubiquity of these symbioses in anoxic habitats, patterns of symbiont specificity and fidelity are not well known. We surveyed two unrelated, commonly found groups of anaerobic ciliates, the Plagiopylea and Metopida, isolated from anoxic marine sediments. We sequenced host 18S rRNA and symbiont 16S rRNA marker genes as well as the symbiont internal transcribed spacer region from our cultured ciliates to identify hosts and their associated methanogenic symbionts. We found that marine ciliates from both of these co-occurring, divergent groups harbor closely related yet distinct intracellular archaea within the Methanocorpusculum genus. The symbionts appear to be stable at the host species level, but at higher taxonomic levels, there is evidence that symbiont replacements have occurred. Gaining insight into this unique association will deepen our understanding of the complex transmission modes of marine microbial symbionts, and the mutualistic microbial interactions occurring across domains of life.
Collapse
Affiliation(s)
- Anna Schrecengost
- University of Rhode Island, Graduate School of Oceanography, 215 South Ferry Rd, Narragansett, RI 02882, United States
| | - Johana Rotterová
- University of Rhode Island, Graduate School of Oceanography, 215 South Ferry Rd, Narragansett, RI 02882, United States
- Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, United States
| | - Kateřina Poláková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Roxanne A Beinart
- University of Rhode Island, Graduate School of Oceanography, 215 South Ferry Rd, Narragansett, RI 02882, United States
| |
Collapse
|
6
|
Hu SK, Smith AR, Anderson RE, Sylva SP, Setzer M, Steadmon M, Frank KL, Chan EW, Lim DSS, German CR, Breier JA, Lang SQ, Butterfield DA, Fortunato CS, Seewald JS, Huber JA. Globally-distributed microbial eukaryotes exhibit endemism at deep-sea hydrothermal vents. Mol Ecol 2023; 32:6580-6598. [PMID: 36302092 DOI: 10.1111/mec.16745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Single-celled microbial eukaryotes inhabit deep-sea hydrothermal vent environments and play critical ecological roles in the vent-associated microbial food web. 18S rRNA amplicon sequencing of diffuse venting fluids from four geographically- and geochemically-distinct hydrothermal vent fields was applied to investigate community diversity patterns among protistan assemblages. The four vent fields include Axial Seamount at the Juan de Fuca Ridge, Sea Cliff and Apollo at the Gorda Ridge, all in the NE Pacific Ocean, and Piccard and Von Damm at the Mid-Cayman Rise in the Caribbean Sea. We describe species diversity patterns with respect to hydrothermal vent field and sample type, identify putative vent endemic microbial eukaryotes, and test how vent fluid geochemistry may influence microbial community diversity. At a semi-global scale, microbial eukaryotic communities at deep-sea vents were composed of similar proportions of dinoflagellates, ciliates, Rhizaria, and stramenopiles. Individual vent fields supported distinct and highly diverse assemblages of protists that included potentially endemic or novel vent-associated strains. These findings represent a census of deep-sea hydrothermal vent protistan communities. Protistan diversity, which is shaped by the hydrothermal vent environment at a local scale, ultimately influences the vent-associated microbial food web and the broader deep-sea carbon cycle.
Collapse
Affiliation(s)
- Sarah K Hu
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Amy R Smith
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Bard College at Simon's Rock, Great Barrington, Massachusetts, USA
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | - Sean P Sylva
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Michaela Setzer
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, Hawai'i, USA
| | - Maria Steadmon
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, Hawai'i, USA
| | - Kiana L Frank
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Eric W Chan
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | | | - Christopher R German
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - John A Breier
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Susan Q Lang
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - David A Butterfield
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington and NOAA/PMEL, Seattle, Washington, USA
| | | | - Jeffrey S Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
7
|
Li R, Zhuang W, Feng X, Hines HN, Hu X. First redescription and molecular phylogeny of Trimyema claviforme Kahl, 1933 with the description of a Chinese population of Plagiopyla nasuta Stein, 1860 (Ciliophora, Plagiopylea). Eur J Protistol 2023; 90:126003. [PMID: 37453202 DOI: 10.1016/j.ejop.2023.126003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/18/2023]
Abstract
Ciliates belonging to the class Plagiopylea are obligate anaerobes that are often neglected due to their cryptic lifestyles, difficulty of observation, and overall under-sampling. Here, we investigate two species, namely Trimyema claviforme Kahl, 1933 and Plagiopyla nasuta Stein, 1860, collected in China from marine and freshwater anaerobic sediments, respectively. A complete morphological dataset, together with SSU rRNA gene sequence data were obtained and used to diagnose the species. No molecular sequencing had ever been performed on Trimyema claviforme, with its ciliature also previously unknown. Based on these novel data presented here, the ciliate is characterized by a claviform cell shape, with a size of 35-45 × 10-20 μm in vivo, 28-39 longitudinal somatic ciliary rows forming five ciliary girdles (four complete girdles and a shorter one), two dikinetids left to anterior end of oral kinety 1, and an epaulet. A Chinese population of the well-known ciliate P. nasuta was investigated, and morphological comparisons revealed phenotypic stability of the species. The phylogenetic analyses supported previous findings about the monophyly of the families Trimyemidae and Plagiopylidae, with Trimyema claviforme branching off early in the genus Trimyema. The Chinese population of P. nasuta clusters together with two other populations with full support corroborating their conspecificity.
Collapse
Affiliation(s)
- Ran Li
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wenbao Zhuang
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaochen Feng
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hunter N Hines
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida 34946, USA
| | - Xiaozhong Hu
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Howells AEG, De Martini F, Gile GH, Shock EL. An examination of protist diversity in serpentinization-hosted ecosystems of the Samail Ophiolite of Oman. Front Microbiol 2023; 14:1139333. [PMID: 37213519 PMCID: PMC10192764 DOI: 10.3389/fmicb.2023.1139333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 05/23/2023] Open
Abstract
In the Samail Ophiolite of Oman, the geological process of serpentinization produces reduced, hydrogen rich, hyperalkaline (pH > 11) fluids. These fluids are generated through water reacting with ultramafic rock from the upper mantle in the subsurface. On Earth's continents, serpentinized fluids can be expressed at the surface where they can mix with circumneutral surface water and subsequently generate a pH gradient (∼pH 8 to pH > 11) in addition to variations in other chemical parameters such as dissolved CO2, O2, and H2. Globally, archaeal and bacterial community diversity has been shown to reflect geochemical gradients established by the process of serpentinization. It is unknown if the same is true for microorganisms of the domain Eukarya (eukaryotes). In this study, using 18S rRNA gene amplicon sequencing, we explore the diversity of microbial eukaryotes called protists in sediments of serpentinized fluids in Oman. We demonstrate that protist community composition and diversity correlate significantly with variations in pH, with protist richness being significantly lower in sediments of hyperalkaline fluids. In addition to pH, the availability of CO2 to phototrophic protists, the composition of potential food sources (prokaryotes) for heterotrophic protists and the concentration of O2 for anaerobic protists are factors that likely shape overall protist community composition and diversity along the geochemical gradient. The taxonomy of the protist 18S rRNA gene sequences indicates the presence of protists that are involved in carbon cycling in serpentinized fluids of Oman. Therefore, as we evaluate the applicability of serpentinization for carbon sequestration, the presence and diversity of protists should be considered.
Collapse
Affiliation(s)
- Alta E. G. Howells
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Francesca De Martini
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Mesa Community College, Mesa, AZ, United States
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Everett L. Shock
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
9
|
Méndez-Sánchez D, Pomahač O, Rotterová J, Bourland WA, Čepička I. Morphology and phylogenetic position of three anaerobic ciliates from the classes Odontostomatea and Muranotrichea (Ciliophora). J Eukaryot Microbiol 2023; 70:e12965. [PMID: 36727275 DOI: 10.1111/jeu.12965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/17/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
The diversity of the classes Odontostomatea and Muranotrichea, which contain solely obligate anaerobes, is poorly understood. We studied two populations of Mylestoma sp., one of Saprodinium dentatum (Odontostomatea), two of Muranothrix felix sp. nov., and one of Muranothrix sp. (Muranotrichea) employing live observation, protargol impregnation, scanning electron microscopy, and 18S rRNA gene sequencing. Conspecificity of Mylestoma sp., described here, with a previously described species of this genus cannot be excluded since no species have been studied with modern methods. Phylogenetically, the genus Mylestoma is closely related to the odontostomatid Discomorphella pedroeneasi, although the phylogenetic position of class Odontostomatea itself remains unresolved. The newly described muranotrichean species, Muranothrix felix sp. nov., is morphologically similar to M. gubernata but can be distinguished by its fewer macronuclear nodules and fewer adoral membranelles; moreover, it is clearly distinguished from M. gubernata by its 18S rRNA gene sequence. Another population, designated here as Muranothrix sp., most likely represents a separate species.
Collapse
Affiliation(s)
- Daniel Méndez-Sánchez
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Pomahač
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - William A Bourland
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Giannotti D, Boscaro V, Husnik F, Vannini C, Keeling PJ. At the threshold of symbiosis: the genome of obligately endosymbiotic ' Candidatus Nebulobacter yamunensis' is almost indistinguishable from that of a cultivable strain. Microb Genom 2022; 8:mgen000909. [PMID: 36748607 PMCID: PMC9837558 DOI: 10.1099/mgen.0.000909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Comparing obligate endosymbionts with their free-living relatives is a powerful approach to investigate the evolution of symbioses, and it has led to the identification of several genomic traits consistently associated with the establishment of symbiosis. 'Candidatus Nebulobacter yamunensis' is an obligate bacterial endosymbiont of the ciliate Euplotes that seemingly depends on its host for survival. A subsequently characterized bacterial strain with an identical 16S rRNA gene sequence, named Fastidiosibacter lacustris, can instead be maintained in pure culture. We analysed the genomes of 'Candidatus Nebulobacter' and Fastidiosibacter seeking to identify key differences between their functional traits and genomic structure that might shed light on a recent transition to obligate endosymbiosis. Surprisingly, we found almost no such differences: the two genomes share a high level of sequence identity, the same overall structure, and largely overlapping sets of genes. The similarities between the genomes of the two strains are at odds with their different ecological niches, confirmed here with a parallel growth experiment. Although other pairs of closely related symbiotic/free-living bacteria have been compared in the past, 'Candidatus Nebulobacter' and Fastidiosibacter represent an extreme example proving that a small number of (unknown) factors might play a pivotal role in the earliest stages of obligate endosymbiosis establishment.
Collapse
Affiliation(s)
- Daniele Giannotti
- Department of Biology, University of Pisa, Pisa, Italy,Department of Botany, University of British Columbia, Vancouver, Canada
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, Canada,*Correspondence: Vittorio Boscaro,
| | - Filip Husnik
- Department of Botany, University of British Columbia, Vancouver, Canada,Okinawa Institute of Science and Technology, Okinawa, Japan
| | | | | |
Collapse
|
11
|
Chen Z, Li J, Salas-Leiva DE, Chen M, Chen S, Li S, Wu Y, Yi Z. Group-specific functional patterns of mitochondrion-related organelles shed light on their multiple transitions from mitochondria in ciliated protists. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:609-623. [PMID: 37078085 PMCID: PMC10077286 DOI: 10.1007/s42995-022-00147-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 05/03/2023]
Abstract
Adaptations of ciliates to hypoxic environments have arisen independently several times. Studies on mitochondrion-related organelle (MRO) metabolisms from distinct anaerobic ciliate groups provide evidence for understanding the transitions from mitochondria to MROs within eukaryotes. To deepen our knowledge about the evolutionary patterns of ciliate anaerobiosis, mass-culture and single-cell transcriptomes of two anaerobic species, Metopus laminarius (class Armophorea) and Plagiopyla cf. narasimhamurtii (class Plagiopylea), were sequenced and their MRO metabolic maps were compared. In addition, we carried out comparisons using publicly available predicted MRO proteomes from other ciliate classes (i.e., Armophorea, Litostomatea, Muranotrichea, Oligohymenophorea, Parablepharismea and Plagiopylea). We found that single-cell transcriptomes were similarly comparable to their mass-culture counterparts in predicting MRO metabolic pathways of ciliates. The patterns of the components of the MRO metabolic pathways might be divergent among anaerobic ciliates, even among closely related species. Notably, our findings indicate the existence of group-specific functional relics of electron transport chains (ETCs). Detailed group-specific ETC functional patterns are as follows: full oxidative phosphorylation in Oligohymenophorea and Muranotrichea; only electron-transfer machinery in Armophorea; either of these functional types in Parablepharismea; and ETC functional absence in Litostomatea and Plagiopylea. These findings suggest that adaptation of ciliates to anaerobic conditions is group-specific and has occurred multiple times. Our results also show the potential and the limitations of detecting ciliate MRO proteins using single-cell transcriptomes and improve the understanding of the multiple transitions from mitochondria to MROs within ciliates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00147-w.
Collapse
Affiliation(s)
- Zhicheng Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | | | - Miaoying Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Shilong Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Senru Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Yanyan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
12
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
13
|
Rotterová J, Edgcomb VP, Čepička I, Beinart R. Anaerobic Ciliates as a Model Group for Studying Symbioses in Oxygen-depleted Environments. J Eukaryot Microbiol 2022; 69:e12912. [PMID: 35325496 DOI: 10.1111/jeu.12912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaerobiosis has independently evolved in multiple lineages of ciliates, allowing them to colonize a variety of anoxic and oxygen-depleted habitats. Anaerobic ciliates commonly form symbiotic relationships with various prokaryotes, including methanogenic archaea and members of several bacterial groups. The hypothesized functions of these ecto- and endosymbionts include the symbiont utilizing the ciliate's fermentative end-products to increase host's anaerobic metabolic efficiency, or the symbiont directly providing the host with energy by denitrification or photosynthesis. The host, in turn, may protect the symbiont from competition, the environment, and predation. Despite rapid advances in sampling, molecular, and microscopy methods, as well as the associated broadening of the known diversity of anaerobic ciliates, many aspects of these ciliate symbioses, including host-specificity and co-evolution, remain largely unexplored. Nevertheless, with the number of comparative genomic and transcriptomic analyses targeting anaerobic ciliates and their symbionts on the rise, insights into the nature of these symbioses and the evolution of the ciliate transition to obligate anaerobiosis continue to deepen. This review summarizes the current body of knowledge regarding the complex nature of symbioses in anaerobic ciliates, the diversity of these symbionts, their role in the evolution of ciliate anaerobiosis and their significance in ecosystem-level processes.
Collapse
Affiliation(s)
- Johana Rotterová
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Roxanne Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
14
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
15
|
Xie Z. The Methods and Tools for Mobile Genetic Element Detection and their Application to Systems Medicine. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Abstract
Host-associated microbial communities have an important role in shaping the health and fitness of plants and animals. Most studies have focused on the bacterial, fungal or viral communities, but often the archaeal component has been neglected. The archaeal community, the so-called archaeome, is now increasingly recognized as an important component of host-associated microbiomes. It is composed of various lineages, including mainly Methanobacteriales and Methanomassiliicoccales (Euryarchaeota), as well as representatives of the Thaumarchaeota. Host-archaeome interactions have mostly been delineated from methanogenic archaea in the gastrointestinal tract, where they contribute to substantial methane production and are potentially also involved in disease-relevant processes. In this Review, we discuss the diversity and potential roles of the archaea associated with protists, plants and animals. We also present the current understanding of the archaeome in humans, the specific adaptations involved in interaction with the resident microbial community as well as with the host, and the roles of the archaeome in both health and disease.
Collapse
|
17
|
Bourland W, Rotterová J, Čepička I. Description of Three New Genera of Metopidae (Metopida, Ciliophora): Pileometopus gen. nov., Castula gen. nov., and Longitaenia gen. nov., with Notes on the Phylogeny and Cryptic Diversity of Metopid Ciliates. Protist 2020; 171:125740. [PMID: 32544844 DOI: 10.1016/j.protis.2020.125740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 01/22/2023]
Abstract
We report the discovery of three new species of freshwater metopid ciliates, Pileometopus lynni gen. et sp. nov., Castula flexibilis gen. et sp. nov., and Longitaenia australis gen. et sp. nov. Based on morphologic features and the 18S rRNA gene phylogeny, we transfer two known species of Metopus to the new genus Castula, as C. fusca (Kahl, 1927) comb. nov. and C. setosa (Kahl, 1927) comb. nov. and another known species is herein transferred to the new genus Longitaenia, as L. gibba (Kahl, 1927) comb. nov. Pileometopus is characterized by a turbinate body shape, a dorsal field of densely spaced dikinetids, a bipartite paroral membrane, and long caudal cilia. A distinctive morphologic feature of Castula species is long setae arising over the posterior third of the body (as opposed to a terminal tuft). Longitaenia spp. are characterized by an equatorial cytostome and long perizonal ciliary stripe relative to the cell length. Based on phylogenetic analyses of 18S rRNA gene sequences, we identify and briefly discuss strongly supported clades and intraspecific genetic polymorphism within the order Metopida.
Collapse
Affiliation(s)
- William Bourland
- Boise State University, Department of Biological Sciences, Boise, Idaho 83725-1515, USA.
| | - Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Rotterová J, Salomaki E, Pánek T, Bourland W, Žihala D, Táborský P, Edgcomb VP, Beinart RA, Kolísko M, Čepička I. Genomics of New Ciliate Lineages Provides Insight into the Evolution of Obligate Anaerobiosis. Curr Biol 2020; 30:2037-2050.e6. [PMID: 32330419 DOI: 10.1016/j.cub.2020.03.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Oxygen plays a crucial role in energetic metabolism of most eukaryotes. Yet adaptations to low-oxygen concentrations leading to anaerobiosis have independently arisen in many eukaryotic lineages, resulting in a broad spectrum of reduced and modified mitochondrion-related organelles (MROs). In this study, we present the discovery of two new class-level lineages of free-living marine anaerobic ciliates, Muranotrichea, cl. nov. and Parablepharismea, cl. nov., that, together with the class Armophorea, form a major clade of obligate anaerobes (APM ciliates) within the Spirotrichea, Armophorea, and Litostomatea (SAL) group. To deepen our understanding of the evolution of anaerobiosis in ciliates, we predicted the mitochondrial metabolism of cultured representatives from all three classes in the APM clade by using transcriptomic and metagenomic data and performed phylogenomic analyses to assess their evolutionary relationships. The predicted mitochondrial metabolism of representatives from the APM ciliates reveals functional adaptations of metabolic pathways that were present in their last common ancestor and likely led to the successful colonization and diversification of the group in various anoxic environments. Furthermore, we discuss the possible relationship of Parablepharismea to the uncultured deep-sea class Cariacotrichea on the basis of single-gene analyses. Like most anaerobic ciliates, all studied species of the APM clade host symbionts, which we propose to be a significant accelerating factor in the transitions to an obligately anaerobic lifestyle. Our results provide an insight into the evolutionary mechanisms of early transitions to anaerobiosis and shed light on fine-scale adaptations in MROs over a relatively short evolutionary time frame.
Collapse
Affiliation(s)
- Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 43, Czech Republic.
| | - Eric Salomaki
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - William Bourland
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Petr Táborský
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Roxanne A Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic; Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague 128 43, Czech Republic
| |
Collapse
|
19
|
Zhang S, Song W, Wemheuer B, Reveillaud J, Webster N, Thomas T. Comparative Genomics Reveals Ecological and Evolutionary Insights into Sponge-Associated Thaumarchaeota. mSystems 2019; 4:e00288-19. [PMID: 31409660 PMCID: PMC6697440 DOI: 10.1128/msystems.00288-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
Thaumarchaeota are frequently reported to associate with marine sponges (phylum Porifera); however, little is known about the features that distinguish them from their free-living thaumarchaeal counterparts. In this study, thaumarchaeal metagenome-assembled genomes (MAGs) were reconstructed from metagenomic data sets derived from the marine sponges Hexadella detritifera, Hexadella cf. detritifera, and Stylissa flabelliformis Phylogenetic and taxonomic analyses revealed that the three thaumarchaeal MAGs represent two new species within the genus Nitrosopumilus and one novel genus, for which we propose the names "Candidatus UNitrosopumilus hexadellus," "Candidatus UNitrosopumilus detritiferus," and "Candidatus UCenporiarchaeum stylissum" (the U superscript indicates that the taxon is uncultured). Comparison of these genomes to data from the Sponge Earth Microbiome Project revealed that "Ca UCenporiarchaeum stylissum" has been exclusively detected in sponges and can hence be classified as a specialist, while "Ca UNitrosopumilus detritiferus" and "Ca UNitrosopumilus hexadellus" are also detected outside the sponge holobiont and likely lead a generalist lifestyle. Comparison of the sponge-associated MAGs to genomes of free-living Thaumarchaeota revealed signatures that indicate functional features of a sponge-associated lifestyle, and these features were related to nutrient transport and metabolism, restriction-modification, defense mechanisms, and host interactions. Each species exhibited distinct functional traits, suggesting that they have reached different stages of evolutionary adaptation and/or occupy distinct ecological niches within their sponge hosts. Our study therefore offers new evolutionary and ecological insights into the symbiosis between sponges and their thaumarchaeal symbionts.IMPORTANCE Sponges represent ecologically important models to understand the evolution of symbiotic interactions of metazoans with microbial symbionts. Thaumarchaeota are commonly found in sponges, but their potential adaptations to a host-associated lifestyle are largely unknown. Here, we present three novel sponge-associated thaumarchaeal species and compare their genomic and predicted functional features with those of closely related free-living counterparts. We found different degrees of specialization of these thaumarchaeal species to the sponge environment that is reflected in their host distribution and their predicted molecular and metabolic properties. Our results indicate that Thaumarchaeota may have reached different stages of evolutionary adaptation in their symbiosis with sponges.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Weizhi Song
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Bernd Wemheuer
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Torsten Thomas
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
20
|
Methanogens: pushing the boundaries of biology. Emerg Top Life Sci 2018; 2:629-646. [PMID: 33525834 PMCID: PMC7289024 DOI: 10.1042/etls20180031] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/15/2023]
Abstract
Methanogens are anaerobic archaea that grow by producing methane gas. These microbes and their exotic metabolism have inspired decades of microbial physiology research that continues to push the boundary of what we know about how microbes conserve energy to grow. The study of methanogens has helped to elucidate the thermodynamic and bioenergetics basis of life, contributed our understanding of evolution and biodiversity, and has garnered an appreciation for the societal utility of studying trophic interactions between environmental microbes, as methanogens are important in microbial conversion of biogenic carbon into methane, a high-energy fuel. This review discusses the theoretical basis for energy conservation by methanogens and identifies gaps in methanogen biology that may be filled by undiscovered or yet-to-be engineered organisms.
Collapse
|