1
|
Huo LC, Liu NY, Wang CJ, Luo Y, Liu JX. Lonicera japonica protects Pelodiscus sinensis by inhibiting the biofilm formation of Aeromonas hydrophila. Appl Microbiol Biotechnol 2024; 108:67. [PMID: 38183487 DOI: 10.1007/s00253-023-12910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.
Collapse
Affiliation(s)
- Li-Chao Huo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nai-Yu Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chao-Jie Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Zhang S, Yang W, Xie Y, Zhao X, Chen H, Zhang L, Lin X. Quantitative proteomics investigating the intrinsic adaptation mechanism of Aeromonas hydrophila to streptomycin. Proteomics 2024; 24:e2300383. [PMID: 38700048 DOI: 10.1002/pmic.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Aeromonas hydrophila, a prevalent pathogen in the aquaculture industry, poses significant challenges due to its drug-resistant strains. Moreover, residues of antibiotics like streptomycin, extensively employed in aquaculture settings, drive selective bacterial evolution, leading to the progressive development of resistance to this agent. However, the underlying mechanism of its intrinsic adaptation to antibiotics remains elusive. Here, we employed a quantitative proteomics approach to investigate the differences in protein expression between A. hydrophila under streptomycin (SM) stress and nonstress conditions. Notably, bioinformatics analysis unveiled the potential involvement of metal pathways, including metal cluster binding, iron-sulfur cluster binding, and transition metal ion binding, in influencing A. hydrophila's resistance to SM. Furthermore, we evaluated the sensitivity of eight gene deletion strains related to streptomycin and observed the potential roles of petA and AHA_4705 in SM resistance. Collectively, our findings enhance the understanding of A. hydrophila's response behavior to streptomycin stress and shed light on its intrinsic adaptation mechanism.
Collapse
Affiliation(s)
- Shuangziying Zhang
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxiao Yang
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuyue Xie
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinrui Zhao
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haoyu Chen
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lishan Zhang
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiangmin Lin
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Zhang L, Fu Y, Xu Q, Chen X, Xie Y, Zhang B, Lin X. Quantitative proteomics reveals the complex regulatory networks of LTTR-type regulators in pleiotropic functions of Aeromonas hydrophila. Int J Biol Macromol 2024; 270:132315. [PMID: 38740149 DOI: 10.1016/j.ijbiomac.2024.132315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are ubiquitously distributed and abundant transcriptional regulators in prokaryotes, playing pivotal roles in diverse physiological processes. Nonetheless, despite their prevalence, the intricate functionalities and physiological implications of this protein family remain incompletely elucidated. In this study, we employed a comprehensive approach to deepen our understanding of LTTRs by generating a collection of 20 LTTR gene-deletion strains in Aeromonas hydrophila, accounting for 42.6 % of the predicted total LTTR repertoire, and subjected them to meticulous assessment of their physiological phenotypes. Leveraging quantitative proteomics, we conducted a comparative analysis of protein expression variations between six representative mutants and the wild-type strain. Subsequent bioinformatics analysis unveiled the involvement of these LTTRs in modulating a wide array of biological processes, notably including two-component regulatory systems (TCSs) and intracellular central metabolism. Moreover, employing subsequent microbiological methodologies, we experimentally verified the direct involvement of at least six LTTRs in the regulation of galactose metabolism. Importantly, through ELISA and competitive ELISA assays, we demonstrated the competitive binding capabilities of these LTTRs with the promoter of the α-galactosidase gene AHA_1897 and identified that four LTTRs (XapR, YidZ, YeeY, and AHA_1805) do not engage in competitive binding with other LTTRs. Overall, our comprehensive findings not only provide fundamental insights into the regulatory mechanisms governing crucial physiological functions of bacteria through LTTR family proteins but also uncover an intricate and interactive regulatory network mediated by LTTRs.
Collapse
Affiliation(s)
- Lishan Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou, Fujian Province 350007, China
| | - Qiaozhen Xu
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Chen
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuyue Xie
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binghui Zhang
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou 350003, China
| | - Xiangmin Lin
- College of JunCao Science and Ecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Neil B, Cheney GL, Rosenzweig JA, Sha J, Chopra AK. Antimicrobial resistance in aeromonads and new therapies targeting quorum sensing. Appl Microbiol Biotechnol 2024; 108:205. [PMID: 38349402 PMCID: PMC10864486 DOI: 10.1007/s00253-024-13055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human pathogens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aeromonas' innate transformative properties including its ability to share plasmids and integron-related gene cassettes between species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein, many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp. infections in humans. KEY POINTS: • Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited. • Quorum sensing is an essential virulence mechanism in Aeromonas infections. • Inhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.
Collapse
Affiliation(s)
- Blake Neil
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Gabrielle L Cheney
- John Sealy School of Medicine, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA
| | - Jian Sha
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Barzkar N, Sukhikh S, Babich O. Study of marine microorganism metabolites: new resources for bioactive natural products. Front Microbiol 2024; 14:1285902. [PMID: 38260902 PMCID: PMC10800913 DOI: 10.3389/fmicb.2023.1285902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
The marine environment has remained a source of novel biological molecules with diversified applications. The ecological and biological diversity, along with a unique physical environment, have provided the evolutionary advantage to the plant, animals and microbial species thriving in the marine ecosystem. In light of the fact that marine microorganisms frequently interact symbiotically or mutualistically with higher species including corals, fish, sponges, and algae, this paper intends to examine the potential of marine microorganisms as a niche for marine bacteria. This review aims to analyze and summarize modern literature data on the biotechnological potential of marine fungi and bacteria as producers of a wide range of practically valuable products (surfactants, glyco-and lipopeptides, exopolysaccharides, enzymes, and metabolites with different biological activities: antimicrobial, antitumor, and cytotoxic). Hence, the study on bioactive secondary metabolites from marine microorganisms is the need of the hour. The scientific novelty of the study lies in the fact that for the first time, the data on new resources for obtaining biologically active natural products - metabolites of marine bacteria and fungi - were generalized. The review investigates the various kinds of natural products derived from marine microorganisms, specifically focusing on marine bacteria and fungi as a valuable source for new natural products. It provides a summary of the data regarding the antibacterial, antimalarial, anticarcinogenic, antibiofilm, and anti-inflammatory effects demonstrated by marine microorganisms. There is currently a great need for scientific and applied research on bioactive secondary metabolites of marine microorganisms from the standpoint of human and animal health.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Agro-Industrial Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Stanislav Sukhikh
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Babich
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
6
|
Ashikur Rahman M, Akter S, Ashrafudoulla M, Anamul Hasan Chowdhury M, Uddin Mahamud AGMS, Hong Park S, Ha SD. Insights into the mechanisms and key factors influencing biofilm formation by Aeromonas hydrophila in the food industry: A comprehensive review and bibliometric analysis. Food Res Int 2024; 175:113671. [PMID: 38129021 DOI: 10.1016/j.foodres.2023.113671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Biofilm formation by Aeromonas hydrophila in the food industry poses significant challenges to food safety and quality. Therefore, this comprehensive review aimed to provide insights into the mechanisms and key factors influencing A. hydrophila biofilm formation. It explores the molecular processes involved in initial attachment, microcolony formation, and biofilm maturation; moreover, it concurrently examines the impact of intrinsic factors, including quorum sensing, cyclic-di-GMP, the efflux pump, and antibiotic resistance, as well as environmental conditions, such as temperature, nutrient availability, and osmotic pressure, on biofilm architecture and resilience. Furthermore, the article highlights the potential of bibliometric analysis as a promising method for conceptualizing the research landscape of and identifying knowledge gaps in A. hydrophila biofilm research. The findings underscore the requirement for focused interventions that prevent biofilm development and raise food sector safety. The consolidation of current information and incorporation of bibliometric analysis enhances existing understanding of A. hydrophila biofilm formation and offers insights for future research and control strategies within a food industry context.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Bangladesh Fisheries Research Institute, Bangladesh
| | - Shirin Akter
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | | | | | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea.
| |
Collapse
|
7
|
Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023; 11:1690. [PMID: 37512863 PMCID: PMC10385648 DOI: 10.3390/microorganisms11071690] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative bacteria depend on their cell membranes for survival and environmental adaptation. They contain two membranes, one of which is the outer membrane (OM), which is home to several different outer membrane proteins (Omps). One class of important Omps is porins, which mediate the inflow of nutrients and several antimicrobial drugs. The microorganism's sensitivity to antibiotics, which are predominantly targeted at internal sites, is greatly influenced by the permeability characteristics of porins. In this review, the properties and interactions of five common porins, OmpA, OmpC, OmpF, OmpW, and OmpX, in connection to porin-mediated permeability are outlined. Meanwhile, this review also highlighted the discovered regulatory characteristics and identified molecular mechanisms in antibiotic penetration through porins. Taken together, uncovering porins' functional properties will pave the way to investigate effective agents or approaches that use porins as targets to get rid of resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qian Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xia Wen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruqun Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liangqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
8
|
Yousefi M, Naderi Farsani M, Ghafarifarsani H, Raeeszadeh M. Dietary Lactobacillus helveticus and Gum Arabic improves growth indices, digestive enzyme activities, intestinal microbiota, innate immunological parameters, antioxidant capacity, and disease resistance in common carp. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108652. [PMID: 36863498 DOI: 10.1016/j.fsi.2023.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The present study aimed at determining the effects of Lactobacillus helveticus (LH), Gum Arabic (GA; natural prebiotic), and their combination as synbiotic on growth performance, digestive enzymes activity, gut microbiota, innate immunity status, antioxidant capacity, and disease resistance against Aeromonas hydrophyla in common carp, Cyprinus carpio for 8 weeks. For this, 735 common carp juveniles (Mean ± standard deviation; 22.51 ± 0.40 g) were fed with 7 different diets including basal diet (C), LH1 (1 × 107 CFU/g), LH2 (1 × 109 CFU/g), GA1 (0.5%), GA2 (1%), LH1+GA1 (1 × 107 CFU/g + 0.5%), and LH2+GA2 (1 × 109 CFU/g + 1%) for 8 weeks. Dietary supplementation with GA and/or LH significantly increased growth performance, WBC, serum total immunoglobulin, superoxide dismutase and catalase activities, skin mucus lysozyme and total immunoglobulin and intestinal lactic acid bacteria. Whereas there were significant improvements in various parameters tested in different treatments, the highest improvement in growth performance, WBC, monocyte/neutrophil percentages, serum lysozyme, alternative complement, glutathione peroxidase and malondialdehyde, skin mucosal alkaline phosphatase, protease, and immunoglobulin, intestinal total bacterial count, protease and amylase activities were observed in the synbiotic treatments, particularly LH1+GA1. After an experimental infection with Aeromonas hydrophila, all experimental treatments exhibited significantly higher survival, compared to the control treatment. The highest survival was related to the synbiotic (particularly LH1+GA1), followed by prebiotic, and probiotic treatments. Overall, synbiotic containing 1 × 107 CFU/g LH + 0.5% GA can improve growth rate and feed efficiency in common carp. Moreover, the synbiotic can improve the antioxidant/innate immune systems and dominate lactic acid bacteria in the fish intestine that may be the reasons of the highest resistance against A. hydrophila infection.
Collapse
Affiliation(s)
- Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198, Moscow, Russia.
| | - Mehdi Naderi Farsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
9
|
Liu Z, Zhang L, Song Q, Song H, Xu Y, Lu J, Xu Q, Tang Y, Liu Y, Wang G, Lin X. Quantitative Proteomics Reveal the Inherent Antibiotic Resistance Mechanism against Norfloxacin Resistance in Aeromonas hydrophila. J Proteome Res 2023; 22:1193-1200. [PMID: 36856436 DOI: 10.1021/acs.jproteome.2c00663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Recently, the prevalence of Aeromonas hydrophila antibiotic-resistant strains has been reported in aquaculture, but its intrinsic antibiotic resistance mechanisms are largely unknown. In the present study, a label-free proteomics technology was used to compare the differential protein abundances in response to norfloxacin (NOR) stress in A. hydrophila. The results showed that there were 186 proteins decreasing and 220 proteins increasing abundances in response to NOR stress. Bioinformatics analysis showed that the differentially expressed proteins were enriched in several biological processes, such as sulfur metabolism and homologous recombination. Furthermore, the antibiotic sensitivity assays showed that the deletion of AHA_0904, cirA, and cysI significantly decreased the resistance against NOR, whereas ΔAHA_1239, ΔcysA, ΔcysD, and ΔcysN significantly increased the resistance against NOR. Our results provide insights into NOR resistance mechanisms and indicate that AHA_0904, cirA, AHA_1239, and sulfur metabolism may play important roles in NOR resistance in A. hydrophila.
Collapse
Affiliation(s)
- Ziqiu Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingli Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunqi Xu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinlian Lu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaozhen Xu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuze Tang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guibin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Lin L, Wang Y, Srinivasan R, Zhang L, Song H, Song Q, Wang G, Lin X. Quantitative Proteomics Reveals That the Protein Components of Outer Membrane Vesicles (OMVs) in Aeromonas hydrophila Play Protective Roles in Antibiotic Resistance. J Proteome Res 2022; 21:1707-1717. [PMID: 35674493 DOI: 10.1021/acs.jproteome.2c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, the intracellular mechanisms that contribute to antibiotic resistance have received increasing attention, and outer membrane vesicles (OMVs) have been reported to be related to antibiotic resistance in several Gram-negative bacterial species. However, the intrinsic molecular mechanisms and the form of such antibiotic resistance are still largely unknown. In this study, OMVs from an oxytetracycline (OXY) sensitive aquatic pathogen, Aeromonas hydrophila (OXY-S), were found with significantly increased OXY resistance. Interestingly, the OXY-resistant strain (OXY-R) had a more protective role in OXY resistance. Therefore, a DIA-based quantitative proteomics analysis was performed to compare the differential expression of OMV proteins between OXY-R (OMVsR) and OXY-S (OMVsS). The results showed that seven proteins increased and five proteins decreased in OMVsR vs OMVsS. A subsequent antibiotics susceptibility assay showed that the deletion of icd, rpsF, and iscS significantly increased OXY sensitivity. Moreover, the exogenous addition of the crude OMV fractions of overexpressed recombinant proteins in E. coli with rRpsF, rIcd, rIscS, rOmpA, rPepA, rFrdA, and rRplQ demonstrated that these proteins promoted the OXY resistance of A. hydrophila. Overall, our results indicate the important protective role of OMVs in antibiotic resistance in A. hydrophila and provide novel insights on bacterial antibiotic resistance mechanisms.
Collapse
Affiliation(s)
- Ling Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Huanhuan Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Qingli Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, PR China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| |
Collapse
|
11
|
Zhang L, Chen X, Wang G, Yao J, Wei J, Liu Z, Lin X, Liu Y. Quantitative proteomics reveals the antibiotics adaptation mechanism of Aeromonas hydrophila under kanamycin stress. J Proteomics 2022; 264:104621. [PMID: 35618212 DOI: 10.1016/j.jprot.2022.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Aeromonas hydrophila is a widespread opportunistic pathogen of aquatic fishes in freshwater habitats. The current emergence of antimicrobial-resistant A. hydrophila has been reported in the world while the bacterial antibiotics adaptive mechanism remains poorly explored. In this study, using quantitative proteomics technology, the behavior of A. hydrophila was investigated by comparing the differentially expression proteins between with and without kanamycin (KAN) treatment. A total of 374 altered proteins including 184 increasing and 190 proteins decreasing abundances were quantified when responding to KAN stress. The bioinformatics analysis showed that stress related proteins were hub proteins that significantly increased to reduce the pressure from the misreading of mRNA caused by KAN. Moreover, several metallic pathways, such as oxidative phosphorylation and TCA cycle pathways may affect KAN resistance. Finally, eight selected genes were deleted and their antibiotics susceptibilities to kanamycin were valued, respectively. Results showed that OmpA II family protein A0KI26, and two-component system protein AtoC may involve in the KAN resistance in this study. In general, our results provide an insight into the behaviors of bacterial responding to KAN stress, and demonstrate the intrinsic antibiotics adaptive mechanism of A. hydrophila. BIOLOGICAL SIGNIFICANCE: In this study, the differentially expressed proteins (DEPs) of A. hydrophila strain between with and without kanamycin (KAN) were compared by using a data-independent acquisition (DIA) - based quantitative proteomics method. Bioinformatics analysis showed that stress - related proteins are hub proteins that significantly increased under KAN stress. Moreover, several metallic pathways, such as oxidative phosphorylation and citrate cycle (TCA cycle) pathways, can affect KAN resistance. Finally, our antibiotics susceptibility assay showed that the protein A0KI26 of the OmpA II family, and the AtoC of the two-component system may involve in KAN resistance in this study. These results provide insights into the antibiotics adaptation mechanism of A. hydrophila when responding to KAN stress.
Collapse
Affiliation(s)
- Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomeng Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jindong Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Wei
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yanling Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Zhang L, Yao Z, Tang H, Song Q, Song H, Yao J, Li Z, Xie X, Lin Y, Lin X. The lysine acetylation modification in the porin Aha1 of Aeromonas hydrophila regulates the uptake of multi-drug antibiotics. Mol Cell Proteomics 2022; 21:100248. [PMID: 35605723 PMCID: PMC9386498 DOI: 10.1016/j.mcpro.2022.100248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Protein lysine acetylation (Kac) modification plays important roles in diverse physiological functions. However, there is little evidence on the role of Kac modification in bacterial antibiotic resistance. Here, we compared the differential expressions of whole-cell proteins and Kac peptides in oxytetracycline sensitive and oxytetracycline resistance (OXYR) strains of Aeromonas hydrophila using quantitative proteomics technologies. We observed a porin family protein Aha1 downregulated in the OXYR strain, which may have an important role in the OXY resistance. Interestingly, seven of eight Kac peptides of Aha1 decreased abundance in OXYR as well. Microbiologic assays showed that the K57R, K187R, and K197R Aha1 mutants significantly increased antibiotic resistance to OXY and reduced the intracellular OXY accumulation in OXY stress. Moreover, these Aha1 mutants displayed multidrug resistance features to tetracyclines and β-lactam antibiotics. The 3D model prediction showed that the Kac states of K57, K187, and K197 sites located at the extracellular pore vestibule of Aha1 may be involved in the uptake of specific types of antibiotics. Overall, our results indicate a novel antibiotic resistance mechanism mediated by Kac modification, which may provide a clue for the development of antibiotic therapy strategies. Aha1 plays important role on oxytetracycline resistance. The deletion of aha1 reduces intracellular oxytetracycline accumulation. The Kac status on Aha1 affects oxytetracycline susceptibility. The Kac status on Aha1 involve in the regulation of multidrug antibiotics uptake.
Collapse
Affiliation(s)
- Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huamei Tang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingli Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jindong Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Zhangzhou Health Vocational College, Zhangzhou 363000, China
| | - Xiaofang Xie
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. Antibiotics (Basel) 2022; 11:antibiotics11030343. [PMID: 35326806 PMCID: PMC8944483 DOI: 10.3390/antibiotics11030343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023] Open
Abstract
The emergence of antimicrobial-resistant bacteria is an enormous challenge to public health. Aeromonas hydrophila and Aeromonas veronii are opportunistic pathogens in fish. They exert tremendous adverse effects on aquaculture production, owing to their acquired antibiotic resistance. A few Clinical and Laboratory Standards Institute (CLSI) epidemiological cut-off values (ECVs) against Aeromonas spp. are available. We evaluated antimicrobial susceptibility by establishing 8 ECVs using two analytical methods, normalized resistance interpretation and ECOFFinder. We detected antimicrobial resistance genes in two motile Aeromonas spp. isolated from aquatic animals. Results showed that 89.2% of A. hydrophila and 75.8% of A. veronii isolates were non-wild types according to the oxytetracycline ECVCLSI and ECVNRI, respectively. The antimicrobial resistance genes included tetA, tetB, tetD, tetE, cat, floR, qnrA, qnrB, qnrS, strA-strB, and aac(6′)-1b. The most common tet gene in Aeromonas spp. isolates was tetE, followed by tetA. Some strains carried more than one tet gene, with tetA–tetD and tetA–tetE found in A. hydrophila; however, tetB was not detected in any of the strains. Furthermore, 18.6% of A. hydrophila and 24.2% of A. veronii isolates showed presumptive multidrug-resistant phenotypes. The emergence of multidrug resistance among aquatic aeromonads suggests the spread of drug resistance and difficult to treat bacterial infections.
Collapse
|
14
|
Ali F, Cai Q, Hu J, Zhang L, Hoare R, Monaghan SJ, Pang H. In silico analysis of AhyI protein and AI-1 inhibition using N-cis-octadec-9z-enoyl-l-homoserine lactone inhibitor in Aeromonas hydrophila. Microb Pathog 2021; 162:105356. [PMID: 34915138 DOI: 10.1016/j.micpath.2021.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
AhyI is homologous to the protein LuxI and is conserved throughout bacterial species including Aeromonas hydrophila. A. hydrophila causes opportunistic infections in fish and other aquatic organisms. Furthermore, this pathogennot only poses a great risk for the aquaculture industry, but also for human public health. AhyI (expressing acylhomoserine lactone) is responsible for the biosynthesis of autoinducer-1 (AI-1), commonly referred to as a quorum sensing (QS) signaling molecule, which plays an essential role in bacterial communication. Studying protein structure is essential for understanding molecular mechanisms of pathogenicity in microbes. Here, we have deduced a predicted structure of AhyI protein and characterized its function using in silico methods to aid the development of new treatments for controlling A.hydrophila infections. In addition to modeling AhyI, an appropriate inhibitor molecule was identified via high throughput virtual screening (HTVS) using mcule drug-like databases.The AhyI-inhibitor N-cis-octadec-9Z-enoyl-l-Homoserine lactone was selected withthe best drug score. In order to understand the pocket sites (ligand binding sites) and their interaction with the selected inhibitor, docking (predicted protein binding complex) servers were used and the selected ligand was docked with the predicted AhyI protein model. Remarkably, N-cis-octadec-9Z-enoyl-l-Homoserine lactone established interfaces with the protein via16 residues (V24, R27, F28, R31, W34, V36, D45, M77, F82, T101, R102, L103, 104, V143, S145, and V168), which are involved with regulating mechanisms of inhibition. These proposed predictions suggest that this inhibitor molecule may be used as a novel drug candidate for the inhibition of auto-inducer-1 (AI-1) activity.The N-cis-octadec-9Z-enoyl-l-Homoserine lactone inhibitor molecule was studied on cultured bacteria to validate its potency against AI-1 production. At a concentration of 40 μM, optimal inhibition efficiency of AI-1 was observedin bacterial culture media.These results suggest that the inhibitor molecule N-cis-octadec-9Z-enoyl-l-Homoserine lactone is a competitive inhibitor of AI-1 biosynthesis.
Collapse
Affiliation(s)
- Farman Ali
- Fujian Provincial Key Laboratory of Agro Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 35002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou, 35002, China
| | - Qilan Cai
- Fujian Provincial Key Laboratory of Agro Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 35002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou, 35002, China
| | - Jialing Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agro Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 35002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou, 35002, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Huanying Pang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| |
Collapse
|
15
|
Felix E Silva A, Pires IC, da Costa MM, Melo JFB, Lorenzo VP, de Melo FVST, Copatti CE. Antibacterial and antibiofilm activities and synergism with florfenicol from the essential oils of Lippia sidoides and Cymbopogon citratus against Aeromonas hydrophila. J Appl Microbiol 2021; 132:1802-1812. [PMID: 34689393 DOI: 10.1111/jam.15336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
AIMS Aeromonas hydrophila is an opportunistic bacterium, with a high capacity for biofilm production, which can cause severe damage in aquaculture. The objective of this study was to identify the chemical compounds of the essential oils of Lippia sidoides (EOLS) and Cymbopogon citratus (EOCC), and to evaluate the biocidal, antibiofilm and synergistic action with the antimicrobial florfenicol of these essential oils (EOs) against A. hydrophila. METHODS AND RESULTS The antibacterial activity of EOLS and EOCC was verified by the minimum bactericidal concentration and by the action of these EOs against both forming and consolidated biofilms. The synergistic activity of EOs with florfenicol was performed using the checkerboard technique. The main component of EOLS and EOCC was carvacrol (44.50%) and α-citral (73.56%), respectively. Both EOs showed weak inhibitory activity (≥3125.00 µg ml-1 ). Two bacterial isolates were able to produce biofilm, and EOLS and EOCC acted upon the bacterial isolates to prevent biofilm formation. A bactericidal effect was verified for EOLS in the previously consolidated biofilm for both isolates and for EOCC in only one of the isolates. In general, EOLS had a synergistic effect with florfenicol, while EOCF had an additive effect. CONCLUSIONS Both EOs were able to interfere with biofilm formation and did not have an antagonistic effect in combination with florfenicol. The best results were found for EOLS, which showed a synergistic effect with florfenicol and the ability to interfere in the formation of consolidated biofilm. SIGNIFICANCE AND IMPACT OF THE STUDY This study highlights the potential of EOLS and EOCC to interfere in biofilm and act in synergy with florfenicol to reduce the occurrence of A. hydrophila. Development of these compounds may contribute to the development of herbal medicines in aquaculture.
Collapse
Affiliation(s)
- Altiery Felix E Silva
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Isabelle C Pires
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - Mateus M da Costa
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - José F B Melo
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - Vitor P Lorenzo
- Instituto Federal do Sertão Pernambucano, Campus Petrolina Setor Rural, Petrolina, PE, Brazil
| | | | - Carlos E Copatti
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Salvador, BA, Brazil
| |
Collapse
|
16
|
Srinivasan R, Kannappan A, Shi C, Lin X. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Mar Drugs 2021; 19:md19100530. [PMID: 34677431 PMCID: PMC8539464 DOI: 10.3390/md19100530] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in preventing and treating infectious diseases caused by pathogenic organisms, such as bacteria, fungi, and viruses. Because of the burgeoning growth of microbes with antimicrobial-resistant traits, there is a dire need to identify and develop novel and effective antimicrobial agents to treat infections from antimicrobial-resistant strains. The marine environment is rich in ecological biodiversity and can be regarded as an untapped resource for prospecting novel bioactive compounds. Therefore, exploring the marine environment for antimicrobial agents plays a significant role in drug development and biomedical research. Several earlier scientific investigations have proven that bacterial diversity in the marine environment represents an emerging source of structurally unique and novel antimicrobial agents. There are several reports on marine bacterial secondary metabolites, and many are pharmacologically significant and have enormous promise for developing effective antimicrobial drugs to combat microbial infections in drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (1996–2020) on antimicrobial secondary metabolites from marine bacteria evolved in marine environments, such as marine sediment, water, fauna, and flora.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| | - Arunachalam Kannappan
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Chunlei Shi
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| |
Collapse
|
17
|
Kuang SF, Chen YT, Chen JJ, Peng XX, Chen ZG, Li H. Synergy of alanine and gentamicin to reduce nitric oxide for elevating killing efficacy to antibiotic-resistant Vibrio alginolyticus. Virulence 2021; 12:1737-1753. [PMID: 34251979 PMCID: PMC8276662 DOI: 10.1080/21505594.2021.1947447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study explored the cooperative effect of both alanine (Ala) and gentamicin (Gent) on metabolic mechanisms by which exogenous Ala potentiates Gent to kill antibiotic-resistant Vibrio alginolyticus. To test this, GC-MS-based metabolomics was used to characterize Ala-, Gent- and both-induced metabolic profiles, identifying nitric oxide (NO) production pathway as the most key clue to understand metabolic mechanisms. Gent, Ala and both led to low, lower and lowest activity of total nitric oxide synthase (tNOS) and level of NO, respectively. NOS promoter L-arginine and inhibitor NG-Monomethyl-L-arginine inhibited and promoted the killing, respectively, with the elevation and decrease of NOS activity and NO level. The present study further showed that CysJ is the enzyme-producing NO in V. alginolyticus. These results indicate that the cooperative effect of Ala and Gent causes the lowest NO, which plays a key role in Ala-potentiated Gent-mediated killing.
Collapse
Affiliation(s)
- Su-Fang Kuang
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China
| | - Yue-Tao Chen
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China
| | - Jia-Jie Chen
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhuang-Gui Chen
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China
| | - Hui Li
- State Key Laboratory of Bio-Control and the Third Affiliated Hospital, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory Zhuhai, Sun Yat-sen University, University City, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Miao Y, Wang Y, Huang D, Lin X, Lin Z, Lin X. Profile of protein lysine propionylation in Aeromonas hydrophila and its role in enzymatic regulation. Biochem Biophys Res Commun 2021; 562:1-8. [PMID: 34030039 DOI: 10.1016/j.bbrc.2021.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022]
Abstract
Protein lysine propionylation (Kpr) modification is a novel post-translational modification (PTM) of prokaryotic cells that was recently discovered; however, it is not clear how this modification regulates bacterial life. In this study, the protein Kpr modification profile in Aeromonas hydrophila was identified by high specificity antibody-based affinity enrichment combined with high resolution LC MS/MS. A total of 98 lysine-propionylated peptides with 59 Kpr proteins were identified, most of which were associated with energy metabolism, transcription and translation processes. To further understand the role of Kpr modified proteins, the K168 site on malate dehydrogenase (MDH) and K608 site on acetyl-coenzyme A synthetase (AcsA) were subjected to site-directed mutation to arginine (R) and glutamine (Q) to simulate deacylation and propionylation, respectively. Subsequent measurement of the enzymatic activity showed that the K168 site of Kpr modification on MDH may negatively regulate the MDH enzymatic activity while also affecting the survival of mdh derivatives when using glucose as the carbon source, whereas Kpr modification of K608 of AcsA does not. Overall, the results of this study indicate that protein Kpr modification plays an important role in bacterial biological functions, especially those involved in the activity of metabolic enzymes.
Collapse
Affiliation(s)
- Yuxuan Miao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Dongping Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiaoke Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Zhenping Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
19
|
Srinivasan R, Devi KR, Santhakumari S, Kannappan A, Chen X, Ravi AV, Lin X. Anti-quorum Sensing and Protective Efficacies of Naringin Against Aeromonas hydrophila Infection in Danio rerio. Front Microbiol 2020; 11:600622. [PMID: 33424802 PMCID: PMC7793879 DOI: 10.3389/fmicb.2020.600622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
It is now well known that the quorum sensing (QS) mechanism coordinates the production of several virulence factors and biofilm formation in most pathogenic microorganisms. Aeromonas hydrophila is a prime pathogen responsible for frequent outbreaks in aquaculture settings. Recent studies have also continuously reported that A. hydrophila regulates virulence factor production and biofilm formation through the QS system. In addition to the presence of antibiotic resistance genes, biofilm-mediated antibiotic resistance increases the severity of A. hydrophila infections. To control the bacterial pathogenesis and subsequent infections, targeting the QS mechanism has become one of the best alternative methods. Though very few compounds were identified as QS inhibitors against A. hydrophila, to date, the screening and identification of new and effective natural QS inhibitors is a dire necessity to control the infectious A. hydrophila. The present study endorses naringin (NA) as an anti-QS and anti-infective agent against A. hydrophila. Initially, the NA showed a concentration-dependent biofilm reduction against A. hydrophila. Furthermore, the results of microscopic analyses and quantitative virulence assays displayed the promise of NA as a potential anti-QS agent. Subsequently, the downregulation of ahh1, aerA, lip and ahyB validate the interference of NA in virulence gene expression. Furthermore, the in vivo assays were carried out in zebrafish model system to evaluate the anti-infective potential of NA. The outcome of the immersion challenge assay showed that the recovery rate of the zebrafish has substantially increased upon treatment with NA. Furthermore, the quantification of the bacterial load upon NA treatment showed a decreased level of bacterial counts in zebrafish when compared to the untreated control. Moreover, the NA treatment averts the pathogen-induced histoarchitecture damages in vital organs of zebrafish, compared to their respective controls. The current study has thus analyzed the anti-QS and anti-infective capabilities of NA and could be employed to formulate effective treatment measures against A. hydrophila infections.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Kannan Rama Devi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Sivasubramanian Santhakumari
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Arunachalam Kannappan
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomeng Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | | | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Fu Y, Zhang L, Wang G, Lin Y, Ramanathan S, Yang G, Lin W, Lin X. The LysR-Type Transcriptional Regulator YeeY Plays Important Roles in the Regulatory of Furazolidone Resistance in Aeromonas hydrophila. Front Microbiol 2020; 11:577376. [PMID: 33013815 PMCID: PMC7509050 DOI: 10.3389/fmicb.2020.577376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Aeromonas hydrophila is an aquatic pathogen of freshwater fish. The emergence of widespread antimicrobial-resistance strains of this pathogen has caused increasing rates of fish infections. Our previous research reported that A. hydrophila yeeY, a LysR-type transcriptional regulator (LTTR), negatively regulated furazolidone (FZ) resistance. Although, it’s intrinsic regulatory mechanism is still unclear. In this study, a data-independent acquisition (DIA) quantitative proteomics method was used to compare the differentially expressed proteins (DEPs) between the ΔyeeY and wild-type strain under FZ treatment. When compared to the control, a total of 594 DEPs were identified in ΔyeeY. Among which, 293 and 301 proteins were substantially increased and decreased in abundance, respectively. Bioinformatics analysis showed that several biological pathways such as the secretion system and protein transport were mainly involved in FZ resistance. Subsequently, the antibiotics susceptibility assays of several gene deletion strains identified from the proteomics results showed that YeeY may regulate some important genes such as cysD, AHA_2766, AHA_3195, and AHA_4275, which affects the FZ resistance in A. hydrophila. Furthermore, 34 antimicrobial resistance genes (ARGs) from the bacterial drug resistance gene database (CARD) were found to be directly or indirectly regulated by YeeY. A subsequent assay of several ARGs mutants showed that ΔAHA_3222 increased the susceptibility of A. hydrophila to FZ, while ΔcysN and ΔAHA_3753 decreased the susceptibility rate. Finally, the chromatin immunoprecipitation (ChIP) PCR and an electrophoretic mobility shift assay (EMSA) have revealed that the genes such as AHA_3222 and AHA_4275 were directly and transcriptionally regulated by YeeY. Taken together, our findings demonstrated that YeeY may participate in antimicrobial resistance of A. hydrophila to FZ, which provides a new target for the development of novel antimicrobial agents in the future.
Collapse
Affiliation(s)
- Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Srinivasan Ramanathan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guidi Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
21
|
Proteomics analysis reveals the effect of Aeromonas hydrophila sirtuin CobB on biological functions. J Proteomics 2020; 225:103848. [DOI: 10.1016/j.jprot.2020.103848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/09/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
|
22
|
Jiang M, Yang L, Chen Z, Lai S, Zheng J, Peng B. Exogenous maltose enhances Zebrafish immunity to levofloxacin-resistant Vibrio alginolyticus. Microb Biotechnol 2020; 13:1213-1227. [PMID: 32364684 PMCID: PMC7264874 DOI: 10.1111/1751-7915.13582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the interplay between bacterial fitness, antibiotic resistance, host immunity and host metabolism could guide treatment and improve immunity against antibiotic-resistant pathogens. The acquisition of levofloxacin (Lev) resistance affects the fitness of Vibrio alginolyticus in vitro and in vivo. Lev-resistant (Lev-R) V. alginolyticus exhibits slow growth, reduced pathogenicity and greater resistance to killing by the host, Danio rerio (zebrafish), than Lev-sensitive (Lev-S) V. alginolyticus, suggesting that Lev-R V. alginolyticus triggers a weaker innate immune response in D. rerio than Lev-S V. alginolyticus. Differences were detected in the metabolome of D. rerio infected with Lev-S or Lev-R V. alginolyticus. Maltose, a crucial metabolite, is significantly downregulated in D. rerio infected with Lev-R V. alginolyticus, and exogenous maltose enhances the immune response of D. rerio to Lev-R V. alginolyticus, leading to better clearance of the infection. Furthermore, we demonstrate that exogenous maltose stimulates the host production of lysozyme and its binding to Lev-R V. alginolyticus, which depends on bacterial membrane potential. We suggest that exogenous exposure to crucial metabolites could be an effective strategy for treating and/or managing infections with antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ming Jiang
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266071China
| | - Lifen Yang
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Zhuang‐gui Chen
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Shi‐shi Lai
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
| | - Jun Zheng
- Faculty of Health SciencesUniversity of MacauMacau SARChina
| | - Bo Peng
- The Third Affiliated HospitalState Key Laboratory of BiocontrolGuangdong Key Laboratory of Pharmaceutical Functional GenesSchool of Life SciencesSun Yat-sen UniversityGuangzhou510275China
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdao266071China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Zhuhai519000China
| |
Collapse
|
23
|
Gong QY, Yang MJ, Yang LF, Chen ZG, Jiang M, Peng B. Metabolic modulation of redox state confounds fish survival against Vibrio alginolyticus infection. Microb Biotechnol 2020; 13:796-812. [PMID: 32212318 PMCID: PMC7664012 DOI: 10.1111/1751-7915.13553] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/18/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022] Open
Abstract
Vibrio alginolyticus threatens both humans and marine animals, but hosts respond to V. alginolyticus infection is not fully understood. Here, functional metabolomics was adopted to investigate the metabolic differences between the dying and surviving zebrafish upon V. alginolyticus infection. Tryptophan was identified as the most crucial metabolite, whose abundance was decreased in the dying group but increased in the survival group as compared to control group without infection. Concurrently, the dying zebrafish displayed excessive immune response and produced higher level of reactive oxygen species (ROS). Interestingly, exogenous tryptophan reverted dying rate through metabolome re‐programming, thereby enhancing the survival from V. alginolyticus infection. It is preceded by the following mechanism: tryptophan fluxed into the glycolysis and tricarboxylic acid cycle (TCA cycle), promoted adenosine triphosphate (ATP) production and further increased the generation of NADPH. Meanwhile, tryptophan decreased NADPH oxidation. These together ameliorate ROS, key molecules in excessive immune response. This is further supported by the event that the inhibition of pyruvate metabolism and TCA cycle by inhibitors decreased D. reiro survival. Thus, our data indicate that tryptophan is a key metabolite for the host to fight against V. alginolyticus infection, representing an alternative strategy to treat bacterial infection in an antibiotic‐independent way.
Collapse
Affiliation(s)
- Qi-Yang Gong
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes School of Life Sciences, Center for Proteomics and Metabolomics, Sun Yat-sen University, Guangzhou, 510006, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Man-Jun Yang
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes School of Life Sciences, Center for Proteomics and Metabolomics, Sun Yat-sen University, Guangzhou, 510006, China
| | - Li-Fen Yang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhuang-Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ming Jiang
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes School of Life Sciences, Center for Proteomics and Metabolomics, Sun Yat-sen University, Guangzhou, 510006, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes School of Life Sciences, Center for Proteomics and Metabolomics, Sun Yat-sen University, Guangzhou, 510006, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
24
|
Li D, Ramanathan S, Wang G, Wu Y, Tang Q, Li G. Acetylation of lysine 7 of AhyI affects the biological function in Aeromonas hydrophila. Microb Pathog 2020; 140:103952. [DOI: 10.1016/j.micpath.2019.103952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 01/18/2023]
|
25
|
Zhang L, Li W, Sun L, Wang Y, Lin Y, Lin X. Quantitative proteomics reveals the molecular mechanism of Aeromonas hydrophila in enoxacin stress. J Proteomics 2020; 211:103561. [DOI: 10.1016/j.jprot.2019.103561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/09/2019] [Accepted: 10/19/2019] [Indexed: 01/09/2023]
|