1
|
Kaur M, Mozaheb N, Paiva TO, Herent MF, Goormaghtigh F, Paquot A, Terrasi R, Mignolet E, Décout JL, Lorent JH, Larondelle Y, Muccioli GG, Quetin-Leclercq J, Dufrêne YF, Mingeot-Leclercq MP. Insight into the outer membrane asymmetry of P. aeruginosa and the role of MlaA in modulating the lipidic composition, mechanical, biophysical, and functional membrane properties of the cell envelope. Microbiol Spectr 2024:e0148424. [PMID: 39373473 DOI: 10.1128/spectrum.01484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how Pseudomonas aeruginosa ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of mlaA. Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of mlaA induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of P. aeruginosa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆mlaA. In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3',6-dinonyl neamine) that targets P. aeruginosa membranes induced an opposite effect on ∆mlaA strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting mlaA, the membrane component of Mla system located at the OM, affects the mechanical and functional properties of P. aeruginosa cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in P. aeruginosa.
Collapse
Affiliation(s)
- M Kaur
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - N Mozaheb
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - T O Paiva
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M-F Herent
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - F Goormaghtigh
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - A Paquot
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - R Terrasi
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - E Mignolet
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - J-L Décout
- Université Grenoble Alpes, CNRS, DPM, Grenoble, France
| | - J H Lorent
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| | - Y Larondelle
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Biochemistry of Nutrition and Environmental Toxicology Louvain-la-Neuve, Brussels, Belgium
| | - G G Muccioli
- UCLouvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, Brussels, Belgium
| | - J Quetin-Leclercq
- UCLouvain, Louvain Drug Research Institute, Pharmacognosy, Brussels, Belgium
| | - Y F Dufrêne
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium
| | - M-P Mingeot-Leclercq
- UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium
| |
Collapse
|
2
|
Batista BB, Will WR, de Lima VM, Fang FC, da Silva Neto JF. A cytochrome bd repressed by a MarR family regulator confers resistance to metals, nitric oxide, sulfide, and cyanide in Chromobacterium violaceum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606881. [PMID: 39211195 PMCID: PMC11361195 DOI: 10.1101/2024.08.06.606881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chromobacterium violaceum is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome bd that protects C. violaceum against multiple stresses. The two subunits of this cytochrome bd (CioAB) are encoded by the cioRAB operon, which also encodes a GbsR-type MarR family transcription factor (CioR). A Δ cioAB mutant strain was sensitive to iron and the iron-requiring antibiotic streptonigrin and showed a decrease in siderophore production. Growth curves and survival assays revealed that the Δ cioAB strain was also sensitive to zinc, hydrogen peroxide, nitric oxide, sulfide, and cyanide. Expression analysis showed that the promoter activity of the cioRAB operon and the transcript levels of the cioAB genes were increased in a Δ cioR mutant. CioR bound the promoter region of the cio operon in vitro , indicating that CioR is a direct repressor of its own operon. Expression of the cio operon increased at high cell density and was dependent on the quorum-sensing regulator CviR. As cyanide is also a signal for cio expression, and production of endogenous cyanide is known to be a quorum sensing-regulated trait in C. violaceum , we suggest that CioAB is a cyanide-insensitive terminal oxidase that allow respiration under cyanogenic growth conditions. Our findings indicate that the cytochrome bd CioAB protects C. violaceum against multiple stress agents that are potentially produced endogenously or during interactions with a host. IMPORTANCE The terminal oxidases of bacterial respiratory chains rely on heme-copper (heme-copper oxidases) or heme (cytochrome bd ) to catalyze reduction of molecular oxygen to water. Chromobacterium violaceum is a facultative anaerobic bacterium that uses oxygen and other electron acceptors for respiration under conditions of varying oxygen availability. The C. violaceum genome encodes multiple respiratory terminal oxidases, but their role and regulation remain unexplored. Here, we demonstrate that CioAB, the single cytochrome bd from C. violaceum , protects this bacterium against multiple stressors that are inhibitors of heme-copper oxidases, including nitric oxide, sulfide, and cyanide. CioAB also confers C. violaceum resistance to iron, zinc, and hydrogen peroxide. This cytochrome bd is encoded by the cioRAB operon, which is under direct repression by the MarR-type regulator CioR. In addition, the cioRAB operon responds to quorum sensing and to cyanide, suggesting a protective mechanism of increasing CioAB in the setting of high endogenous cyanide production.
Collapse
|
3
|
Kaur M, Mingeot-Leclercq MP. Maintenance of bacterial outer membrane lipid asymmetry: insight into MlaA. BMC Microbiol 2024; 24:186. [PMID: 38802775 PMCID: PMC11131202 DOI: 10.1186/s12866-023-03138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 05/29/2024] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier to protect against toxic compounds. By nature, the OM is asymmetric with the highly packed lipopolysaccharide (LPS) at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla system, in which is responsible for the retrograde transport of glycerophospholipids from the OM to the inner membrane. This system is comprised of six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids that are mis-localized at the outer leaflet of the OM. Interestingly, MlaA was initially identified - and called VacJ - based on its role in the intracellular spreading of Shigella flexneri.Many open questions remain with respect to the Mla system and the mechanism involved in the translocation of mislocated glycerophospholipids at the outer leaflet of the OM, by MlaA. After summarizing the current knowledge on MlaA, we focus on the impact of mlaA deletion on OM lipid composition and biophysical properties of the OM. How changes in OM lipid composition and biophysical properties can impact the generation of membrane vesicles and membrane permeability is discussed. Finally, we explore whether and how MlaA might be a candidate for improving the activity of antibiotics and as a vaccine candidate.Efforts dedicated to understanding the relationship between the OM lipid composition and the mechanical strength of the bacterial envelope and, in turn, how such properties act against external stress, are needed for the design of new targets or drugs for Gram-negative infections.
Collapse
Affiliation(s)
- M Kaur
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium
| | - M-P Mingeot-Leclercq
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium.
| |
Collapse
|
4
|
Wang S, Chen CC, Hu MH, Cheng M, Tu HF, Tsai YC, Yang JM, Wu TC, Huang CH, Hung CF. Arginine-linked HPV-associated E7 displaying bacteria-derived outer membrane vesicles as a potent antigen-specific cancer vaccine. J Transl Med 2024; 22:378. [PMID: 38649894 PMCID: PMC11036690 DOI: 10.1186/s12967-024-05195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier. METHOD Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7. RESULTS Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells. CONCLUSION The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.
Collapse
Affiliation(s)
- Suyang Wang
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Chao-Cheng Chen
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Ming-Hung Hu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Jr-Ming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - T C Wu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Venkatramanan M, Nalini E. Regulation of virulence in Chromobacterium violaceum and strategies to combat it. Front Microbiol 2024; 15:1303595. [PMID: 38328423 PMCID: PMC10847564 DOI: 10.3389/fmicb.2024.1303595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Chromobacterium is a rod-shaped, Gram-negative, facultatively anaerobic bacteria with a cosmopolitan distribution. Just about 160 Chromobacterium violaceum incidents have been reported globally, but then once infected, it has the ability to cause deadly septicemia, and infections in the lungs, liver, brain, spleen, and lymphatic systems that might lead to death. C. violaceum produces and utilizes violacein to kill bacteria that compete with it in an ecological niche. Violacein is a hydrophobic bisindole that is delivered through an efficient transport route termed outer membrane vesicles (OMVs) through the aqueous environment. OMVs are small, spherical segments detached from the outer membrane of Gram-negative bacteria. C. violaceum OMV secretions are controlled by a mechanism called the quorum sensing system CviI/CviR, which enables cell-to-cell communication between them and regulation of various virulence factors such as biofilm formation, and violacein biosynthesis. Another virulence factor bacterial type 3 secretion system (T3SS) is divided into two types: Cpi-1 and Cpi-2. Cpi-1's needle and rod effector proteins are perhaps recognized by NAIP receptors in humans and mice, activating the NLRC4 inflammasome cascade, effectively clearing spleen infections via pyroptosis, and cytotoxicity mediated by IL-18-driven Natural killer (NK) cells in the liver. In this paper, we attempt to interrelate quorum-controlled biofilm formation, violacein production, violacein delivery by OMVs and T3SS effector protein production and host mediated immunological effects against the Cpi1 of T3SS. We suggest a research path with natural bioactive molecule like palmitic acid that can act as an anti-quorum agent by reducing the expression of virulence factors as well as an immunomodulatory agent that can augment innate immune defense by hyperactivation of NLRC4 inflammasome hence dramatically purge C. violaceum infections.
Collapse
|
6
|
Bitzenhofer NL, Höfel C, Thies S, Weiler AJ, Eberlein C, Heipieper HJ, Batra‐Safferling R, Sundermeyer P, Heidler T, Sachse C, Busche T, Kalinowski J, Belthle T, Drepper T, Jaeger K, Loeschcke A. Exploring engineered vesiculation by Pseudomonas putida KT2440 for natural product biosynthesis. Microb Biotechnol 2024; 17:e14312. [PMID: 37435812 PMCID: PMC10832525 DOI: 10.1111/1751-7915.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Carolin Höfel
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andrea Jeanette Weiler
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Eberlein
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Hermann J. Heipieper
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Renu Batra‐Safferling
- Institute of Biological Information Processing – Structural Biochemistry (IBI‐7: Structural Biochemistry)Forschungszentrum JülichJülichGermany
| | - Pia Sundermeyer
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Thomas Heidler
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Carsten Sachse
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
- Department of BiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
- Bielefeld University, Medical School East Westphalia‐LippeBielefeld UniversityBielefeldGermany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Thomke Belthle
- DWI─Leibniz‐Institute for Interactive MaterialsAachenGermany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
7
|
Pérez Jorge G, Gontijo MTP, Brocchi M. Salmonella enterica and outer membrane vesicles are current and future options for cancer treatment. Front Cell Infect Microbiol 2023; 13:1293351. [PMID: 38116133 PMCID: PMC10728604 DOI: 10.3389/fcimb.2023.1293351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Conventional cancer therapies have many limitations. In the last decade, it has been suggested that bacteria-mediated immunotherapy may circumvent the restrictions of traditional treatments. For example, Salmonella enterica is the most promising bacteria for treating cancer due to its intrinsic abilities, such as killing tumor cells, targeting, penetrating, and proliferating into the tumor. S. enterica has been genetically modified to ensure safety and increase its intrinsic antitumor efficacy. This bacterium has been used as a vector for delivering anticancer agents and as a combination therapy with chemotherapy, radiotherapy, or photothermic. Recent studies have reported the antitumor efficacy of outer membrane vesicles (OMVs) derived from S. enterica. OMVs are considered safer than attenuated bacteria and can stimulate the immune system as they comprise most of the immunogens found on the surface of their parent bacteria. Furthermore, OMVs can also be used as nanocarriers for antitumor agents. This review describes the advances in S. enterica as immunotherapy against cancer and the mechanisms by which Salmonella fights cancer. We also highlight the use of OMVs as immunotherapy and nanocarriers of anticancer agents. OMVs derived from S. enterica are innovative and promising strategies requiring further investigation.
Collapse
Affiliation(s)
- Genesy Pérez Jorge
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| | - Marco Túlio Pardini Gontijo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Marcelo Brocchi
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| |
Collapse
|
8
|
Bitzenhofer NL, Classen T, Jaeger KE, Loeschcke A. Biotransformation Of l-Tryptophan To Produce Arcyriaflavin A With Pseudomonas putida KT2440. Chembiochem 2023; 24:e202300576. [PMID: 37743253 DOI: 10.1002/cbic.202300576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Natural products such as indolocarbazoles are a valuable source of highly bioactive compounds with numerous potential applications in the pharmaceutical industry. Arcyriaflavin A, isolated from marine invertebrates and slime molds, is one representative of this group and acts as a cyclin D1-cyclin-dependent kinase 4 inhibitor. To date, access to this compound has mostly relied on multi-step total synthesis. In this study, biosynthetic access to arcyriaflavin A was explored using recombinant Pseudomonas putida KT2440 based on a previously generated producer strain. We used a Design of Experiment approach to analyze four key parameters, which led to the optimization of the bioprocess. By engineering the formation of outer membrane vesicles and using an adsorbent in the culture broth, we succeeded to increase the yield of arcyriaflavin A in the cell-free supernatant, resulting in a nearly eight-fold increase in the overall production titers. Finally, we managed to scale up the bioprocess leading to a final yield of 4.7 mg arcyriaflavin A product isolated from 1 L of bacterial culture. Thus, this study showcases an integrative approach to improve biotransformation and moreover also provides starting points for further optimization of indolocarbazole production in P. putida.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| |
Collapse
|
9
|
Yang H, Xu Z, Xu Z, Li Y. Mini-Review of Biofilm Interactions with Surface Materials in Industrial Piping System. MEMBRANES 2023; 13:125. [PMID: 36837628 PMCID: PMC9961356 DOI: 10.3390/membranes13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The growth of biofilm, which is caused by microorganism accumulation and growth on wetted surfaces, may damage industrial piping systems, increase maintenance and cleaning costs for the system sterilization, and even divulge the immune system into high risk. This article systematically analyzes the biofilm interactions with piping surface materials from the perspectives of physical convection, and biological and chemical adhesion. The thermodynamics of the flow, bacterial surface sensing, and bio-communication are the most critical factors for biofilm attachment. Furthermore, experimental analysis methods as well as biofilm control and removal approaches, are also included in this study. Finally, the resistance and growth of biofilm, as well as the practical and advanced methodology to control the biofilm and challenges associated with technology, are also discussed. Moreover, this paper may also offer a significant reference for the practice and strategic applications to address the biofilm resistance issues in industrial piping.
Collapse
Affiliation(s)
- Haoyi Yang
- NUS College of Design and Engineering, National University of Singapore, Singapore 118429, Singapore
| | - Zezheng Xu
- UNSW Environment Leadership Program, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Zetong Xu
- Qingdao Huanghai Vocational Institute, Qingdao 266555, China
| | - Yuanzhe Li
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
10
|
Lyakhovchenko NS, Travkin VM, Senchenkov VY, Solyanikova IP. Bacterial Violacein: Properties, Biosynthesis and Application Prospects. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
A Quorum Sensing-Regulated Type VI Secretion System Containing Multiple Nonredundant VgrG Proteins Is Required for Interbacterial Competition in Chromobacterium violaceum. Microbiol Spectr 2022; 10:e0157622. [PMID: 35876575 PMCID: PMC9430734 DOI: 10.1128/spectrum.01576-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental pathogenic bacterium Chromobacterium violaceum kills Gram-positive bacteria by delivering violacein packed into outer membrane vesicles, but nothing is known about its contact-dependent competition mechanisms. In this work, we demonstrate that C. violaceum utilizes a type VI secretion system (T6SS) containing multiple VgrG proteins primarily for interbacterial competition. The single T6SS of C. violaceum contains six vgrG genes, which are located in the main T6SS cluster and four vgrG islands. Using T6SS core component-null mutant strains, Western blotting, fluorescence microscopy, and competition assays, we showed that the C. violaceum T6SS is active and required for competition against Gram-negative bacteria such as Pseudomonas aeruginosa but dispensable for C. violaceum infection in mice. Characterization of single and multiple vgrG mutants revealed that, despite having high sequence similarity, the six VgrGs show little functional redundancy, with VgrG3 showing a major role in T6SS function. Our coimmunoprecipitation data support a model of VgrG3 interacting directly with the other VgrGs. Moreover, we determined that the promoter activities of T6SS genes increased at high cell density, but the produced Hcp protein was not secreted under such condition. This T6SS growth phase-dependent regulation was dependent on CviR but not on CviI, the components of a C. violaceum quorum sensing (QS) system. Indeed, a ΔcviR but not a ΔcviI mutant was completely defective in Hcp secretion, T6SS activity, and interbacterial competition. Overall, our data reveal that C. violaceum relies on a QS-regulated T6SS to outcompete other bacteria and expand our knowledge about the redundancy of multiple VgrGs. IMPORTANCE The type VI secretion system (T6SS) is a contractile nanomachine used by many Gram-negative bacteria to inject toxic effectors into adjacent cells. The delivered effectors are bound to the components of a puncturing apparatus containing the protein VgrG. The T6SS has been implicated in pathogenesis and, more commonly, in competition among bacteria. Chromobacterium violaceum is an environmental bacterium that causes deadly infections in humans. In this work, we characterized the single T6SS of C. violaceum ATCC 12472, including its six VgrG proteins, regarding its function and regulation. This previously undescribed C. violaceum T6SS is active, regulated by QS, and required for interbacterial competition instead of acute infection in mice. Among the VgrGs, VgrG3, encoded outside the main T6SS cluster, showed a major contribution to T6SS function. These results shed light on a key contact-dependent killing mechanism used by C. violaceum to antagonize other bacteria.
Collapse
|
12
|
Comparative Genomics Reveals Insights into Induction of Violacein Biosynthesis and Adaptive Evolution in Janthinobacterium. Microbiol Spectr 2021; 9:e0141421. [PMID: 34908429 PMCID: PMC8672880 DOI: 10.1128/spectrum.01414-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Violacein has different bioactive properties conferring distinct selective advantages, such as defense from predation and interspecific competition. Adaptation of Janthinobacterium to diverse habitats likely leads to variation in violacein production among phylogenetically closely related species inhabiting different environments, yet genomic mechanisms and the influence of adaptive evolution underpinning violacein biosynthesis in Janthinobacterium are not clear. In this study, we performed genome sequencing, comparative genomic analysis, and phenotypic characterization to investigate genomic factors regulating violacein production in nine Janthinobacterium strains, including a type strain from soil and eight strains we isolated from terrestrial subsurface sediment and groundwater. Results show that although all nine Janthinobacterium strains are phylogenetically closely related and contain genes essential for violacein biosynthesis, they vary in carbon usage and violacein production. Sediment and groundwater strains are weak violacein producers and possess far fewer secondary metabolite biosynthesis genes, indicating genome adaptation compared to soil strains. Further examination suggests that quorum sensing (QS) may play an important role in regulating violacein in Janthinobacterium: the strains exhibiting strong potential in violacein production possess both N-acyl-homoserine lactone (AHL) QS and Janthinobacterium QS (JQS) systems in their genomes, while weaker violacein-producing strains harbor only the JQS system. Preliminary tests of spent media of two Janthinobacterium strains possessing both AHL QS and JQS systems support the potential role of AHLs in inducing violacein production in Janthinobacterium. Overall, results from this study reveal potential genomic mechanisms involved in violacein biosynthesis in Janthinobacterium and provide insights into evolution of Janthinobacterium for adaptation to oligotrophic terrestrial subsurface environment. IMPORTANCE Phylogenetically closely related bacteria can thrive in diverse environmental habitats due to adaptive evolution. Genomic changes resulting from adaptive evolution lead to variations in cellular function, metabolism, and secondary metabolite biosynthesis. The most well-known secondary metabolite produced by Janthinobacterium is the purple-violet pigment violacein. To date, the mechanisms of induction of violacein biosynthesis in Janthinobacterium is not clear. Comparative genome analysis of closely related Janthinobacterium strains isolated from different environmental habitats not only reveals potential mechanisms involved in induction of violacein production by Janthinobacterium but also provides insights into the survival strategy of Janthinobacterium for adaptation to oligotrophic terrestrial subsurface environment.
Collapse
|
13
|
Ampomah-Wireko M, Luo C, Cao Y, Wang H, Nininahazwe L, Wu C. Chemical probe of AHL modulators on quorum sensing in Gram-Negative Bacteria and as antiproliferative agents: A review. Eur J Med Chem 2021; 226:113864. [PMID: 34626877 DOI: 10.1016/j.ejmech.2021.113864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
Pathogenic bacteria use an intercellular chemical communication system called quorum sensing (QS) to control the expression of cellular functions such as virulence factors, biofilm formation, toxin production, and antibiotic resistance in a manner that is highly dependent on population density. Hence, since the emergence of QS, there has been a great interest in exploiting the QS mechanism as a new drug target. Therefore, blocking the QS mechanism can be an effective strategy to control infection and solve the problem of drug resistance. So far, there is no clinically approved anti-QS drug that can disable the circuits of QS systems. This review discusses the quorum-sensing network systems and novel anti-QS inhibitors in some Gram-negative bacteria.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Chunying Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Huanhuan Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China.
| |
Collapse
|
14
|
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, Fávaro WJ, Ferreira-Halder CV, Justo GZ, Tasic L. Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 2021; 37:151. [PMID: 34398340 DOI: 10.1007/s11274-021-03120-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.
Collapse
Affiliation(s)
- Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil. .,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Ignasio R Berti
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Danijela Stanisic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Laboratory of Tropical Diseases, Department of Genetic, Evolution and Bioagents , Biology Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmen V Ferreira-Halder
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Departamento de Ciências Farmacêuticas (Campus Diadema) e Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo (UNIFESP), 3 de Maio, 100, São Paulo, SP, 04044-020, Brazil.
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
15
|
Sartorio MG, Pardue EJ, Feldman MF, Haurat MF. Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annu Rev Microbiol 2021; 75:609-630. [PMID: 34351789 DOI: 10.1146/annurev-micro-052821-031444] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secretion of cellular components across the plasma membrane is an essential process that enables organisms to interact with their environments. Production of extracellular vesicles in bacteria is a well-documented but poorly understood process. Outer membrane vesicles (OMVs) are produced in gram-negative bacteria by blebbing of the outer membrane. In addition to their roles in pathogenesis, cell-to-cell communication, and stress responses, OMVs play important roles in immunomodulation and the establishment and balance of the gut microbiota. In this review, we discuss the multiple roles of OMVs and the current knowledge of OMV biogenesis. We also discuss the growing and promising biotechnological applications of OMV. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Evan J Pardue
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - M Florencia Haurat
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA;
| |
Collapse
|
16
|
Li Y, Li X, Hao Y, Liu Y, Dong Z, Li K. Biological and Physiochemical Methods of Biofilm Adhesion Resistance Control of Medical-Context Surface. Int J Biol Sci 2021; 17:1769-1781. [PMID: 33994861 PMCID: PMC8120469 DOI: 10.7150/ijbs.59025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The formation of biofilms on medical-context surfaces gives the EPS embedded bacterial community protection and additional advantages that planktonic cells would not have such as increased antibiotic resistance and horizontal gene transfer. Bacterial cells tend to attach to a conditioning layer after overcoming possible electrical barriers and go through two phases of attachments: reversible and irreversible. In the first, bacterial attachment to the surface is reversible and occurs quickly whilst the latter is permanent and takes place over a longer period of time. Upon reaching a certain density in the bacterial community, quorum sensing causes phenotypical changes leading to a loss in motility and the production of EPS. This position paper seeks to address the problem of bacterial adhesion and biofilm formation for the medical surfaces by comparing inhabiting physicochemical interactions and biological mechanisms. Several physiochemical methodologies (e.g. ultrasonication, alternating magnetic field and chemical surface coating) and utilizing biological mechanisms (e.g. quorum quenching and EPS degrading enzymes) were suggested. The possible strategical applications of each category were suggested and evaluated to a balanced position to possibly eliminate the adhesion and formation of biofilms on medical-context surfaces.
Collapse
Affiliation(s)
- Yuanzhe Li
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiang Li
- School of Chemistry and Biomolecules Engineering, National University of Singapore, Singapore, 637551, Singapore
| | - Yu Hao
- School of Chemistry and Biomolecules Engineering, National University of Singapore, Singapore, 637551, Singapore
| | - Yang Liu
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Mechanical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - ZhiLi Dong
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Kexin Li
- Hwa Chong International School, Singapore, 269783, Singapore
| |
Collapse
|
17
|
Outer Membrane Vesicles (OMVs) Produced by Gram-Negative Bacteria: Structure, Functions, Biogenesis, and Vaccine Application. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1490732. [PMID: 33834062 PMCID: PMC8016564 DOI: 10.1155/2021/1490732] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) with 10 to 300 nm of diameter. The contribution of OMVs to bacterial pathogenesis is a topic of great interest, and their capacity to be combined with antigens impact in the future to the development of vaccines.
Collapse
|
18
|
Direct RBS Engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli. Microb Cell Fact 2021; 20:38. [PMID: 33557849 PMCID: PMC7869524 DOI: 10.1186/s12934-021-01518-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Violaceins have attracted much attention as potential targets used in medicines, food additives, insecticides, cosmetics and textiles, but low productivity was the key factor to limit their large-scale applications. This work put forward a direct RBS engineering strategy to engineer the violacein biosynthetic gene cluster cloned from Chromobacterium violaceum ATCC 12,472 to efficiently improve the fermentation titers. Results Through four-rounds of engineering of the native RBSs within the violaceins biosynthetic operon vioABCDE, this work apparently broke through the rate-limiting steps of intermediates conversion, resulting in 2.41-fold improvement of violaceins production compared to the titers of the starting strain Escherichia coli BL21(DE3) (Vio12472). Furthermore, by optimizing the batch-fermentation parameters including temperature, concentration of IPTG inducer and fermentation time, the maximum yield of violaceins from (BCDE)m (tnaA−) reached 3269.7 µM at 2 mM tryptophan in the medium. Interestingly, rather than previous reported low temperature (20 ℃), we for the first time found the RBS engineered Escherichia coli strain (BCDE)m worked better at higher temperature (30 ℃ and 37 ℃), leading to a higher-level production of violaceins. Conclusions To our knowledge, this is the first time that a direct RBS engineering strategy is used for the biosynthesis of natural products, having the potential for a greater improvement of the product yields within tryptophan hyperproducers and simultaneously avoiding the costly low temperature cultivation for large-scale industrial production of violaciens. This direct RBS engineering strategy could also be easily and helpfully used in engineering the native RBSs of other larger and value-added natural product biosynthetic gene clusters by widely used site-specific mutagenesis methods represented by inverse PCR or CRISPR-Cas9 techniques to increase their fermentation titers in the future.![]()
Collapse
|
19
|
Egorova DA, Voronina OL, Solovyev AI, Kunda MS, Aksenova EI, Ryzhova NN, Danilova KV, Rykova VS, Scherbakova AA, Semenov AN, Polyakov NB, Grumov DA, Shevlyagina NV, Dolzhikova IV, Romanova YM, Gintsburg AL. Integrated into Environmental Biofilm Chromobacterium vaccinii Survives Winter with Support of Bacterial Community. Microorganisms 2020; 8:E1696. [PMID: 33143246 PMCID: PMC7716238 DOI: 10.3390/microorganisms8111696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Chromobacterium species are common in tropical and subtropical zones in environmental samples according to numerous studies. Here, we describe an environmental case of resident Chromobacterium vaccinii in biofilms associated with Carex spp. roots in Moscow region, Russia (warm-summer humid continental climate zone). We performed broad characterization of individual properties as well as surrounding context for better understanding of the premise of C. vaccinii survival during the winter season. Genome properties of isolated strains propose some insights into adaptation to habit and biofilm mode of life, including social cheaters carrying ΔluxR mutation. Isolated C. vaccinii differs from previously described strains in some biochemical properties and some basic characteristics like fatty acid composition as well as unique genome features. Despite potential to modulate membrane fluidity and presence of several genes responsible for cold shock response, isolated C. vaccinii did not survive during exposure to 4 °C, while in the complex biofilm sample, it was safely preserved for at least half a year in vitro at 4 °C. The surrounding bacterial community within the same biofilm with C. vaccinii represented a series of psychrophilic bacterial species, which may share resistance to low temperatures with other species within biofilm and provide C. vaccinii an opportunity to survive during the cold winter season.
Collapse
Affiliation(s)
- Daria A. Egorova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Olga L. Voronina
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Andrey I. Solovyev
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Marina S. Kunda
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Ekaterina I. Aksenova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Natalia N. Ryzhova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Ksenya V. Danilova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Valentina S. Rykova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Anastasya A. Scherbakova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Andrey N. Semenov
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Nikita B. Polyakov
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Daniil A. Grumov
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Natalia V. Shevlyagina
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Inna V. Dolzhikova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
| | - Yulia M. Romanova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| | - Alexander L. Gintsburg
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 123098 Moscow, Russia; (A.I.S.); (M.S.K.); (E.I.A.); (N.N.R.); (K.V.D.); (V.S.R.); (A.A.S.); (A.N.S.); (N.B.P.); (D.A.G.); (N.V.S.); (I.V.D.); (Y.M.R.); (A.L.G.)
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|