1
|
Wang H, Zhang K, Tappero R, Victor TW, Bhatnagar JM, Vilgalys R, Liao HL. Inorganic nitrogen and organic matter jointly regulate ectomycorrhizal fungi-mediated iron acquisition. THE NEW PHYTOLOGIST 2025. [PMID: 39841620 DOI: 10.1111/nph.20394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Ectomycorrhizal fungi (EMF) play a crucial role in facilitating plant nutrient uptake from the soil although inorganic nitrogen (N) can potentially diminish this role. However, the effect of inorganic N availability and organic matter on shaping EMF-mediated plant iron (Fe) uptake remains unclear. To explore this, we performed a microcosm study on Pinus taeda roots inoculated with Suillus cothurnatus treated with +/-Fe-coated sand, +/-organic matter, and a gradient of NH4NO3 concentrations. Mycorrhiza formation was most favorable under conditions with organic matter, without inorganic N. Synchrotron X-ray microfluorescence imaging on ectomycorrhizal cross-sections suggested that the effect of inorganic N on mycorrhizal Fe acquisition largely depended on organic matter supply. With organic matter, mycorrhizal Fe concentration was significantly decreased as inorganic N levels increased. Conversely, an opposite trend was observed when organic matter was absent. Spatial distribution analysis showed that Fe, zinc, calcium, and copper predominantly accumulated in the fungal mantle across all conditions, highlighting the mantle's critical role in nutrient accumulation and regulation of nutrient transfer to internal compartments. Our work illustrated that the liberation of soil mineral Fe and the EMF-mediated plant Fe acquisition are jointly regulated by inorganic N and organic matter in the soil.
Collapse
Affiliation(s)
- Haihua Wang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Ryan Tappero
- Photon Sciences Department, Brookhaven National Laboratory, NSLS-II, Upton, NY, 11973, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Tiffany W Victor
- Photon Sciences Department, Brookhaven National Laboratory, NSLS-II, Upton, NY, 11973, USA
| | | | - Rytas Vilgalys
- Department of Biology, Duke University, 130 Science Dr., Durham, NC, 27708, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
3
|
Defrenne CE, Moore JAM, Tucker CL, Lamit LJ, Kane ES, Kolka RK, Chimner RA, Keller JK, Lilleskov EA. Peat loss collocates with a threshold in plant-mycorrhizal associations in drained peatlands encroached by trees. THE NEW PHYTOLOGIST 2023; 240:412-425. [PMID: 37148190 DOI: 10.1111/nph.18954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Drainage-induced encroachment by trees may have major effects on the carbon balance of northern peatlands, and responses of microbial communities are likely to play a central mechanistic role. We profiled the soil fungal community and estimated its genetic potential for the decay of lignin and phenolics (class II peroxidase potential) along peatland drainage gradients stretching from interior locations (undrained, open) to ditched locations (drained, forested). Mycorrhizal fungi dominated the community across the gradients. When moving towards ditches, the dominant type of mycorrhizal association abruptly shifted from ericoid mycorrhiza to ectomycorrhiza at c. 120 m from the ditches. This distance corresponded with increased peat loss, from which more than half may be attributed to oxidation. The ectomycorrhizal genus Cortinarius dominated at the drained end of the gradients and its relatively higher genetic potential to produce class II peroxidases (together with Mycena) was positively associated with peat humification and negatively with carbon-to-nitrogen ratio. Our study is consistent with a plant-soil feedback mechanism, driven by a shift in the mycorrhizal type of vegetation, that potentially mediates changes in aerobic decomposition during postdrainage succession. Such feedback may have long-term legacy effects upon postdrainage restoration efforts and implication for tree encroachment onto carbon-rich soils globally.
Collapse
Affiliation(s)
| | - Jessica A M Moore
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Colin L Tucker
- USDA Forest Service-Northern Research Station, Houghton, MI, 49931, USA
| | - Louis J Lamit
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Evan S Kane
- Michigan Technological University, Houghton, MI, 49931, USA
- USDA Forest Service-Northern Research Station, Houghton, MI, 49931, USA
| | - Randall K Kolka
- U.S. Forest Service-Northern Research Station, Grand Rapids, MN, 55744, USA
| | | | - Jason K Keller
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| | - Erik A Lilleskov
- USDA Forest Service-Northern Research Station, Houghton, MI, 49931, USA
| |
Collapse
|
4
|
Zhang S, Tsuruta M, Li C, Vaario LM, Xia Y, Matsushita N, Kurokochi H, Xu R, Li J, Lian C. Estimation of the most suitable nitrogen concentration for sporocarp formation in Laccaria japonica colonizing Pinus densiflora seedlings through in vitro mycelial culture. MYCORRHIZA 2022; 32:451-464. [PMID: 35764713 DOI: 10.1007/s00572-022-01085-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Many ectomycorrhizal (ECM) fungi produce commercially valuable edible sporocarps. However, the effects of nitrogen (N) application on ECM fungal sporocarp formation remain poorly understood. In this study, we investigated the effect of application of various N concentrations (0, 5, 25, 50, 100, and 200 mg/L) on the growth of Laccaria japonica mycelia in vitro for 1 month. The results showed that L. japonica mycelial biomass was highest in the 50 mg/L treatment and was significantly inhibited at N concentrations higher than 200 mg/L. Next, we investigated the effects of N application on mycorrhizal colonization and sporocarp formation in L. japonica colonizing Pinus densiflora seedlings in pots. The seedlings were watered with nutrient solutions containing 0, 5, 25, 50, or 100 mg N/L. The biomass, photosynthetic rate, and mycorrhizal colonization rates of the seedlings were measured at 45 days (first appearance of primordia), 65 days (sporocarp appearance on the substrate surface), and 4 months after seedlings were transplanted. The numbers of primordia and sporocarps were recorded during the experimental period. Total carbon (C) and N content were determined in seedlings at 4 months after transplantation, and in L. japonica sporocarps. Both mycelial growth and sporocarp production reached their maximum at an N application concentration of 50 mg/L, suggesting that the most suitable N concentration for ECM fungal sporocarp formation can easily be estimated in vitro during mycelial growth. This finding may help determine the most suitable N conditions for increasing edible ECM fungus sporocarp production in natural forests.
Collapse
Affiliation(s)
- Shijie Zhang
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Momi Tsuruta
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chaofeng Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Lu-Min Vaario
- Department of Forest Sciences, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Kurokochi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Ruiyang Xu
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jiali Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chunlan Lian
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Wan D, Liu FF, Chen JB, Kappler A, Kuzyakov Y, Liu CQ, Yu GH. Microbial community mediates hydroxyl radical production in soil slurries by iron redox transformation. WATER RESEARCH 2022; 220:118689. [PMID: 35661513 DOI: 10.1016/j.watres.2022.118689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The generation of reactive oxygen species (ROS) mediated by minerals and/or microorganisms plays a vital but underappreciated role in affecting carbon and nutrient cycles at soil-water interfaces. It is currently unknown which interactions between microbial communities and iron (Fe) minerals produce hydroxyl radical (HO•), which is the strongest oxidant among ROS. Using a series of well-controlled anoxic incubations of soil slurries, we demonstrated that interactions between microbial communities and Fe minerals synergistically drove HO• production (up to ∼100 nM after 21-day incubation). Microorganisms drove HO• generation in anoxic environments predominantly by modulating iron redox transformation that was more prominent than direct production of ROS by microorganisms. Among the microbial communities, Geobacter, Paucimonas, Rhodocyclaceae_K82, and Desulfotomaculum were the key genera strongly affecting HO• production. In manured soils, the former two species had higher abundances and were crucial for HO• production. In contrast, the latter two species were mainly abundant and important in soils with mineral fertilizers. Our study suggests that abundant highly reactive oxidant HO• can be generated in anoxic environments and the microbial community-mediated redox transformations of iron (oxyhydr)oxides may be responsible for the HO• production. These findings shed light on the microbial generation of HO• in fluctuating redox environments and on consequences for global C and nutrient cycling.
Collapse
Affiliation(s)
- Dan Wan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Fei-Fei Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiu-Bin Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gӧttingen, Gӧttingen 37073, Germany; Agro-Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|