1
|
Liu K, Liu Y, Yan Q, Guo X, Wang W, Zhang Z, Hu A, Xiao X, Ji M, Liu P. Temperature-driven shifts in bacterioplankton biodiversity: Implications for cold-preferred species in warming Tibetan proglacial lakes. WATER RESEARCH 2024; 265:122263. [PMID: 39180953 DOI: 10.1016/j.watres.2024.122263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Recent climate warming and associated glacier retreat have dramatically changed the environmental conditions and microbial inhabitants of proglacial lakes. However, our understanding of the effects of climate warming and glacial influence on microbial biodiversity in these lakes remain relatively limited. Here, we studied bacterioplankton communities in 22 proglacial lakes on the Tibetan Plateau, spanning a range of nearly 7 °C in mean annual temperature (MAT), and examined the effects of climate and glaciers on their biodiversity by a space-to-time substitution. MAT emerged as the primary environmental driver of bacterioplankton biodiversity compared to glacial influence, increasing species richness and decreasing β-diversity. We identified 576 low-MAT (cold-preferred) species and 2,088 high-MAT (warm-preferred) species, and found that low-MAT species are less environmentally adapted, with their numbers declining as temperature increased. These results advance our understanding of temperature-driven bacterioplankton dynamics by disentangling the contrasting responses and adaptations of cold-preferred and warm-preferred species. Our findings highlight the vulnerability of cold-specialist taxa and the potential biodiversity losses associated with climate warming in the rapidly changing proglacial lakes.
Collapse
Affiliation(s)
- Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China.
| | - Qi Yan
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Xuezi Guo
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Wang
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiong Xiao
- College of Geographic Science, Hunan Normal University, Changsha, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Liu K, Yan Q, Guo X, Wang W, Zhang Z, Ji M, Wang F, Liu Y. Glacier Retreat Induces Contrasting Shifts in Bacterial Biodiversity Patterns in Glacial Lake Water and Sediment : Bacterial Communities in Glacial Lakes. MICROBIAL ECOLOGY 2024; 87:128. [PMID: 39397203 PMCID: PMC11471744 DOI: 10.1007/s00248-024-02447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Glacial lake ecosystems are experiencing rapid changes due to accelerated glacier retreat. As glaciers recede, their influence on downstream habitats diminishes, potentially affecting the biodiversity of glacial lake microbial communities. However, there remains a knowledge gap regarding how bacterial biodiversity patterns in glacial lakes are altered by diminishing glacial influence. Here, we investigated shifts in bacterial communities in paired water and sediment samples collected from seven glacial lakes on the Tibetan Plateau, using a space-for-time substitution approach to understand the consequences of glacier retreat. Our findings reveal that bacterial diversity in lake water increases significantly with a higher glacier index (GI), whereas sediment bacterial diversity exhibits a negative correlation with GI. Both the water and sediment bacterial communities display significant structural shifts along the GI gradient. Notably, reduced glacial influence decreases the complexity of bacterial co-occurrence networks in lake water but enhances the network complexity in sediment. This divergence in diversity and co-occurrence patterns highlights that water and sediment bacterial communities respond differently to changes in glacial influence in these lake ecosystems. This study provides insights into how diminishing glacial influence impacts the bacterial biodiversity in glacial lake water and sediments, revealing contrasting patterns between the two habitats. These findings emphasize the need for comprehensive monitoring to understand the implications of glacier retreat on these fragile ecosystems.
Collapse
Affiliation(s)
- Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Yan
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Xuezi Guo
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenqiang Wang
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Feng M, Robinson S, Qi W, Edwards A, Stierli B, van der Heijden M, Frey B, Varliero G. Microbial genetic potential differs among cryospheric habitats of the Damma glacier. Microb Genom 2024; 10. [PMID: 39351905 PMCID: PMC11443553 DOI: 10.1099/mgen.0.001301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Climate warming has led to glacier retreat worldwide. Studies on the taxonomy and functions of glacier microbiomes help us better predict their response to glacier melting. Here, we used shotgun metagenomic sequencing to study the microbial functional potential in different cryospheric habitats, i.e. surface snow, supraglacial and subglacial sediments, subglacial ice, proglacial stream water and recently deglaciated soils. The functional gene structure varied greatly among habitats, especially for snow, which differed significantly from all other habitats. Differential abundance analysis revealed that genes related to stress responses (e.g. chaperones) were enriched in ice habitat, supporting the fact that glaciers are a harsh environment for microbes. The microbial metabolic capabilities related to carbon and nitrogen cycling vary among cryospheric habitats. Genes related to auxiliary activities were overrepresented in the subglacial sediment, suggesting a higher genetic potential for the degradation of recalcitrant carbon (e.g., lignin). As for nitrogen cycling, genes related to nitrogen fixation were more abundant in barren proglacial soils, possibly due to the presence of Cyanobacteriota in this habitat. Our results deepen our understanding of microbial processes in glacial ecosystems, which are vulnerable to ongoing global warming, and they have implications for downstream ecosystems.
Collapse
Affiliation(s)
- Maomao Feng
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Serina Robinson
- Department of Environmental Microbiology, Swiss Federal Research Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Geneva, Switzerland
| | - Arwyn Edwards
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Marcel van der Heijden
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Plant-Soil Interactions, Agroscope, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Gilda Varliero
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
4
|
Liu S, Stoof-Leichsenring KR, Harms L, Schulte L, Mischke S, Kruse S, Zhang C, Herzschuh U. Tibetan terrestrial and aquatic ecosystems collapsed with cryosphere loss inferred from sedimentary ancient metagenomics. SCIENCE ADVANCES 2024; 10:eadn8490. [PMID: 38781339 PMCID: PMC11114237 DOI: 10.1126/sciadv.adn8490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Glacier and permafrost shrinkage and land-use intensification threaten mountain wildlife and affect nature conservation strategies. Here, we present paleometagenomic records of terrestrial and aquatic taxa from the southeastern Tibetan Plateau covering the last 18,000 years to help understand the complex alpine ecosystem dynamics. We infer that steppe-meadow became woodland at 14 ka (cal BP) controlled by cryosphere loss, further driving a herbivore change from wild yak to deer. These findings weaken the hypothesis of top-down control by large herbivores in the terrestrial ecosystem. We find a turnover in the aquatic communities at 14 ka, transitioning from glacier-related (blue-green) algae to abundant nonglacier-preferring picocyanobacteria, macrophytes, fish, and otters. There is no evidence for substantial effects of livestock herding in either ecosystem. Using network analysis, we assess the stress-gradient hypothesis and reveal that root hemiparasitic and cushion plants are keystone taxa. With ongoing cryosphere loss, the protection of their habitats is likely to be of conservation benefit on the Tibetan Plateau.
Collapse
Affiliation(s)
- Sisi Liu
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam 14469, Germany
| | - Kathleen R. Stoof-Leichsenring
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
| | - Lars Harms
- Computing and Data Centre, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Luise Schulte
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
| | - Steffen Mischke
- Institute of Earth Sciences, University of Iceland, Reykjavík 102, Iceland
| | - Stefan Kruse
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
| | - Chengjun Zhang
- School of Earth Sciences, Lanzhou University, Lanzhou 73000, China
| | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam 14473, Germany
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam 14469, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
5
|
Huang J, Wang D, Zhu Y, Yang Z, Yao M, Shi X, An T, Zhang Q, Huang C, Bi X, Li J, Wang Z, Liu Y, Zhu G, Chen S, Hang J, Qiu X, Deng W, Tian H, Zhang T, Chen T, Liu S, Lian X, Chen B, Zhang B, Zhao Y, Wang R, Li H. An overview for monitoring and prediction of pathogenic microorganisms in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:430-441. [PMID: 38933199 PMCID: PMC11197502 DOI: 10.1016/j.fmre.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2024] Open
Abstract
Corona virus disease 2019 (COVID-19) has exerted a profound adverse impact on human health. Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people. Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks. Monitoring of pathogenic microorganisms in the air, especially in densely populated areas, may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage. The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation, allocate health resources, and formulate epidemic response policies. This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission, which lays a theoretical foundation for the monitoring and prediction of epidemic development. Secondly, the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized. Subsequently, this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology, atmospheric sciences, environmental sciences, sociology, demography, etc. By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere, this review proposes suggestions for epidemic response, namely, the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.
Collapse
Affiliation(s)
- Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongguan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zifeng Yang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease (Guangzhou Medical University), Guangzhou 510230, China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Siyu Chen
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 510640, China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Weiwei Deng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100101, China
| | - Tengfei Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinbo Lian
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bin Chen
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beidou Zhang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingjie Zhao
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Han Li
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Zhang T, Zhang D, Lyu Z, Zhang J, Wu X, Yu Y. Effects of extreme precipitation on bacterial communities and bioaerosol composition: Dispersion in urban outdoor environments and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123406. [PMID: 38244904 DOI: 10.1016/j.envpol.2024.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Concerns about contaminants dispersed by seasonal precipitation have grown due to their potential hazards to outdoor environments and human health. However, studies on the crucial environmental factors influencing dispersion changes in bacterial communities are limited. This research adopted four-season in situ monitoring and sequencing techniques to examine the regional distribution profiles of bioaerosols, bacterial communities, and risks associated with extreme snowfall versus rainfall events in two monsoon cities. In the early-hours of winter snowfall, airborne cultivable bioaerosol concentrations were 4.1 times higher than the reference exposure limit (500 CFU/m3). The concentration of ambient particles (2.5 μm) exceeded 24,910 particles/L (97 μg/m3), positively correlating with the prevalence of cultivable bioaerosols. These bioaerosols contained cultivable bacterial species such as pathogenic Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Escherichia coli. Bioaerosol concentrations increased by 53.0% during 50-mm snow extremes. Taxonomic analysis revealed that Pseudomonas, Staphylococcus, and Veillonella were the most abundant bacterial taxa in the initial snowmelt samples during winter precipitation. However, their abundance decreased by 87.6% as snowing continued (24 h). Reduced water base cation concentration also led to a 1.15-fold increase in the Shannon index, indicating a similar yet heightened bacterial diversity. Seasonally, Pedobacter and Massilia showed higher relative abundance (25% and 18%, respectively), presenting increased bacterial transmission to the soil. Furthermore, Pseudomonas was identified in 60% of spring snowstorm samples, suggesting long-distance dispersal of pathogenic bacteria. When these atmospheric aerosol particles carrying biological entities (0.65-1.1 μm) penetrated human alveoli, the calculated hazard ratio was 0.55, which as observed in inhalation exposures. Consequently, this study underscores the risk of seasonal precipitation-enhanced ambient bacterial transmission.
Collapse
Affiliation(s)
- Ting Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Dingqiang Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Zhonghang Lyu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Jitao Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Xian Wu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Wang Y, Xu N, Chen B, Zhang Z, Lei C, Zhang Q, Gu Y, Wang T, Wang M, Penuelas J, Qian H. Metagenomic analysis of antibiotic-resistance genes and viruses released from glaciers into downstream habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168310. [PMID: 37944612 DOI: 10.1016/j.scitotenv.2023.168310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Glaciers serve as effective reservoirs of antibiotic resistance genes (ARGs) and viruses for millions of years. Climate change and anthropogenic activity have accelerated the melting of glaciers, but the patterns of release of ARGs and viruses from melting glaciers into downstream habitats remain unknown. We analyzed 171 metagenomic samples from glaciers and their downstream habitats and found that the abundance and diversity of ARGs were higher in glaciers (polar and plateau glaciers) than downstream habitats (Arctic Ocean, Qinghai Lake, and Yangtze River Basin), with the diversity of viruses having the opposite pattern. Proteobacteria and Actinobacteria were the main potential hosts of ARGs and viruses, and the richness of ARGs carried by the hosts was positively correlated with viral abundance, suggesting that the transmission of viruses in the hosts could disseminate ARGs. Source tracking indicated that >18 % of the ARGs and >25 % of the viruses detected in downstream habitats originated from glaciers, demonstrating that glaciers could be one of the potential sources of ARGs and viruses in downstream habitats. Increased solar radiation and emission of carbon dioxide mainly influenced the release of the ARGs and viruses from glaciers into downstream habitats. This study provides a systematic insight demonstrating the release of ARGs and viruses from the melting glaciers, potentially increasing ecological pressure.
Collapse
Affiliation(s)
- Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yanpeng Gu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, PR China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, PR China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
8
|
Xing T, Liu K, Ji M, Chen Y, Liu Y. Bacterial diversity in a continuum from supraglacial habitats to a proglacial lake on the Tibetan Plateau. FEMS Microbiol Lett 2024; 371:fnae021. [PMID: 38521984 DOI: 10.1093/femsle/fnae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024] Open
Abstract
Mountain glaciers are frequently assessed for their hydrological connectivity from glaciers to proglacial lakes. Ecological process on glacier surfaces and downstream ecosystems have often been investigated separately, but few studies have focused on the connectivity between the different glacial habitats. Therefore, it remains a limited understanding of bacterial community assembly across different habitats along the glacier hydrological continuum. In this study, we sampled along a glacial catchment from supraglacial snow, cryoconite holes, supraglacial runoff, ice-marginal moraine and proglacial lake on the Tibetan Plateau. The bacterial communities in these habitats were analyzed using high-throughput DNA sequencing of the 16S rRNA gene to determine the bacterial composition and assembly. Our results showed that each habitat hosted unique bacterial communities, with higher bacterial α-diversity in transitional habitats (e.g. runoff and ice-marginal moraine). Null model analysis indicated that deterministic processes predominantly shaped bacterial assembly in snow, cryoconite holes and lake, while stochastic process dominantly governed bacterial community in transitional habitats. Collectively, our findings suggest that local environment play a critical role in filtering bacterial community composition within glacier habitats. This study enhances our understanding of microbial assembly process in glacier environments and provides valuable insights into the factors governing bacterial community compositions across different habitats along the glacial hydrological continuum.
Collapse
Affiliation(s)
- Tingting Xing
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Yuying Chen
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Li M, Shi G, Li Y, Yan X, Sun X, Yangzong D, Li S, Dong H, Zhou Y, Wang X, Kang S, Zhang Q. Isotopic Constraints on Sources and Transformations of Nitrate in the Mount Everest Proglacial Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20844-20853. [PMID: 38019560 DOI: 10.1021/acs.est.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Glacier melting exports a large amount of nitrate to downstream aquatic ecosystems. Glacial lakes and glacier-fed rivers in proglacial environments serve as primary recipients and distributors of glacier-derived nitrate (NO3-), yet little is known regarding the sources and cycling of nitrate in these water bodies. To address this knowledge gap, we conducted a comprehensive analysis of nitrate isotopes (δ15NNO3, δ18ONO3, and Δ17ONO3) in waters from the glacial lake and river of the Rongbuk Glacier-fed Basin (RGB) in the mountain Everest region. The concentrations of NO3- were low (0.43 ± 0.10 mg/L), similar to or even lower than those observed in glacial lakes and glacier-fed rivers in other high mountain regions, suggesting minimal anthropogenic influence. The NO3- concentration decreases upon entering the glacial lake due to sedimentation, and it increases gradually from upstream to downstream in the river as a soil source is introduced. The analysis of Δ17ONO3 revealed a substantial contribution of unprocessed atmospheric nitrate, ranging from 34.29 to 56.43%. Denitrification and nitrification processes were found to be insignificant in the proglacial water of RGB. Our study highlights the critical role of glacial lakes in capturing and redistributing glacier-derived NO3- and emphasizes the need for further investigations on NO3- transformation in the fast-changing proglacial environment over the Tibetan Plateau and other high mountain regions.
Collapse
Affiliation(s)
- Mingyue Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guitao Shi
- Key Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yilan Li
- Key Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiao Yan
- Key Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xuejun Sun
- School of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Deji Yangzong
- Tibetan Ecology and Environment Monitoring Center, Lhasa 850000, China
| | - Shengnan Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huike Dong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Mao G, Ji M, Jiao N, Su J, Zhang Z, Liu K, Chen Y, Liu Y. Monsoon affects the distribution of antibiotic resistome in Tibetan glaciers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120809. [PMID: 36470452 DOI: 10.1016/j.envpol.2022.120809] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic-resistance gene (ARG) is a biological pollutant and is globally distributed due to increased anthropogenic activities. ARGs in the cryosphere have received increased attention due to global warming, and ARGs in glaciers are predicted to be released into downstream ecosystems during glacier melting. In this study, ARG distribution and influential factors were investigated in 85 samples from 21 Tibetan glaciers, covering snow, ice, and cryoconite habitats. The results revealed ARGs against 29 antibiotics in Tibetan glaciers, dominated by tetracycline, bacitracin, macrolide, and fluoroquinolone resistance. ARGs in snow exhibited biogeographic patterns influenced by atmospheric circulation. Specifically, monsoon-dominated glaciers exhibited a significantly higher abundance of ARGs than the westerly-dominated glaciers, which could be associated with higher antibiotic usage in the Indian subcontinent. Of the 3241 metagenome-assembled genomes obtained, 36.8% of which were identified as ARG hosts and 33.8% were multidrug-resistant. In addition, 90 ARGs were linked to mobile genetic elements (MGEs). 90.9% and 9.1% of MGEs were identified as plasmid and phage in 45 MAGs carrying both ARGs and MGEs. Our study suggests a greater risk of ARGs being released from the monsoon-dominated glaciers, which were the glaciers that melt at high rates and thus need to be carefully monitored.
Collapse
Affiliation(s)
- Guannan Mao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mukan Ji
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Nianzhi Jiao
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen, 361005, China
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuying Chen
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Qi J, Ji M, Wang W, Zhang Z, Liu K, Huang Z, Liu Y. Effect of Indian monsoon on the glacial airborne bacteria over the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154980. [PMID: 35378188 DOI: 10.1016/j.scitotenv.2022.154980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The glacier of the Tibetan Plateau (TP) is influenced by the Indian monsoon and continental westerlies. Wind flow can carry a variety of bacteria and disperse across the TP. Once these bacteria are colonized to the glacier surface, they could affect the biogeochemical cycle of the glacial ecosystems. However, very few studies have focused on the relationships between these airborne bacteria and atmospheric circulation over glaciers of the TP. Here we studied the diversity, taxonomic composition, and community structure of airborne bacteria on six TP glaciers using 16S rRNA gene sequencing. The results revealed an increase in the airborne bacterial diversity over the glaciers under the effect of the Indian monsoon. Airborne bacteria were dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, while relative abundances of Bacteroidetes and Firmicutes were significantly higher under the influence of the Indian monsoon in the southern and central of the TP, respectively. Moreover, significantly different airborne bacterial community structures were observed over glaciers under the influence of the Indian monsoon, which could be explained by the increased community stochasticity. In addition, the Indian monsoon increases the diversity and relative abundance of potential pathogens, which includes the most notorious bacteria such as Pseudomonas fluorescens, Staphylococcus aureus, and Clostridium butyricum. Our results revealed for the first time that atmospheric circulation influences the composition of airborne bacteria over the glaciers on the TP, this may provide critical insights into the distinct microbial community structure and function in glaciers across the TP.
Collapse
Affiliation(s)
- Jing Qi
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mukan Ji
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Wenqiang Wang
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Benthic Biofilms in Glacier-Fed Streams from Scandinavia to the Himalayas Host Distinct Bacterial Communities Compared with the Streamwater. Appl Environ Microbiol 2022; 88:e0042122. [PMID: 35674429 DOI: 10.1128/aem.00421-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Microbial life in glacier-fed streams (GFSs) is dominated by benthic biofilms which fulfill critical ecosystem processes. However, it remains unclear how the bacterial communities of these biofilms assemble in stream ecosystems characterized by rapid turnover of benthic habitats and high suspended sediment loads. Using16S rRNA gene amplicon sequence data collected from 54 GFSs across the Himalayas, European Alps, and Scandinavian Mountains, we found that benthic biofilms harbor bacterial communities that are distinct from the bacterial assemblages suspended in the streamwater. Our data showed a decrease in species richness in the benthic biofilms compared to the bacterial cells putatively free-living in the water. The benthic biofilms also differed from the suspended water fractions in terms of community composition. Differential abundance analyses highlighted bacterial families that were specific to the benthic biofilms and the suspended assemblages. Notably, source-sink models suggested that the benthic biofilm communities are not simply a subset of the suspended assemblages. Rather, we found evidence that deterministic processes (e.g., species sorting) shape the benthic biofilm communities. This is unexpected given the high vertical mixing of water and contained bacterial cells in GFSs and further highlights the benthic biofilm mode of life as one that is determined through niche-related processes. Our findings therefore reveal a "native" benthic biofilm community in an ecosystem that is currently threatened by climate-induced glacier shrinkage. IMPORTANCE Benthic biofilms represent the dominant form of life in glacier-fed streams. However, it remains unclear how bacterial communities within these biofilms assemble. Our findings from glacier-fed streams from three major mountain ranges across the Himalayas, the European Alps and the Scandinavian Mountains reveal a bacterial community associated with benthic biofilms that is distinct from the assemblage in the overlying streamwater. Our analyses suggest that selection is the underlying process to this differentiation. This is unexpected given that bacterial cells that are freely living or attached to the abundant sediment particles suspended in the water continuously mix with the benthic biofilms. The latter colonize loose sediments that are subject to high turnover owing to the forces of the water flow. Our research unravels the existence of a microbiome specific to benthic biofilms in glacier-fed streams, now under major threats due to global warming.
Collapse
|