1
|
Proaño-Cuenca F, Millican MD, Buczkowski E, Chou MY, Koch PL. Fungal and bacterial community composition and assemblage in managed and unmanaged urban landscapes in Wisconsin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178873. [PMID: 40010245 DOI: 10.1016/j.scitotenv.2025.178873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Microbial communities play crucial roles in ecosystem functioning, yet their diversity and assembly in urban turfgrass systems remain underexplored. In 2017, microbial communities within 48 samples from managed turfgrass (home lawns, golf course fairways, and putting greens) and an unmanaged grass mixture in Madison, WI, USA were analyzed across leaf, thatch, rhizoplane, and rhizosphere habitats Intensive management, particularly in nitrogen-rich, sand-based putting greens, reduced fungal richness and diversity, whereas bacterial diversity patterns varied. Beta diversity analyses revealed distinct clustering: fungal communities differed most in unmanaged systems, while bacterial communities clustered within managed systems. Functional profiling demonstrated that bacterial communities maintained metabolic stability despite taxonomic shifts, while fungal communities showed dynamic functional responses to management. Furthermore, management practices also impacted microbial community assembly. Bacterial communities were predominantly shaped by neutral, stochastic processes, while fungal communities were more sensitive to management, showing deterministic, niche-based assembly and compositional shifts. These findings underscore the contrasting impacts of management on microbial communities and highlight the importance of sustainable turfgrass practices that balance plant health with microbial ecosystem functions. By linking microbial assembly processes to functional outcomes, this study provides insights for optimizing urban landscapes to enhance soil health and ecosystem resilience.
Collapse
Affiliation(s)
- Fernanda Proaño-Cuenca
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Michael D Millican
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Emma Buczkowski
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Ming-Yi Chou
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, United States.
| | - Paul L Koch
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
2
|
Wang W, Bi S, Li F, Degen AA, Li S, Huang M, Luo B, Zhang T, Qi S, Qi T, Bai Y, Liu P, Shang Z. Soil organic matter composition affects ecosystem multifunctionality by mediating the composition of microbial communities in long-term restored meadows. ENVIRONMENTAL MICROBIOME 2025; 20:22. [PMID: 39923116 PMCID: PMC11807318 DOI: 10.1186/s40793-025-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Soil organic matter composition and microbial communities are key factors affecting ecosystem multifunctionality (EMF) during ecosystem restoration. However, there is little information on their interacting mechanisms in degraded and restored meadows. To fill this knowledge gap, plant, root and soil samples from alpine swamp meadows, alpine Kobresia meadows, severely degraded alpine meadows, short-term restored meadows (< 5 years) and long-term restored meadows (6-14 years) were collected. We leveraged high-throughput sequencing, liquid chromatography and mass spectrometry to characterize soil microbial communities and soil organic matter composition, measured microbial carbon metabolism and determined EMF. RESULTS It emerged that the similarity of soil microorganisms in meadows decreased with increasing heterogeneity of soil properties. Dispersal limitation and ecological drift led to the homogenization of the bacterial community. Based on co-occurrence network analysis, an increase in microbial network complexity promoted EMF. Root total phosphorus and soil organic matter components were the key predictors of EMF, while organic acids and phenolic acids increased the stability of the microbial network in long-term restored meadows. Carbon metabolism did not increase in restored meadows, but the niche breadth of soil microorganisms and the utilization efficiency of small molecular carbon sources such as amino acids did increase. CONCLUSIONS These findings emphasize the importance of soil organic matter composition in ecological restoration and that the composition should be considered in management strategies aimed at enhancing EMF.
Collapse
Affiliation(s)
- Wenyin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Sisi Bi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Fei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - A Allan Degen
- Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8410500, Beer Sheva, Israel
| | - Shanshan Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Mei Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Binyu Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tao Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shuai Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tianyun Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yanfu Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Peipei Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Li Y, Wang J, Pan J, Zhang R, Zhou B, Niu S. Divergent Assembly Processes of Phyllosphere and Rhizosphere Microbial Communities Along Environmental Gradient. PLANT, CELL & ENVIRONMENT 2025; 48:1380-1392. [PMID: 39449242 DOI: 10.1111/pce.15224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
The underlying assembly processes of surface microbial communities are crucial for host plants and ecosystem functions. However, the relative importance of stochastic and deterministic processes in shaping epiphytic microbes remains poorly understood in both the phyllosphere and rhizosphere. Here, we compared the spatial variations in epiphytic microbial communities of two dominant grasses along a 1400 km transect on the Tibetan Plateau and assessed the assembly processes between the phyllosphere and rhizosphere. We found significant variations in epiphytic microbial community compositions between plant compartments and host species. Stochastic processes (drift and homogenizing dispersal) predominantly shaped microbial communities in both the phyllosphere and rhizosphere, with a greater contribution of stochastic processes in the phyllosphere. As environmental heterogeneity intensified, we found a transition from stochasticity to determinism in affecting the microbial assembly. This transition to homogeneous or variable selection depended on plant compartments and host species. Our study is among the first to compare the contribution of stochastic versus deterministic processes to epiphytic community assembly between the phyllosphere and rhizosphere on the Tibetan Plateau. These findings advance our knowledge of epiphytic microbial assembly and disentangle how host plants exploit the microbiome for improved performance and functioning in stressful alpine ecosystems.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | | | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Li T, Li X, Zheng L, Li H. Stable body sizes in soil nematodes across altitudes: The role of intrageneric variation in community assembly. Ecol Evol 2024; 14:e70025. [PMID: 39011134 PMCID: PMC11246979 DOI: 10.1002/ece3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Animal body size exhibits rapid responses to environmental variations and displays considerable variability across ecological scales, significantly influencing ecological community assembly. However, our understanding of the extent of body size variation and its responses to environmental differences within soil fauna remains limited, impeding a comprehensive grasp of soil fauna's functional ecology. Here, we aim to investigate the magnitude of intrageneric body size variation and its implications for soil nematode community assembly along an altitudinal gradient. We examined soil nematode body size responses along an altitudinal gradient spanning from 3136 to 4128 m in an alpine mountain region of the eastern Tibetan Plateau. We assessed the contributions of intra- and intergeneric variations in body size, both within and among communities, using individual body size values. The implications of these variations for community assembly processes were determined through phenotypic variance ratios employing permutation tests. Our analyses did not reveal statistically significant correlations between altitude and the community-weighted mean body mass, regardless of considering intrageneric trait variation (IGTV). Approximately 15% of the variation in body size among communities and a substantial 72% of the variation in body size within communities can be attributed to IGTV. Altitude did not significantly affect IGTV within or among communities. Furthermore, our results underscored the dominant role of internal filtering within the community in governing nematode community assembly, with external filtering outside the community playing a limited role within our altitudinal range. Our findings emphasize the dominant role of body size variation within communities rather than among communities, attributable to strong internal filtering processes. These findings advance our understanding of body size variation in soil nematodes across ecological scales and highlight the pivotal role of intrageneric variation in shaping the functional ecology of soil fauna.
Collapse
Affiliation(s)
- Teng Li
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Xianping Li
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Lingyun Zheng
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Huixin Li
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| |
Collapse
|
5
|
Zhang Q, Chen X, Zhou X, Nie X, Liu G, Zhuang G, Zheng G, Fortin D, Ma A. Tibetan Plateau grasslands might increase sequestration of microbial necromass carbon under future warming. Commun Biol 2024; 7:686. [PMID: 38834864 PMCID: PMC11150409 DOI: 10.1038/s42003-024-06396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Microbial necromass carbon (MNC) can reflect soil carbon (C) sequestration capacity. However, changes in the reserves of MNC in response to warming in alpine grasslands across the Tibetan Plateau are currently unclear. Based on large-scale sampling and published observations, we divided eco-clusters based on dominant phylotypes, calculated their relative abundance, and found that their averaged importance to MNC was higher than most other environmental variables. With a deep learning model based on stacked autoencoder, we proved that using eco-cluster relative abundance as the input variable of the model can accurately predict the overall distribution of MNC under current and warming conditions. It implied that warming could lead to an overall increase in the MNC in grassland topsoil across the Tibetan Plateau, with an average increase of 7.49 mg/g, a 68.3% increase. Collectively, this study concludes that alpine grassland has the tendency to increase soil C sequestration capacity on the Tibetan Plateau under future warming.
Collapse
Affiliation(s)
- Qinwei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianke Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaorong Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Nie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohua Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Binzhou Institute of Technology, Binzhou, 256600, China
| | - Guodong Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Danielle Fortin
- Department of Geology, University of Ottawa, Ottawa, K1N6N5, Canada
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Li YZ, Bao XL, Zhu XF, Deng FB, Yang YL, Zhao Y, Xie HT, Tang SX, Ge CJ, Liang C. Parent material influences soil properties to shape bacterial community assembly processes, diversity, and enzyme-related functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172064. [PMID: 38569968 DOI: 10.1016/j.scitotenv.2024.172064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Soil parent material is the second most influential factor in pedogenesis, influencing soil properties and microbial communities. Different assembly processes shape diverse functional microbial communities. The question remains unresolved regarding how these ecological assembly processes affect microbial communities and soil functionality within soils on different parent materials. We collected soil samples developed from typical parent materials, including basalt, granite, metamorphic rock, and marine sediments across soil profiles at depths of 0-20, 20-40, 40-80, and 80-100 cm, within rubber plantations on Hainan Island, China. We determined bacterial community characteristics, community assembly processes, and soil enzyme-related functions using 16S rRNA high-throughput sequencing and enzyme activity analyses. We found homogeneous selection, dispersal limitation, and drift processes were the dominant drivers of bacterial community assembly across soils on different parent materials. In soils on basalt, lower pH and higher moisture triggered a homogeneous selection-dominated assembly process, leading to a less diverse community but otherwise higher carbon and nitrogen cycling enzyme activities. As deterministic process decreased, bacterial community diversity increased with stochastic process. In soils on marine sediments, lower water, carbon, and nutrient content limited the dispersal of bacterial communities, resulting in higher community diversity and an increased capacity to utilize relative recalcitrant substrates by releasing more oxidases. The r-strategy Bacteroidetes and genera Sphingomonas, Bacillus, Vibrionimonas, Ochrobactrum positively correlated with enzyme-related function, whereas k-strategy Acidobacteria, Verrucomicrobia and genera Acidothermus, Burkholderia-Caballeronia-Paraburkholderia, HSB OF53-F07 showed negative correlations. Our study suggests that parent material could influence bacterial community assembly processes, diversity, and soil enzyme-related functions via soil properties.
Collapse
Affiliation(s)
- Yu-Zhu Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Lian Bao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Xue-Feng Zhu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fang-Bo Deng
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ya-Li Yang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yue Zhao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Tu Xie
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shi-Xin Tang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
| | - Cheng-Jun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Chao Liang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
7
|
Zhu X, Hu M, Wang X, Zhang Y, Du D. Biogeography and diversity patterns of abundant and rare bacterial communities in paddy soils along middle and lower Yangtze River. Ecol Evol 2024; 14:e11481. [PMID: 38835524 PMCID: PMC11148396 DOI: 10.1002/ece3.11481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
The middle and lower reaches of the Yangtze River serve as principal rice production bases in China, yet the biodiversity and ecological processes of bacterial communities in paddy soils are not well understood. This study explores the diversity, composition, ecological function, and assembly processes of abundant and rare bacterial communities in paddy soils. A total of 129 paddy soil samples from 43 sites along the middle and lower reaches of the Yangtze River were collected and analyzed using NovaSeq sequencing. The results showed that the dominant phylum for both abundant and rare taxa was Proteobacteria, with a greater relative abundance of the abundant taxa. The diversity of the abundant community was lower than that of the rare community. Soil properties and geographic variables explained more of the variation in the abundant community than in the rare community. The rare community exhibited a significant distance-decay relationship. The assembly of the abundant community was more influenced by stochastic processes, although both the abundant and rare communities were governed by stochastic processes. It is concluded that both abundant and rare bacterial communities exhibit differing biogeographic patterns, yet they undergo similar ecological processes in the paddy soils along the middle and lower reaches of the Yangtze River. These observations offer a theoretical framework for a deeper comprehension of the function of both abundant and rare bacteria, as well as the development and preservation of soil bacterial diversity within agricultural ecosystems.
Collapse
Affiliation(s)
- Xiancan Zhu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education Anhui Normal University Wuhu China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences Anhui Normal University Wuhu China
| | - Minghui Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences Anhui Normal University Wuhu China
| | - Xiaoli Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences Anhui Normal University Wuhu China
| | - Ya Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences Anhui Normal University Wuhu China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences Anhui Normal University Wuhu China
| |
Collapse
|
8
|
Tian W, Li Q, Luo Z, Wu C, Sun B, Zhao D, Chi S, Cui Z, Xu A, Song Z. Microbial community structure in a constructed wetland based on a recirculating aquaculture system: Exploring spatio-temporal variations and assembly mechanisms. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106413. [PMID: 38507984 DOI: 10.1016/j.marenvres.2024.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
The diversity, composition and performance of microbial communities within constructed wetlands (CW) were markedly influenced by spatio-temporal variations. A pilot-scale integrated vertical-flow constructed wetland (IVCW) as the biological purification unit within a recirculating aquaculture system (RAS) was established and monitored in this study. The investigation aimed to elucidate the responses of community structure, co-occurrence networks, and assembly mechanisms of the microbial community to spatial and temporal changes. Spatially, all a-diversity indices and microbial networks complexity were significantly higher in the upstream pool of the IVCW than in the downstream pool. Temporally, the richness increased over time, while the evenness showed a decreasing trend. The number of nodes and edges of microbial networks increased over time. Notably, the stable pollutant removal efficiencies were observed during IVCW operations, despite a-diversity and bacterial community networks exhibited significant variations across time. Functional redundancy emerged as a likely mechanism contributing to the stability of microbial ecosystem functions. Null model and neutral model analyses revealed the dominance of deterministic processes shaping microbial communities over time, with deterministic influences being more pronounced at lower a-diversity levels. DO and inorganic nitrogen emerged as the principal environmental factor influencing microbial community dynamics. This study provides a theoretical foundation for the regulation of microbial communities and environmental factors within the context of IVCW.
Collapse
Affiliation(s)
- Wenjie Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Qiufen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Zijun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Bo Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Danting Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Saisai Chi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
9
|
Qiao H, Wu L, Li C, Yuan T, Gao J. Microbial perspective on restoration of degraded urban soil using ornamental plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120920. [PMID: 38688130 DOI: 10.1016/j.jenvman.2024.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The urban soil where abandoned buildings are demolished is barren and structurally poor, and this degraded soil requires restoration. Ornamental plants enhance the urban environment, increase biodiversity, and affect soil physicochemical properties, microbial diversity; however, their effects remain unclear. Thus, in this study, a mixed-planting meadow consisting of 14 perennial ornamental flower species, including Iris tectorum, Iris lacteal, and Patrinia scabiosaefolia, etc. Was planted at a demolition site with sewage-contaminated soil in Beijing. Simultaneously, a single-planting lawn of I. tectorum was established in a nearby park. We aimed to examine soil physicochemical properties, sequence soil bacterial 16S rRNA and fungal ITS amplicons, and analyze soil microbial diversity and community structure at both sites at five time points in the year after planting, To explore the effect of herbaceous ornamental plants on degraded urban soil, we used FAPROTAX and FUNGuild to predict bacterial and fungal functions, the bin-based null model to evaluate the soil microbial community, and random matrix theory to construct soil microbial molecular networks. The mixed-planting meadow produced a visually appealing landscape and dynamic seasonal enrichment, significantly increasing soil total nitrogen (TN) and organic matter (SOM) contents by 1.99 and 1.21 times, respectively. TN had a positive correlation with soil microbial α diversity and community structure. Dominant phyla at both sites included Proteobacteria, Actinobacteria, and Ascomycota. Although soil microorganisms were primarily influenced by stochastic processes, stochasticity was notably higher in the mixed-planting meadow than in the single-planting lawn. The mixed-planting meadow significantly increased the relative abundance of beneficial microorganisms, improving nitrification and aerobic ammonium oxidation of soil bacteria, as well as symbiotroph of fungi. No significant changes were observed in the single-planting lawn. The mixed-planting meadow established a complex soil microbial molecular network, enhancing the correlation between bacteria and fungi and increasing the number of key microorganisms. Our findings suggest the potential of mixed-planting meadow in restoring degraded urban soils by influencing the soil microbial community and enhancing the ecological service function. Our study provides theoretical support for applying mixed-planting meadow communities to improve the soil environment of urban green spaces.
Collapse
Affiliation(s)
- Hongyong Qiao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China
| | - Luyao Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China; Zhejiang Provincial Institute of Cultural Relice and Archaeology, Zhejiang Province, PR China
| | - Chaonan Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China.
| | - Jianzhou Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, PR China; National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, PR China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing, PR China; School of Landscape Architecture, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
10
|
Yang B, Feng W, Zhou W, He K, Yang Z. Association between Soil Physicochemical Properties and Bacterial Community Structure in Diverse Forest Ecosystems. Microorganisms 2024; 12:728. [PMID: 38674672 PMCID: PMC11052384 DOI: 10.3390/microorganisms12040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Although the importance of the soil bacterial community for ecosystem functions has long been recognized, there is still a limited understanding of the associations between its community composition, structure, co-occurrence patterns, and soil physicochemical properties. The objectives of the present study were to explore the association between soil physicochemical properties and the composition, diversity, co-occurrence network topological features, and assembly mechanisms of the soil bacterial community. Four typical forest types from Liziping Nature Reserve, representing evergreen coniferous forest, deciduous coniferous forest, mixed conifer-broadleaf forest, and its secondary forest, were selected for this study. The soil bacterial community was analyzed using Illumina MiSeq sequencing of 16S rRNA genes. Nonmetric multidimensional scaling was used to illustrate the clustering of different samples based on Bray-Curtis distances. The associations between soil physicochemical properties and bacterial community structure were analyzed using the Mantel test. The interactions among bacterial taxa were visualized with a co-occurrence network, and the community assembly processes were quantified using the Beta Nearest Taxon Index (Beta-NTI). The dominant bacterial phyla across all forest soils were Proteobacteria (45.17%), Acidobacteria (21.73%), Actinobacteria (8.75%), and Chloroflexi (5.06%). Chao1 estimator of richness, observed ASVs, faith-phylogenetic diversity (faith-PD) index, and community composition were distinguishing features of the examined four forest types. The first two principal components of redundancy analysis explained 41.33% of the variation in the soil bacterial community, with total soil organic carbon, soil moisture, pH, total nitrogen, carbon/nitrogen (C/N), carbon/phosphorous (C/P), and nitrogen/phosphorous (N/P) being the main soil physicochemical properties shaping soil bacterial communities. The co-occurrence network structure in the mixed forest was more complex compared to that in pure forests. The Beta-NTI indicated that the bacterial community assembly of the four examined forest types was collaboratively influenced by deterministic and stochastic ecological processes.
Collapse
Affiliation(s)
- Bing Yang
- Sichuan Academy of Giant Panda, Chengdu 610041, China; (W.F.); (W.Z.); (Z.Y.)
| | - Wanju Feng
- Sichuan Academy of Giant Panda, Chengdu 610041, China; (W.F.); (W.Z.); (Z.Y.)
| | - Wenjia Zhou
- Sichuan Academy of Giant Panda, Chengdu 610041, China; (W.F.); (W.Z.); (Z.Y.)
| | - Ke He
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637002, China;
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, Chengdu 610041, China; (W.F.); (W.Z.); (Z.Y.)
| |
Collapse
|
11
|
Du M, Liu J, Bi L, Wang F, Ma C, Song M, Jiang G. Effects of oilfield-produced water discharge on the spatial patterns of microbial communities in arid soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170333. [PMID: 38278269 DOI: 10.1016/j.scitotenv.2024.170333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Recently intensified oil exploitation has resulted in the discharge of large amounts of wastewater containing high concentrations of organic matter and nutrients into the receiving aquatic and soil environments; however, the effects of oilfield-produced water on the soil microbiota are poorly understood. In this study, we conducted a comprehensive analysis to reveal the composition and diversity of the microbial community at horizontal and vertical scales in a typical arid soil receiving oilfield-produced water in Northwest China. Oilfield-produced water caused an increase in microbial diversity at the horizontal scale, and the communities in the topsoil were more variable than those in the subsoil. Additionally, the microbial taxonomic composition differed significantly between the near- and far-producing water soils, with Proteobacteria and Halobacterota dominating the water-affected and reference soil communities, respectively. Soil property analysis revealed that pH, salt, and total organic content influenced the bacterial communities. Furthermore, the oil-produced water promoted the complexity and modularity of distance-associated microbial networks, indicating positive interactions for soil ecosystem function, but not for irrigation or livestock watering. This is the first detailed examination of the microbial communities in soil receiving oilfield-produced water, providing new insights for understanding the microbial spatial distributions in receiving arid soils.
Collapse
Affiliation(s)
- Mei Du
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Lei S, Wang X, Wang J, Zhang L, Liao L, Liu G, Wang G, Song Z, Zhang C. Effect of aridity on the β-diversity of alpine soil potential diazotrophs: insights into community assembly and co-occurrence patterns. mSystems 2024; 9:e0104223. [PMID: 38059620 PMCID: PMC10804954 DOI: 10.1128/msystems.01042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023] Open
Abstract
Microbial diversity plays a vital role in the maintenance of ecosystem functions. However, the current understanding of mechanisms that shape microbial diversity along environmental gradients at broad spatial scales is relatively limited, especially for specific functional groups, such as potential diazotrophs. Here, we conducted an aridity-gradient transect survey from 60 sites across the Tibetan Plateau, the largest alpine ecosystem of the planet, to investigate the ecological processes (e.g., local species pools, community assembly processes, and co-occurrence patterns) that underlie the β-diversity of alpine soil potential diazotrophic communities. We found that aridity strongly and negatively affected the abundance, richness, and β-diversity of soil diazotrophs. Diazotrophs displayed a distance-decay pattern along the aridity gradient, with organisms living in lower aridity habitats having a stronger distance-decay pattern. Arid habitats had lower co-occurrence complexity, including the number of edges and vertices, the average degree, and the number of keystone taxa, as compared with humid habitats. Local species pools explained limited variations in potential diazotrophic β-diversity. In contrast, co-occurrence patterns and stochastic processes (e.g., dispersal limitation and ecological drift) played a significant role in regulating potential diazotrophic β-diversity. The relative importance of stochastic processes and co-occurrence patterns changed with increasing aridity, with stochastic processes weakening whereas that of co-occurrence patterns enhancing. The genera Geobacter and Paenibacillus were identified as keystone taxa of co-occurrence patterns that are associated with β-diversity. In summary, aridity affects the co-occurrence patterns and community assembly by regulating soil and vegetation characteristics and ultimately shapes the β-diversity of potential diazotrophs. These findings highlight the importance of co-occurrence patterns in structuring microbial diversity and advance the current understanding of mechanisms that drive belowground communities.IMPORTANCERecent studies have shown that community assembly processes and species pools are the main drivers of β-diversity in grassland microbial communities. However, co-occurrence patterns can also drive β-diversity formation by influencing the dispersal and migration of species, the importance of which has not been reported in previous studies. Assessing the impact of co-occurrence patterns on β-diversity is important for understanding the mechanisms of diversity formation. Our study highlights the influence of microbial co-occurrence patterns on β-diversity and combines the drivers of community β-diversity with drought variation, revealing that drought indirectly affects β-diversity by influencing diazotrophic co-occurrence patterns and community assembly.
Collapse
Affiliation(s)
- Shilong Lei
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangtao Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Jie Wang
- College of Forestry, Guizhou University, Guiyang, China
| | - Lu Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Lirong Liao
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guobin Liu
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Science, Yangling, Shaanxi, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Zhang H, Zhou X, Li Z, Bartlam M, Wang Y. Anthropogenic original DOM is a critical factor affecting LNA bacterial community assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166169. [PMID: 37562635 DOI: 10.1016/j.scitotenv.2023.166169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
We investigated the geographical and environmental distance-decay relationships for both of the two bacteria in the Haihe River, Tianjin, China. HNA bacteria exhibited a stronger geographical variation-dependent pattern while LNA bacteria exhibited a stronger environmental variation-dependent pattern. Variance partition analysis (VPA), Mantel test, and partial mantel test validated the discrepant impacts of geographical distance and environmental factors on their two communities. The heterogeneous selection dominated community assembly of LNA bacteria demonstrates their greater sensitivity to environmental conditions. As the deterministic environmental factor, anthropogenic original dissolved organic matter (DOM) functions exclusively on LNA bacteria, and it is the critical factor leading to the discrepant biogeographical patterns of LNA and HNA bacteria. LNA bacteria interact with HNA bacteria and mediate the DOM driving total bacteria assembly. The LNA keystone taxa, Pseudomonas, Rheinheimera, Candidatus Aquiluna, and hgcl clade are capable to compete with HNA bacteria for anthropogenic original DOM, and are potential indicators of anthropogenic pollution. Our research reveals the non-negligible effect of the LNA bacteria in regulating the ecological response of total bacteria.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Xinzhu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Zun Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Zhang Z, Zhu J, Ghenijan O, Chen J, Wang Y, Jiang L. Prokaryotic taxonomy and functional diversity assessment of different sequencing platform in a hyper-arid Gobi soil in Xinjiang Turpan Basin, China. Front Microbiol 2023; 14:1211915. [PMID: 38033567 PMCID: PMC10682777 DOI: 10.3389/fmicb.2023.1211915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Turpan Basin located in the eastern Xinjiang is a typical arid inland basin with extremely scarce water resources and a fragile ecosystem. Prokaryotic communities with unique genetic and physiological modifications can survive and function in such harsh environments, offering diverse microbial resources. However, numerous microbes can enter the viable but non-culturable state because of drought stress in the desert soil. In this work, next generation sequencing (NGS) technology based on DNA nanoball sequencing platform (DNBSEQ-G400) and sequencing-by-synthesis platform (NovaSeq 6000) were applied to analyze the prokaryotic diversity in three hyper-arid Gobi soils from Flaming Mountain, Toksun, and Kumtag. The comparison between two platforms indicated that DNBSEQ-G400 had better repeatability and could better reflect the prokaryotic community of this hyper-arid region. The diversity analysis based on DNBSEQ-G400 identified a total of 36 bacterial phyla, including Pseudomonadota, Bacteroidota, Bacillota, Actinomycetota, Methanobacteriota, Acidobacteriota, Nitrososphaerota, and Planctomycetota. The environmental factors, including soluble salt, available potassium, total nitrogen, and organic matter, were positively correlated with the abundance of most prokaryote. In addition, the prokaryotic community assembly in hyper-arid soil was well described by neutral-based models, indicating that the community assembly was mainly controlled by stochastic processes. Finally, the phylogenetic analysis of Actinomycetota proved that such extremophiles played an important role in the ecosystems they colonize. Overall, our result provides a reference for choosing the appropriate sequencing platform and a perspective for the utilization of soil microbial resources from hyper-arid regions.
Collapse
Affiliation(s)
- Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jing Zhu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Osman Ghenijan
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | | | - Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
15
|
Rui J, Zhao Y, Cong N, Wang F, Li C, Liu X, Hu J, Ling N, Jing X. Elevational distribution and seasonal dynamics of alpine soil prokaryotic communities. Front Microbiol 2023; 14:1280011. [PMID: 37808282 PMCID: PMC10557256 DOI: 10.3389/fmicb.2023.1280011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The alpine grassland ecosystem is a biodiversity hotspot of plants on the Qinghai-Tibetan Plateau, where rapid climate change is altering the patterns of plant biodiversity along elevational and seasonal gradients of environments. However, how belowground microbial biodiversity changes along elevational gradient during the growing season is not well understood yet. Here, we investigated the elevational distribution of soil prokaryotic communities by using 16S rRNA amplicon sequencing along an elevational gradient between 3,200 and 4,200 m, and a seasonal gradient between June and September in the Qinghai-Tibetan alpine grasslands. First, we found soil prokaryotic diversity and community composition significantly shifted along the elevational gradient, mainly driven by soil temperature and moisture. Species richness did not show consistent elevational trends, while those of evenness declined with elevation. Copiotrophs and symbiotic diazotrophs declined with elevation, while oligotrophs and AOB increased, affected by temperature. Anaerobic or facultatively anaerobic bacteria and AOA were hump-shaped, mainly influenced by moisture. Second, seasonal patterns of community composition were mainly driven by aboveground biomass, precipitation, and soil temperature. The seasonal dynamics of community composition indicated that soil prokaryotic community, particularly Actinobacteria, was sensitive to short-term climate change, such as the monthly precipitation variation. At last, dispersal limitation consistently dominated the assembly process of soil prokaryotic communities along both elevational and seasonal gradients, especially for those of rare species, while the deterministic process of abundant species was relatively higher at drier sites and in drier July. The balance between deterministic and stochastic processes in abundant subcommunities might be strongly influenced by water conditions (precipitation/moisture). Our findings suggest that both elevation and season can alter the patterns of soil prokaryotic biodiversity in alpine grassland ecosystem of Qinghai-Tibetan Plateau, which is a biodiversity hotspot and is experiencing rapid climate change. This work provides new insights into the response of soil prokaryotic communities to changes in elevation and season, and helps us understand the temporal and spatial variations in such climate change-sensitive regions.
Collapse
Affiliation(s)
- Junpeng Rui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuwei Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Nan Cong
- Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Fuxin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Chao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jingjing Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ning Ling
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Wu Q, Wan W. Insight into application of phosphate-solubilizing bacteria promoting phosphorus availability during chicken manure composting. BIORESOURCE TECHNOLOGY 2023; 373:128707. [PMID: 36746213 DOI: 10.1016/j.biortech.2023.128707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Understanding ecological roles of phosphate-solubilizing bacteria (PSB) is important to optimize composting systems. Illumina MiSeq sequencing, gene quantitation, and statistical analyses were employed to explore ecological mechanisms underlying available phosphorus (AP) facilitation during composting with the inoculation of PSB Pseudomonas sp. WWJ-22. Results displayed that the inoculation of PSB significantly increased AP from 0.83 to 1.23 g kg-1, and notably increased abundances of phosphorus-cycling genes as well as numbers of PSB mineralizing phytate and lecithin. The PSB addition significantly affected compost bacterial community composition, and phosphorus factions and phosphorus-cycling genes independently explained 25.4 % and 25.0 % bacterial compositional dissimilarity. Stochastic and homogenizing processes affected more on bacterial community assembly, and rare bacteria potentially mediated organic phosphorus mineralization. These results emphasized that phosphorus fractions, PSB number, phosphorus-cycling gene abundance, and bacterial community composition contributed differently to phosphorus availability. Findings highlight ecological roles of exogenous PSB during chicken manure composting.
Collapse
Affiliation(s)
- Qiusheng Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
17
|
Pu H, Yuan Y, Qin L, Liu X. pH Drives Differences in Bacterial Community β-Diversity in Hydrologically Connected Lake Sediments. Microorganisms 2023; 11:microorganisms11030676. [PMID: 36985249 PMCID: PMC10056738 DOI: 10.3390/microorganisms11030676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
As microorganisms are very sensitive to changes in the lake environment, a comprehensive and systematic understanding of the structure and diversity of lake sediment microbial communities can provide feedback on sediment status and lake ecosystem protection. Xiao Xingkai Lake (XXL) and Xingkai Lake (XL) are two neighboring lakes hydrologically connected by a gate and dam, with extensive agricultural practices and other human activities existing in the surrounding area. In view of this, we selected XXL and XL as the study area and divided the area into three regions (XXLR, XXLD, and XLD) according to different hydrological conditions. We investigated the physicochemical properties of surface sediments in different regions and the structure and diversity of bacterial communities using high-throughput sequencing. The results showed that various nutrients (nitrogen, phosphorus) and carbon (DOC, LOC, TC) were significantly enriched in the XXLD region. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant bacterial phyla in the sediments, accounting for more than 60% of the entire community in all regions. Non-metric multidimensional scaling analysis and analysis of similarities confirmed that β-diversity varied among different regions. In addition, the assembly of bacterial communities was dominated by a heterogeneous selection in different regions, indicating the important influence of sediment environmental factors on the community. Among these sediment properties, the partial least squares path analysis revealed that pH was the best predictor variable driving differences in bacterial communities in different regions, with higher pH reducing beta diversity among communities. Overall, our study focused on the structure and diversity of bacterial communities in lake sediments of the Xingkai Lake basin and revealed that high pH causes the β-diversity of bacterial communities in the sediment to decrease. This provides a reference for further studies on sediment microorganisms in the Xingkai Lake basin in the future.
Collapse
Affiliation(s)
- Haiguang Pu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuxiang Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Qin
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiaohui Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Correspondence:
| |
Collapse
|
18
|
Jiang R, Wang M, Xie T, Chen W. Site-specific ecological effect assessment at community level for polymetallic contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130531. [PMID: 36495636 DOI: 10.1016/j.jhazmat.2022.130531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Current ecological risk assessment (ERA) is based more on book-keeping than on science especially for terrestrial ecosystems due to the lack of relevance to real field. Accordingly, site-specific ecological effect assessment is critical for ERA, especially at high tiers. This study developed procedures to assess ecological effect at community level based on field data. As a case study, we assessed ecological effect of polymetallic contamination in soil in the surrounding of an abandoned mining and smelting site in Hunan, China. Firstly, Zn was identified as the dominant contaminant in soil and slope gradient (SG) and pH as environmental impact factors using distance-based redundancy analysis(db-RDA). Secondly, sensitive endpoints were screened using correlation analysis between Zn and parameters of plant community composition and functional traits. Thirdly, exposure-effect curves between Zn and screened endpoints were developed by taking SG and pH as covariates using Bayesian kernel machine regression analysis (BKMR), based on which half-effect concentrations (EC50s) and 10 %-effect concentrations (EC10s) of soil Zn for each endpoint were calculated. Finally, site-specific hazardous concentrations (HC50s) of Zn were estimated. It was revealed site-specific EC50s and EC10s for soil Zn ranged 80.5-201 mg kg-1 and 342-893 mgkg-1, respectively, and HC50s based on EC10s and EC50s ranged 104-110 mg kg-1 and 595-612 mg kg-1, respectively, which are more specific and inclusive than those obtained based on crop and vegetable seed germination and seedling growth toxicity experiments.
Collapse
Affiliation(s)
- Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Tian Xie
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Fernández-Guisuraga JM, Calvo L, Ansola G, Pinto R, Sáenz de Miera LE. The effect of sheep grazing abandonment on soil bacterial communities in productive mountain grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158398. [PMID: 36049688 DOI: 10.1016/j.scitotenv.2022.158398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Livestock grazing abandonment entails important shifts on the overall ecosystem function, but the effects of this land-use change on specific bacterial taxa remain poorly understood in mountain grasslands. Moreover, we currently lack knowledge about the feedbacks between changes in ecosystem functions affected by livestock abandonment in mountain grasslands and the soil bacterial communities. Here, we evaluated the behavior of bacterial communities' structure and composition at taxa level as a function of short (1-year) and long-term (15-years) grazing abandonment in a mountain grassland. We also linked the observed responses in the bacterial communities to changes in several ecosystem functions (i.e. primary production, plant species biodiversity, carbon stocks and soil fertility). The alpha diversity of the bacterial communities did not show a significant response as a consequence of grazing abandonment. However, we identified significant changes on the overall composition of soil bacterial communities between the long-term abandoned grassland areas and grazed or abandoned areas in the short term. We also evidenced a balance between the number of operational taxonomic units (OTUs) whose relative abundance is favored by livestock grazing (19.51 %) and those with higher relative abundances in long-term grazing exclusion areas (20.23 %) that could behave as indicators of grazing abandonment. Structural Equation Modeling analyses proved that several bacterial taxa associated with relevant ecosystem functions, such as Rhodospirillales order within Alphaproteobacteria phylum, featured significant changes in their relative abundance between grazing treatments. The direct and indirect effects of grazing exclusion on woody species encroachment and soil organic carbon were strongly linked to the changes in the abundance of bacterial taxa indicators. The assessment of the bacterial community response to livestock abandonment in mountain grasslands may thus provide early warning signs before subtle changes in ecosystem functions occur.
Collapse
Affiliation(s)
- José Manuel Fernández-Guisuraga
- Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, 24071 León, Spain.
| | - Leonor Calvo
- Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, 24071 León, Spain
| | - Gemma Ansola
- Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, 24071 León, Spain
| | - Rayo Pinto
- Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, 24071 León, Spain
| | - Luis E Sáenz de Miera
- Department of Molecular Biology, Faculty of Biological and Environmental Sciences, University of León, 24071 León, Spain
| |
Collapse
|
20
|
Chen Y, Yang X, Fu W, Chen B, Hu H, Feng K, Geisen S. Conversion of natural grassland to cropland alters microbial community assembly across northern China. Environ Microbiol 2022; 24:5630-5642. [PMID: 35880696 DOI: 10.1111/1462-2920.16127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/12/2023]
Abstract
To feed the growing human population, natural grasslands are being converted to agricultural use at a massive scale. This conversion may have negative consequences for soil biodiversity, but its impact on the community assembly of differentially microbial groups remains largely unknown. Here, we investigated the diversity and community compositions of bacteria, archaea, fungi and protists, using a paired sampling of grassland and cropland soils across the agro-pastoral ecotone of northern China. Land-use conversion decreased α diversity of bacteria, fungi and protists, and altered the structures of the entire soil microbial community (archaea, bacteria, fungi and protists). The community assembly of archaea and bacteria was dominated by stochastic processes, and that of protists dominated by deterministic processes in both land-use types. By contrast, the fungal community was governed more strongly by stochastic processes in grassland soil, than by deterministic processes in cropland soil. Our findings support the 'size-plasticity' hypothesis that smaller body-sized microorganisms (archaea and bacteria) are more structured by stochastic processes, and larger one (protist) is more influenced by deterministic processes. Our study demonstrates that distinct ecological processes govern microbial community assembly, and land-use change regulates the balance between determinism and stochasticity.
Collapse
Affiliation(s)
- Yongliang Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xue Yang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kai Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
21
|
Ye G, Chen J, Yang P, Hu HW, He ZY, Wang D, Cao D, Zhang W, Wu B, Wu Y, Wei X, Lin Y. Non-native Plant Species Invasion Increases the Importance of Deterministic Processes in Fungal Community Assembly in a Coastal Wetland. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02144-z. [PMID: 36372840 DOI: 10.1007/s00248-022-02144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Fungal communities are essential to the maintenance of soil multifunctionality. Plant invasion represents a growing challenge for the conservation of soil biodiversity across the globe, but the impact of non-native species invasion on fungal diversity, community structure, and assembly processes remains largely unknown. Here, we examined the diversity, community composition, functional guilds, and assembly process of fungi at three soil depths underneath a native species, three non-native species, and a bare tidal flat from a coastal wetland. Plant species was more important than soil depth in regulating the diversity, community structure, and functional groups of fungi. Non-native species, especially Spartina alterniflora, increased fungal diversity, altered fungal community structure, and increased the relative abundance of saprotrophic and pathogenic fungi in coastal wetland soils. Stochastic processes played a predominant role in driving fungal community assembly, explaining more than 70% of the relative contributions. However, compared to a native species, non-native species, especially S. alterniflora, reduced the relative influence of stochastic processes in fungal community assembly. Collectively, our results provide novel evidence that non-native species can increase fungal diversity, the relative abundance of saprotrophic and pathogenic fungi, and deterministic processes in the assembly of fungi in coastal wetlands, which can expand our knowledge of the dynamics of fungal communities in subtropical coastal wetlands.
Collapse
Affiliation(s)
- Guiping Ye
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Ping Yang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010, Melbourne, Australia
| | - Zi-Yang He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010, Melbourne, Australia
| | - Dan Wang
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Dingding Cao
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenbin Zhang
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Bingyu Wu
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yonghong Wu
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiangying Wei
- Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Yongxin Lin
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
22
|
Isabwe A, Yao H, Zhang S, Jiang Y, Breed MF, Sun X. Spatial assortment of soil organisms supports the size-plasticity hypothesis. ISME COMMUNICATIONS 2022; 2:102. [PMID: 37938741 PMCID: PMC9723746 DOI: 10.1038/s43705-022-00185-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2023]
Abstract
The size-plasticity hypothesis posits that larger size organisms are less plastic in their metabolic rates and, therefore, are more strongly environmental-filtered than smaller organisms. Many studies have supported this hypothesis by evaluating the relative roles of environmental filtration and dispersal for different taxonomic groups of soil organisms. Most observations are made at large spatial scales, which are assumed to have a wide array of varying habitats. However, since urbanization causes habitat fragmentation at smaller regional scales, testing the size-plasticity hypothesis at this scale would help better understand the spatial assortment of urban soil organisms which, in turn, would help to develop improved management and conservation strategies for urban soil health. Here, we used DNA metabarcoding on five groups of soil biota (bacteria, fungi, protists, nematodes, and invertebrates) to assess the relative importance of dispersal and environmental filters to examine the size-plasticity hypothesis at this spatial scale in an urban environment. We observed strong distance-decay of community similarities associated with higher levels of stochastic changes in bacteria, nematode, and protist communities but not fungal or invertebrate communities. Bacterial communities occupied the widest niche followed by protists and nematodes, potentially because of their higher dispersal abilities compared to the larger soil organisms. Null deviation of communities varied with taxonomic groups where bacteria and nematodes were mainly driven by homogenizing dispersal, protists and fungi by drift, and soil invertebrates by environmental selection. We further identified a small percentage of locally-adapted taxa (2.1%) that could be focal taxa for conservation and restoration efforts by, for example, restoring their habitats and enhancing their regional connectivity. These results support the size-plasticity hypothesis at the relatively unexplored regional scale in an urbanization context, and provide new information for improving urban soil health and sustainable city models.
Collapse
Affiliation(s)
- Alain Isabwe
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shixiu Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Kang P, Pan Y, Yang P, Hu J, Zhao T, Zhang Y, Ding X, Yan X. A comparison of microbial composition under three tree ecosystems using the stochastic process and network complexity approaches. Front Microbiol 2022; 13:1018077. [PMID: 36299726 PMCID: PMC9589112 DOI: 10.3389/fmicb.2022.1018077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 10/26/2023] Open
Abstract
Soil microbes act as "players" in regulating biogeochemical cycles, whereas environmental heterogeneity drives microbial community assembly patterns and is influenced by stochastic and deterministic ecological processes. Currently, the limited understanding of soil microbial community assembly patterns and interactions under temperate forest stand differences pose a challenge in studying the soil microbial involvement during the succession from coniferous to broad-leaved forests. This study investigated the changes in soil bacterial and fungal community diversity and community structure at the regional scale and identified the pathways influencing soil microbial assembly patterns and their interactions. The results showed that broad-leaved forest cover in temperate forests significantly increased soil pH, and effectively increased soil water content, total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents. Both soil bacterial and fungal alpha diversity indices were correlated with soil physicochemical properties, especially in broad-leaved forest. The bacterial and fungal community composition of coniferous forest was dominated by deterministic process (bacteria: 69.4%; fungi: 88.9%), while the bacterial community composition of broad-leaved forest was dominated by stochastic process (77.8%) and the fungal community composition was dominated by deterministic process (52.8%). Proteobacteria, Acidobacteriota, Actinobacteriota, and Verrucomicrobiota were the dominant phyla of soil bacterial communities in temperate forests. Whereas Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota were the dominant phyla of soil fungal communities in temperate forests. Most members of dominant phylum were regulated by soil physical and chemical properties. In addition, the succession from temperate coniferous forest to broad-leaved forest was conducive to maintaining the complex network of soil bacteria and fungi, and the top 20 degree of the major taxa in the network reflected the positive response of microbial interactions to the changes of soil nutrients during forest succession. This study not only shows the mechanism by which species differences in temperate forests of northern China affect soil microbial community assembly processes, but also further emphasizes the importance of the soil microbiome as a key ecosystem factor through co-occurrence network analysis.
Collapse
Affiliation(s)
- Peng Kang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, Ningxia, China
- Innovation Team for Genetic Improvement of Economic Forests, North Minzu University, Yinchuan, Ningxia, China
| | - Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Pan Yang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Jinpeng Hu
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Tongli Zhao
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Yaqi Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Xiaodong Ding
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, Ningxia, China
| | - Xingfu Yan
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, Ningxia, China
| |
Collapse
|
24
|
Zhang F, Zhou Z, Xiao Y. Distinct community assembly and co‐existence of arbuscular mycorrhizal fungi and diazotrophs across large scale soil fertility to improve functions in alfalfa cultivation systems. Environ Microbiol 2022; 24:5277-5291. [DOI: 10.1111/1462-2920.16176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Fengge Zhang
- College of Agro‐grassland Science Nanjing Agricultural University Nanjing China
| | - Zhibo Zhou
- College of Agro‐grassland Science Nanjing Agricultural University Nanjing China
| | - Yan Xiao
- College of Agro‐grassland Science Nanjing Agricultural University Nanjing China
| |
Collapse
|
25
|
Chen H, Chen Z, Chu X, Deng Y, Qing S, Sun C, Wang Q, Zhou H, Cheng H, Zhan W, Wang Y. Temperature mediated the balance between stochastic and deterministic processes and reoccurrence of microbial community during treating aniline wastewater. WATER RESEARCH 2022; 221:118741. [PMID: 35752094 DOI: 10.1016/j.watres.2022.118741] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Seasonal temperature changes significantly affect microbial community diversity, composition, and performance in wastewater treatment plants. However, the community assembly mechanisms under seasonal temperature variations remain unclear. Here, we carried out temperature cycling experiments (30 °C, 35 °C, 37 °C, 40 °C, 42 °C, 45 °C, 40 °C, and 30 °C) to investigate how temperature impacts microbial performance and co-occurrence network and how assembly processes determine the structure and function of microbial communities during treating aniline wastewater. During the 195-day operation, the system achieved an efficient and stable aniline removal of 99%. Interestingly, α-diversity and network complexity were negatively correlated with temperature but could be recovered when the temperature was returned to 30 °C. The results showed that functional redundancy was probably responsible for the excellent microbial performance during the whole process. Null model analyses presented that deterministic process dominated the community when the temperature was 30 °C, and stochasticity dominated the assembly process when the temperature was over 30 °C. Overall, the balance between stochastic and deterministic processes in the treatment of aniline wastewater mediated the reoccurrence of microbial community and co-occurrence network at different temperatures. This study provides new insights into microbial community reoccurrence under seasonal temperature changes and a theoretical basis for regulating microbial communities in wastewater treatment plants.
Collapse
Affiliation(s)
- Hui Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueyan Chu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shengqiang Qing
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Chongran Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
26
|
Larsen S, Albanese D, Stegen J, Franceschi P, Coller E, Zanzotti R, Ioriatti C, Stefani E, Pindo M, Cestaro A, Donati C. Distinct and Temporally Stable Assembly Mechanisms Shape Bacterial and Fungal Communities in Vineyard Soils. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02065-x. [PMID: 35835965 DOI: 10.1007/s00248-022-02065-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities in agricultural soils are fundamental for plant growth and in vineyard ecosystems contribute to defining regional wine quality. Managing soil microbes towards beneficial outcomes requires knowledge of how community assembly processes vary across taxonomic groups, spatial scales, and through time. However, our understanding of microbial assembly remains limited. To quantify the contributions of stochastic and deterministic processes to bacterial and fungal assembly across spatial scales and through time, we used 16 s rRNA gene and ITS sequencing in the soil of an emblematic wine-growing region of Italy.Combining null- and neutral-modelling, we found that assembly processes were consistent through time, but bacteria and fungi were governed by different processes. At the within-vineyard scale, deterministic selection and homogenising dispersal dominated bacterial assembly, while neither selection nor dispersal had clear influence over fungal assembly. At the among-vineyard scale, the influence of dispersal limitation increased for both taxonomic groups, but its contribution was much larger for fungal communities. These null-model-based inferences were supported by neutral modelling, which estimated a dispersal rate almost two orders-of-magnitude lower for fungi than bacteria.This indicates that while stochastic processes are important for fungal assembly, bacteria were more influenced by deterministic selection imposed by the biotic and/or abiotic environment. Managing microbes in vineyard soils could thus benefit from strategies that account for dispersal limitation of fungi and the importance of environmental conditions for bacteria. Our results are consistent with theoretical expectations whereby larger individual size and smaller populations can lead to higher levels of stochasticity.
Collapse
Affiliation(s)
- Stefano Larsen
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - James Stegen
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Pietro Franceschi
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - E Coller
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italia
| | - Roberto Zanzotti
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italia
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italia
| | - Erika Stefani
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
- Pacific Northwest National Laboratory, Richland, WA, USA
- Technology Transfer Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italia
| |
Collapse
|