1
|
Martin AJ, Revol-Junelles AM, Petit J, Gaiani C, Leyva Salas M, Nourdin N, Khatbane M, Mafra de Almeida Costa P, Ferrigno S, Ebel B, Schivi M, Elfassy A, Mangavel C, Borges F. Deciphering Rind Color Heterogeneity of Smear-Ripened Munster Cheese and Its Association with Microbiota. Foods 2024; 13:2233. [PMID: 39063317 PMCID: PMC11276107 DOI: 10.3390/foods13142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Color is one of the first criteria to assess the quality of cheese. However, very limited data are available on the color heterogeneity of the rind and its relationship with microbial community structure. In this study, the color of a wide range of smear-ripened Munster cheeses from various origins was monitored during storage by photographic imaging and data analysis in the CIELAB color space using luminance, chroma, and hue angle as descriptors. Different levels of inter- and intra-cheese heterogeneity were observed. The most heterogeneous Munster cheeses were the darkest with orange-red colors. The most homogeneous were the brightest with yellow-orange. K-means clustering revealed three clusters distinguished by their color heterogeneity. Color analysis coupled with metabarcoding showed that rinds with heterogeneous color exhibited higher microbial diversity associated with important changes in their microbial community structure during storage. In addition, intra-cheese community structure fluctuations were associated with heterogeneity in rind color. The species Glutamicibacter arilaitensis and Psychrobacter nivimaris/piscatorii were found to be positively associated with the presence of undesirable brown patches. This study highlights the close relationship between the heterogeneity of the cheese rind and its microbiota.
Collapse
Affiliation(s)
- Amandine J. Martin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Jérémy Petit
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Claire Gaiani
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Marcia Leyva Salas
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Nathan Nourdin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Mohammed Khatbane
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | | | - Sandie Ferrigno
- INRIA Nancy—Grand Est, Institut Elie Cartan de Lorraine (IECL), Equipe BIology, Genetics and Statistics (BIGS), Université de Lorraine, F-54000 Nancy, France;
| | - Bruno Ebel
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, F-54518 Vandoeuvre les Nancy, France;
| | - Myriam Schivi
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Annelore Elfassy
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| |
Collapse
|
2
|
Li Y, Zhao Y, Zhang H, Ding Z, Han J. The Application of Natural Carotenoids in Multiple Fields and Their Encapsulation Technology: A Review. Molecules 2024; 29:967. [PMID: 38474479 DOI: 10.3390/molecules29050967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Carotenoids, which are inherent pigments occurring in plants and microorganisms, manifest a diverse array of vivid hues. Owing to their multifarious health advantages, carotenoids have engendered substantial interest among scholars and consumers alike. Presently, carotenoids are extensively employed in the realms of food, nutrition and health commodities, pharmaceuticals, and cosmetics, rendering them an indispensable constituent of our quotidian existence. Therefore, the objective of this review is to present a succinct and methodical examination of the sources, constituents, and factors influencing formation of carotenoids. Particular attention will be given to encapsulation strategies that maintain intrinsic characteristics, as the growing desire for carotenoids is propelled by individuals' escalating standards of living. Moreover, the applications of natural carotenoids in multiple fields, including pharmaceutical, food and feed, as well as cosmetics, are discussed in detail. Finally, this article explores the main challenges hindering the future advancement of carotenoids, aiming at facilitating their effective integration into the circular economy.
Collapse
Affiliation(s)
- Yinglan Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Huaizhen Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng 252059, China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
3
|
Luu GT, Little JC, Pierce EC, Morin M, Ertekin CA, Wolfe BE, Baars O, Dutton RJ, Sanchez LM. Metabolomics of bacterial-fungal pairwise interactions reveal conserved molecular mechanisms. Analyst 2023; 148:3002-3018. [PMID: 37259951 PMCID: PMC10330857 DOI: 10.1039/d3an00408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacterial-fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial-fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecules in BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis sp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles (i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and that elucidating their role in complex communities should continue to be a priority.
Collapse
Affiliation(s)
- Gordon T Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064, USA.
| | - Jessica C Little
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Emily C Pierce
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, USA
| | - Manon Morin
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, USA
| | - Celine A Ertekin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064, USA.
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, USA
- Tufts University Sensory and Science Center, Medford, Massachusetts, 02155, USA
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, 92093, USA
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064, USA.
| |
Collapse
|
4
|
Luu GT, Little JC, Pierce EC, Morin M, Ertekin CA, Wolfe BE, Baars O, Dutton RJ, Sanchez LM. Metabolomics of bacterial-fungal pairwise interactions reveal conserved molecular mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532449. [PMID: 36993360 PMCID: PMC10054941 DOI: 10.1101/2023.03.13.532449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial-fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial-fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecule mediated BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis spp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles (i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and their role in complex communities should continue to be a priority.
Collapse
Affiliation(s)
- Gordon T. Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064
| | - Jessica C. Little
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, 60612
| | - Emily C. Pierce
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093
| | - Manon Morin
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093
| | - Celine A. Ertekin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064
| | - Benjamin E. Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, 02155
- Tufts University Sensory and Science Center, Medford Massachusetts, 02155
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27607
| | - Rachel J. Dutton
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, 92093
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064
| |
Collapse
|
5
|
Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as food colorants in food products. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Zhang Z, Huang C, Du B, Xie C, Jiang L, Tang S, Xu X. Draft genome sequence of a new carotenoid-producing strain Brevibacterium sp. XU54, isolated from radioactive soil in Xinjiang, China. 3 Biotech 2022; 12:298. [PMID: 36276479 PMCID: PMC9522940 DOI: 10.1007/s13205-022-03366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/17/2022] [Indexed: 11/01/2022] Open
Abstract
Some species of the genus Brevibacterium are orange bacteria involved in cheese ripening, synthesis of odoriferous compounds, and carotenoids with aromatic end groups. Here, we report the genome sequence of Brevibacterium sp. XU54, isolated from radioactive soil in Xinjiang, China. The genome of XU54 consists of 4,899,099 base pairs with a GC content of 62.2%. The genome sequence was annotated with 4453 genes, encoding 4260 proteins, 13 rRNAs, and 49 tRNAs. 16S rRNA BLAST and comparative genomic analysis both indicated that XU54 may be a new species of Brevibacterium. In addition, compared to the type strains, some enzymes related to sulfur metabolism showed a low similarity of 66.85, 79.53 and 14.61%, respectively. The carotenoids biosynthesis gene cluster was identified and analyzed according to the genomic data, which revealed relatively low identity (5-85%) with existing strains. The optimum conditions for its growth and carotenoid production were then discussed. The whole-genome sequence of Brevibacterium sp. XU54 will be beneficial for utilizing these newly identified genes in carotenoid biosynthesis and regulation of sulfur metabolism pathway to promote the production of novel carotenoids and other structurally diverse compounds through combinatorial biosynthesis, which facilitates cheese ripening and coloration. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03366-1.
Collapse
Affiliation(s)
- Zhidong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | - Chunyan Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046 Jiangsu China
| | - Bangmian Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046 Jiangsu China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, 225127 Jiangsu China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | - Susu Tang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046 Jiangsu China
| |
Collapse
|
7
|
Identification of Red Pigments Produced by Cheese-Ripening Bacterial Strains of Glutamicibacter arilaitensis Using HPLC. DAIRY 2021. [DOI: 10.3390/dairy2030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glutamicibacter arilaitensis is one of the predominant bacterial species involved in the coloration of cheese rinds, especially smear-ripened cheeses. Besides well-known yellow-pigmented carotenoids, this species exhibits an ability to produce red pigments, as the occurrence of pink/red formation was previously found when co-cultured with a fungal strain. In this work, the red pigments synthesized by G. arilaitensis strains grown on cheese-based (curd) solid medium deacidified using Debaryomyces hansenii were identified. The analyses using HPLC equipped with both fluorescence and diode array detectors were performed to characterize the pigments extracted from a dry matter of the medium inoculated with either G. arilaitensis Re117, Po102, or Stp101. Based on the UV–vis absorption spectra, the elution order, and fluorescent property, compared to those of the porphyrin standards, eight metal-free porphyrins, including UPI, UPIII, 7PI, 6PI, 5PI, CPI, CPIII, and MPIX, were indicated as components of the red pigments produced by these G. arilaitensis strains. However, following the chromatographic profiles, the degree of porphyrins formed by each strain was apparently different. Regardless of precise quantitative measurement, the type strains Re117 and Po102 manifested a potential to produce a high amount of CPIII, whereas MPIX was formed by the strains Po102 and Stp101, but exceptionally high by the strain Stp101. The variation in both yield and form of the red pigments synthesized by the cheese-related bacterial G. arilaitensis has not previously been reported; therefore, our results provide the first information on these aspects.
Collapse
|
8
|
Mussagy CU, Khan S, Kot AM. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Crit Rev Food Sci Nutr 2021; 62:6932-6946. [PMID: 33798005 DOI: 10.1080/10408398.2021.1908222] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbial carotenoids have attracted rising interest from several industries as a sustainable alternative to substitute the synthetic ones. Traditionally, carotenoids available in the market are obtained by the chemical route using nonrenewable sources (petrochemicals), revealing the negative impact on the environment and consumers. The most promising developments in the upstream and downstream processes of microbial carotenoids are reviewed in this work. The use of agro-based raw materials for bioproduction, and alternative solvents such as biosolvents, deep eutectic solvents, and ionic liquids for the recovery/polishing of microbial carotenoids were also reviewed. The principal advances in the field, regarding the biorefinery and circular economy concepts, were also discussed for a better understanding of the current developments. This review provides comprehensive overview of the hot topics in the field besides an exhaustive analysis of the main advantages/drawbacks and opportunities regarding the implementation of microbial carotenoids in the market.
Collapse
Affiliation(s)
- Cassamo Ussemane Mussagy
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Sabir Khan
- Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Anna Maria Kot
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Meléndez-Martínez AJ, Mandić AI, Bantis F, Böhm V, Borge GIA, Brnčić M, Bysted A, Cano MP, Dias MG, Elgersma A, Fikselová M, García-Alonso J, Giuffrida D, Gonçalves VSS, Hornero-Méndez D, Kljak K, Lavelli V, Manganaris GA, Mapelli-Brahm P, Marounek M, Olmedilla-Alonso B, Periago-Castón MJ, Pintea A, Sheehan JJ, Tumbas Šaponjac V, Valšíková-Frey M, Meulebroek LV, O'Brien N. A comprehensive review on carotenoids in foods and feeds: status quo, applications, patents, and research needs. Crit Rev Food Sci Nutr 2021; 62:1999-2049. [PMID: 33399015 DOI: 10.1080/10408398.2020.1867959] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are isoprenoids widely distributed in foods that have been always part of the diet of humans. Unlike the other so-called food bioactives, some carotenoids can be converted into retinoids exhibiting vitamin A activity, which is essential for humans. Furthermore, they are much more versatile as they are relevant in foods not only as sources of vitamin A, but also as natural pigments, antioxidants, and health-promoting compounds. Lately, they are also attracting interest in the context of nutricosmetics, as they have been shown to provide cosmetic benefits when ingested in appropriate amounts. In this work, resulting from the collaborative work of participants of the COST Action European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN, www.eurocaroten.eu, https://www.cost.eu/actions/CA15136/#tabs|Name:overview) research on carotenoids in foods and feeds is thoroughly reviewed covering aspects such as analysis, carotenoid food sources, carotenoid databases, effect of processing and storage conditions, new trends in carotenoid extraction, daily intakes, use as human, and feed additives are addressed. Furthermore, classical and recent patents regarding the obtaining and formulation of carotenoids for several purposes are pinpointed and briefly discussed. Lastly, emerging research lines as well as research needs are highlighted.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Nutrition and Food Science, Toxicology and Legal Medicine Department, Universidad de Sevilla, Sevilla, Spain
| | - Anamarija I Mandić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Filippos Bantis
- Department of Horticulture, Aristotle University, Thessaloniki, Greece
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Grethe Iren A Borge
- Fisheries and Aquaculture Research, Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anette Bysted
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M Pilar Cano
- Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - M Graça Dias
- Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P., Lisboa, Portugal
| | | | - Martina Fikselová
- Department of Food Hygiene and Safety, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | | | | | | | | | - Kristina Kljak
- Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vera Lavelli
- DeFENS-Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - George A Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Paula Mapelli-Brahm
- Institute of Food Technology in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | - Adela Pintea
- Chemistry and Biochemistry Department, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | | | | | | | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | - Nora O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Yeluri. Jonnala BR, McSweeney PL, Cotter PD, Zhong S, Sheehan JJ, Kopec RE. Comparison of the carotenoid profiles of commonly consumed smear-ripened cheeses. Lebensm Wiss Technol 2021; 135:110241. [PMID: 33446941 PMCID: PMC7802757 DOI: 10.1016/j.lwt.2020.110241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to identify the carotenoids imparting the orange colour to the rind, and pale yellow color to the core, of selected smear-ripened cheeses. The cheeses investigated were Charloe, Ashbrook, Taleggio, and Limburger, and were sourced from artisanal markets. Samples of the rind and core were extracted using non-polar solvents, followed by saponification to hydrolyze triglycerides to remove fatty acids, and to release carotenoid esters. Extracts were tested using ultra-high pressure liquid chromatograph-diode array detector-high resolution mass spectrometry (UHPLC-DAD-MS and -MS/MS), and identities of α- and β-carotene, lycopene, and β-cryptoxanthin confirmed with authentic standards. β-Carotene was the predominant species in both the rind and core, absorbing ~70% of the signal at 450 nm in all cheese extracts tested, as well as minor quantities of β-cryptoxanthin and α-carotene. Carotenoids unique to the rind included lycopene as well as the rare bacterial carotenoids previously identified in bacterial isolates of cheeses (i.e. decaprenoxanthin, sarcinaxanthin, and echinenone). This is the first detailed characterisation of carotenoids extracted directly from smear-ripened cheeses, and reveals that smear-ripened cheese can contribute both provitamin A carotenoids as well as C50 carotenoids to the human diet.
Collapse
Affiliation(s)
- Bhagya R. Yeluri. Jonnala
- Teagasc Food Research Centre, Moorepark, Fermoy Co.Cork, Ireland. P61C996
- School of Food and Nutrition, University College Cork, Cork, Ireland
| | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy Co.Cork, Ireland. P61C996
- APC Microbiome, UCC, Cork, Ireland
| | - Siqiong Zhong
- Human Nutrition Program, The Ohio State University, 1787 Neil Ave., Columbus, Ohio, USA 43210
| | | | - Rachel E. Kopec
- Human Nutrition Program, The Ohio State University, 1787 Neil Ave., Columbus, Ohio, USA 43210
- Foods for Health Discovery Theme, The Ohio State University, 1787 Neil Ave., Columbus, Ohio, USA 43210
| |
Collapse
|
11
|
Chourasia R, Abedin MM, Chiring Phukon L, Sahoo D, Singh SP, Rai AK. Biotechnological approaches for the production of designer cheese with improved functionality. Compr Rev Food Sci Food Saf 2020; 20:960-979. [PMID: 33325160 DOI: 10.1111/1541-4337.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cheese is a product of ancient biotechnological practices, which has been revolutionized as a functional food product in many parts of the world. Bioactive compounds, such as peptides, polysaccharides, and fatty acids, have been identified in traditional cheese products, which demonstrate functional properties such as antihypertensive, antioxidant, immunomodulation, antidiabetic, and anticancer activities. Besides, cheese-making probiotic lactic acid bacteria (LAB) exert a positive impact on gut health, aiding in digestion, and improved nutrient absorption. Advancement in biotechnological research revealed the potential of metabolite production with prebiotics and bioactive functions in several strains of LAB, yeast, and filamentous fungi. The application of specific biocatalyst producing microbial strains enhances nutraceutical value, resulting in designer cheese products with multifarious health beneficial effects. This review summarizes the biotechnological approaches applied in designing cheese products with improved functional properties.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India.,Department of Botany, University of Delhi, New Delhi, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
12
|
Niccum BA, Kastman EK, Kfoury N, Robbat A, Wolfe BE. Strain-Level Diversity Impacts Cheese Rind Microbiome Assembly and Function. mSystems 2020; 5:e00149-20. [PMID: 32546667 PMCID: PMC7300356 DOI: 10.1128/msystems.00149-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Diversification can generate genomic and phenotypic strain-level diversity within microbial species. This microdiversity is widely recognized in populations, but the community-level consequences of microbial strain-level diversity are poorly characterized. Using the cheese rind model system, we tested whether strain diversity across microbiomes from distinct geographic regions impacts assembly dynamics and functional outputs. We first isolated the same three bacterial species (Staphylococcus equorum, Brevibacterium auranticum, and Brachybacterium alimentarium) from nine cheeses produced in different regions of the United States and Europe to construct nine synthetic microbial communities consisting of distinct strains of the same three bacterial species. Comparative genomics identified distinct phylogenetic clusters and significant variation in genome content across the nine synthetic communities. When we assembled each synthetic community with initially identical compositions, community structure diverged over time, resulting in communities with different dominant taxa. The taxonomically identical communities showed differing responses to abiotic (high salt) and biotic (the fungus Penicillium) perturbations, with some communities showing no response and others substantially shifting in composition. Functional differences were also observed across the nine communities, with significant variation in pigment production (light yellow to orange) and in composition of volatile organic compound profiles emitted from the rinds (nutty to sulfury).IMPORTANCE Our work demonstrated that the specific microbial strains used to construct a microbiome could impact the species composition, perturbation responses, and functional outputs of that system. These findings suggest that 16S rRNA gene taxonomic profiles alone may have limited potential to predict the dynamics of microbial communities because they usually do not capture strain-level diversity. Observations from our synthetic communities also suggest that strain-level diversity has the potential to drive variability in the aesthetics and quality of surface-ripened cheeses.
Collapse
Affiliation(s)
- Brittany A Niccum
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Erik K Kastman
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Nicole Kfoury
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Albert Robbat
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Benjamin E Wolfe
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| |
Collapse
|
13
|
Usmani Z, Sharma M, Sudheer S, Gupta VK, Bhat R. Engineered Microbes for Pigment Production Using Waste Biomass. Curr Genomics 2020; 21:80-95. [PMID: 32655303 PMCID: PMC7324876 DOI: 10.2174/1389202921999200330152007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Agri-food waste biomass is the most abundant organic waste and has high valorisation potential for sustainable bioproducts development. These wastes are not only recyclable in nature but are also rich sources of bioactive carbohydrates, peptides, pigments, polyphenols, vitamins, natural antioxidants, etc. Bioconversion of agri-food waste to value-added products is very important towards zero waste and circular economy concepts. To reduce the environmental burden, food researchers are seeking strategies to utilize this waste for microbial pigments production and further biotechnological exploitation in functional foods or value-added products. Microbes are valuable sources for a range of bioactive molecules, including microbial pigments production through fermentation and/or utilisation of waste. Here, we have reviewed some of the recent advancements made in important bioengineering technologies to develop engineered microbial systems for enhanced pigments production using agri-food wastes biomass/by-products as substrates in a sustainable way.
Collapse
Affiliation(s)
| | - Minaxi Sharma
- Address correspondence to these authors at the ERA Chair for Food (By-) Products Valorization Technologies- VALORTECH, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006, Tartu, Estonia; Tel/Fax: +372 7313927; E-mails: ;, ;
| | | | | | - Rajeev Bhat
- Address correspondence to these authors at the ERA Chair for Food (By-) Products Valorization Technologies- VALORTECH, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006, Tartu, Estonia; Tel/Fax: +372 7313927; E-mails: ;, ;
| |
Collapse
|
14
|
Giuffrida D, Monnet C, Laurent F, Cacciola F, Oteri M, Le Piver M, Caro Y, Donato P, Mondello L, Roueyre D, Dufossé L. Carotenoids from the ripening bacterium Brevibacterium linens impart color to the rind of the French cheese, Fourme de Montbrison (PDO). Nat Prod Res 2019; 34:10-15. [PMID: 31140308 DOI: 10.1080/14786419.2019.1622107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rind color of some high-value PDO cheeses is related to the presence of carotenoids, but little is known about the structure of the pigmented compounds and their origin. Our objective was to describe the carotenoids extracted from the rind of a French cheese, Fourme de Montbrison, and to compare them with the pigments produced by a bacterial strain used as an adjunct culture in the cheese ripening process. Eleven carotenoids were detected in the cheese rinds or in the biomass of Brevibacterium linens. Most of the carotenoids from the rinds belonged to the aryl (aromatic) carotenoid family, including hydroxylated and non-hydroxylated isorenieratene. Chlorobactene, a carotenoid rarely found in food products, was also detected. Agelaxanthin A was identified in the cheese rinds as well as in the B. linens biomass. Occurrence of this compound was previously described in only one scientific publication, where it was isolated from the sponge Agela schmidtii.
Collapse
Affiliation(s)
- Daniele Giuffrida
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Christophe Monnet
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | | | - Francesco Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Marianna Oteri
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
| | | | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de La Réunion, Département Hygiène Sécurité Environnement (HSE), IUT La Réunion, Saint-Pierre, France
| | - Paola Donato
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy.,Chromaleont s.r.l., c/o University of Messina, Messina, Italy.,Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | | | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de La Réunion, ESIROI Département Agroalimentaire, Reunion Island, France
| |
Collapse
|
15
|
Artisanal and industrial Maroilles cheeses: Are they different? Comparison using sensory, physico-chemical and microbiological approaches. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB. Production and extraction of carotenoids produced by microorganisms. Appl Microbiol Biotechnol 2018; 103:1095-1114. [PMID: 30560452 DOI: 10.1007/s00253-018-9557-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Carotenoids are a group of isoprenoid pigments naturally synthesized by plants and microorganisms, which are applied industrially in food, cosmetic, and pharmaceutical product formulations. In addition to their use as coloring agents, carotenoids have been proposed as health additives, being able to prevent cancer, macular degradation, and cataracts. Moreover, carotenoids may also protect cells against oxidative damage, acting as an antioxidant agent. Considering the interest in greener and sustainable industrial processing, the search for natural carotenoids has increased over the last few decades. In particular, it has been suggested that the use of bioprocessing technologies can improve carotenoid production yields or, as a minimum, increase the efficiency of currently used production processes. Thus, this review provides a short but comprehensive overview of the recent biotechnological developments in carotenoid production using microorganisms. The hot topics in the field are properly addressed, from carotenoid biosynthesis to the current technologies involved in their extraction, and even highlighting the recent advances in the marketing and application of "microbial" carotenoids. It is expected that this review will improve the knowledge and understanding of the most appropriate and economic strategies for a biotechnological production of carotenoids.
Collapse
Affiliation(s)
- Cassamo Ussemane Mussagy
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - James Winterburn
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Valéria Carvalho Santos-Ebinuma
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil.
| | - Jorge Fernando Brandão Pereira
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Campos Ville, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
17
|
Kamelamela N, Zalesne M, Morimoto J, Robbat A, Wolfe BE. Indigo- and indirubin-producing strains of Proteus and Psychrobacter are associated with purple rind defect in a surface-ripened cheese. Food Microbiol 2018; 76:543-552. [PMID: 30166186 DOI: 10.1016/j.fm.2018.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/17/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023]
Abstract
The rinds of surface-ripened cheeses have expected aesthetic properties, including distinct colors, that contribute to overall quality and consumer acceptance. Atypical rind pigments are frequently reported in small-scale cheese production, but the causes of these color defects are largely unknown. We provide a potential microbial explanation for a striking purple rind defect in a surface-ripened cheese. A cheese producer in the United States reported to us several batches of a raw-milk washed-rind cheese with a distinctly purple rind. We isolated a Proteus species from samples with purple rind defect, but not from samples with typical rind pigments, suggesting that this strain of Proteus could be causing the defect. When provided tryptophan, a precursor in the indigo and indirubin biosynthesis pathway, the isolated strain of Proteus secreted purple-red pigments. A Psychrobacter species isolated from both purple and normal rinds also secreted purple-red pigments. Using thin-layer chromatography and liquid chromatography-mass spectrometry, we confirmed that these bacteria produced indigo and indirubin from tryptophan just as closely related bacteria make these compounds in purple urine bag syndrome in medical settings. Experimental cheese communities with or without Proteus and Psychrobacter confirmed that these Proteobacteria cause purple pigmentation of cheese rinds. Reports of purple rinds in two other cheeses from Europe and the observation of pigment production by Proteus and Psychrobacter strains isolated from other cheese rinds suggest that purple rind defect has the potential to be widespread in surface-ripened cheeses.
Collapse
Affiliation(s)
- Noelani Kamelamela
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA
| | - Michael Zalesne
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA
| | - Joshua Morimoto
- Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA; Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Albert Robbat
- Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA; Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, 200 Boston Ave., Medford, MA, 02155, USA; Tufts University Sensory and Science Center, Tufts University, 200 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
18
|
Numan M, Bashir S, Mumtaz R, Tayyab S, Rehman NU, Khan AL, Shinwari ZK, Al-Harrasi A. Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech 2018; 8:207. [PMID: 29623249 PMCID: PMC5884752 DOI: 10.1007/s13205-018-1227-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/23/2018] [Indexed: 01/10/2023] Open
Abstract
Non-toxicity, biodegradability and non-carcinogenicity of the natural pigments, dyes and colorants make them an attractive source for human use. Bacterial pigments are colored metabolites secreted by bacteria under stress. The industrial uses of bacterial pigments have increased many folds because of several advantages over the synthetic pigments. Among natural resources, bacterial pigments are mostly preferred because of simple culturing and pigment extraction techniques, scaling up and being time economical. Generally, the bacterial pigments are safe for human use and therefore have a wide range of applications in pharmaceutical, textile, cosmetics and food industries. Therapeutic nature of the bacterial pigments is revealed because of their antimicrobial, anticancer, cytotoxic and remarkable antioxidant properties. Owing to the importance of bacterial pigments it was considered important to produce a comprehensive review of literature on the therapeutic and industrial potential of bacterial pigments. Extensive literature has been reviewed on the biomedical application of bacterial pigments while further opportunities and future challenges have been discussed.
Collapse
Affiliation(s)
- Muhammad Numan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320 Pakistan
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of Oman, Nizwa-616, Birkat Al Mauz, P.O Box 33, 616 Nizwa, Oman
| | - Samina Bashir
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Roqayya Mumtaz
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Sibgha Tayyab
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Najeeb Ur Rehman
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of Oman, Nizwa-616, Birkat Al Mauz, P.O Box 33, 616 Nizwa, Oman
| | - Abdul Latif Khan
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of Oman, Nizwa-616, Birkat Al Mauz, P.O Box 33, 616 Nizwa, Oman
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320 Pakistan
- Qarshi University, Lahore, Pakistan
| | - Ahmed Al-Harrasi
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa-616, Sultanate of Oman, Nizwa-616, Birkat Al Mauz, P.O Box 33, 616 Nizwa, Oman
| |
Collapse
|
19
|
Cwiková O. Microbiological quality of smear-ripened cheeses stored in different temperature regimes. POTRAVINARSTVO 2015. [DOI: 10.5219/512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this work was to study smear-ripened cheese, especially its microbiological quality. Samples were stored in different temperature conditions. The first group (A) of samples was stored in a refrigerator at 6 °C. The second group (B) of samples was stored at 6 °C for 21 days, next at -18 °C for 7 days and 7 days at 6 °C. The third group (C) of samples was stored at 6 °C before the date of minimum durability, next 7 weeks at -18 °C and after that at 6 °C for 7 days. I have observed lactic acid bacteria, Brevibacterium linens, coliforms, psychrotrophic organisms, Escherichia coli, moulds and yeast. The number of Brevibacterium linens was higher (p <0.05) at cool ing/freezing for 1 week (log CFU.g-1) than cooling (log CFU.g-1) and cooling/freezing for 7 weeks after 35 days. A higher (p <0.05) number of psychrotrophic microorganisms was recorded at the end of the monitoring in samples stored in a refrigerator (A/49) in comparison with cheeses stored using cooling/freezing regime for one week (B/49). Among the samples stored at these temperature regimes, there were no statistically significant differences (p >0.05) in the numbers of LAB, coliforms, E. coli, moulds and yeast, neither at the end of the DMD nor at storage for 49 or 91 days, respectively.
Collapse
|