1
|
D'Aleo F, Tuscano A, Servello T, Tripodi M, Abramo C, Bonanno R, Gulino FA, Occhipinti S, Incognito GG, Principe L. Relevance of microbiological cultures of cord blood and placental swabs in the rapid diagnosis of preterm newborn infection due to Listeria monocytogenes: A case report. Case Rep Womens Health 2024; 43:e00638. [PMID: 39188762 PMCID: PMC11345304 DOI: 10.1016/j.crwh.2024.e00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Listeria monocytogenes (Lm) is a Gram-positive bacterium causing listeriosis, a rare but severe foodborne infection, particularly impactful during pregnancy. Maternal-fetal transmission can lead to adverse fetal outcomes, yet symptoms in mothers may be nonspecific, delaying intervention. Despite the severity, the mechanisms of vertical transmission remain unclear. This report describes a case of rapid Lm diagnosis in a preterm newborn using cord blood and placental swabs. A 31-week pregnant woman presented with abdominal pain, diarrhea, and reduced fetal movements after consuming raw sushi. Laboratory findings indicated infection, and she vaginally delivered a live infant with placental and fetal abscesses. Cultures confirmed Lm, with swift diagnosis aided by molecular syndromic testing. The neonate received appropriate antibiotics and was asymptomatic by the end of treatment. This case underscores the need for the rapid diagnosis of maternal-fetal listeriosis, as it poses significant risks during pregnancy, including preterm birth and neonatal complications. Current diagnostic methods often delay treatment. This report emphasizes the use of innovative molecular techniques for early diagnosis, which is crucial in managing neonatal infections, especially in preterm newborns.
Collapse
Affiliation(s)
- Francesco D'Aleo
- U.O.C. of Microbiology and Virology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Attilio Tuscano
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Tarcisio Servello
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Marcello Tripodi
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Carmela Abramo
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | - Roberta Bonanno
- U.O.C. of Obstetrics and Gynaecology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| | | | - Sara Occhipinti
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Giosuè Giordano Incognito
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Catania, Italy
| | - Luigi Principe
- U.O.C. of Microbiology and Virology, “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
| |
Collapse
|
2
|
Arias AA, Neehus AL, Ogishi M, Meynier V, Krebs A, Lazarov T, Lee AM, Arango-Franco CA, Yang R, Orrego J, Corcini Berndt M, Rojas J, Li H, Rinchai D, Erazo-Borrás L, Han JE, Pillay B, Ponsin K, Chaldebas M, Philippot Q, Bohlen J, Rosain J, Le Voyer T, Janotte T, Amarajeeva K, Soudée C, Brollo M, Wiegmann K, Marquant Q, Seeleuthner Y, Lee D, Lainé C, Kloos D, Bailey R, Bastard P, Keating N, Rapaport F, Khan T, Moncada-Vélez M, Carmona MC, Obando C, Alvarez J, Cataño JC, Martínez-Rosado LL, Sanchez JP, Tejada-Giraldo M, L'Honneur AS, Agudelo ML, Perez-Zapata LJ, Arboleda DM, Alzate JF, Cabarcas F, Zuluaga A, Pelham SJ, Ensser A, Schmidt M, Velásquez-Lopera MM, Jouanguy E, Puel A, Krönke M, Ghirardello S, Borghesi A, Pahari S, Boisson B, Pittaluga S, Ma CS, Emile JF, Notarangelo LD, Tangye SG, Marr N, Lachmann N, Salvator H, Schlesinger LS, Zhang P, Glickman MS, Nathan CF, Geissmann F, Abel L, Franco JL, Bustamante J, Casanova JL, Boisson-Dupuis S. Tuberculosis in otherwise healthy adults with inherited TNF deficiency. Nature 2024; 633:417-425. [PMID: 39198650 PMCID: PMC11390478 DOI: 10.1038/s41586-024-07866-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Homozygote
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/cytology
- Inflammation/immunology
- Interferon-gamma/immunology
- Loss of Function Mutation
- Lung/cytology
- Lung/drug effects
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mycobacterium tuberculosis/immunology
- Phenotype
- Reactive Oxygen Species/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Respiratory Burst
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/genetics
- Tumor Necrosis Factor Inhibitors/pharmacology
- Tumor Necrosis Factors/deficiency
- Tumor Necrosis Factors/genetics
- Adolescent
- Young Adult
Collapse
Affiliation(s)
- Andrés A Arias
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellín, Colombia
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Vincent Meynier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Adam Krebs
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Angela M Lee
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carlos A Arango-Franco
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Julio Orrego
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Melissa Corcini Berndt
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Julian Rojas
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Lucia Erazo-Borrás
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Bethany Pillay
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Khoren Ponsin
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Matthieu Chaldebas
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
| | - Till Janotte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Krishnajina Amarajeeva
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Marion Brollo
- Lab VIM Suresnes, UMR 0892, Paris Saclay University, INRAe UVSQ, Suresnes, France
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Quentin Marquant
- Lab VIM Suresnes, UMR 0892, Paris Saclay University, INRAe UVSQ, Suresnes, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Doreen Kloos
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover, Germany
| | - Rasheed Bailey
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Narelle Keating
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Franck Rapaport
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Marcela Moncada-Vélez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - María Camila Carmona
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Catalina Obando
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Jesús Alvarez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Juan Carlos Cataño
- Infectious Diseases Section, Department of Internal Medicine, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Larry Luber Martínez-Rosado
- Latin American Research Team in Infectiology and Public Health (ELISAP), La Maria Hospital, Medellín, Colombia
| | - Juan P Sanchez
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Manuela Tejada-Giraldo
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Anne-Sophie L'Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, AP-HP, Paris, France
| | - María L Agudelo
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Lizet J Perez-Zapata
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Diana M Arboleda
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Juan Fernando Alzate
- National Center for Genome Sequencing (CNSG), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Felipe Cabarcas
- National Center for Genome Sequencing (CNSG), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- SISTEMIC Group, Department of Electronic Engineering, Faculty of Engineering, University of Antioquia UdeA, Medellín, Colombia
| | | | - Simon J Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Armin Ensser
- University Hospital Erlangen, Institute of Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Monika Schmidt
- University Hospital Erlangen, Institute of Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Margarita M Velásquez-Lopera
- Dermatology Section, Department of Internal Medicine, School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Dermatological Research Center (CIDERM), Medellín, Colombia
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Susanta Pahari
- Host Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stefania Pittaluga
- Center for Cancer Research, Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jean-François Emile
- Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- REBIRTH-Research Center for Translational Regenerative Medicine, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Hélène Salvator
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
- Respiratory Diseases Department, FOCH Hospital, Suresnes, France
- Simone Veil Department of Health Sciences, Versailles Saint Quentin University, Montigny le Bretonneux, France
| | - Larry S Schlesinger
- Host Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Carl F Nathan
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - José Luis Franco
- Inborn Errors of Immunity Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellín, Colombia.
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France.
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
3
|
Xu W, Peng MJ, Lu LS, Guo ZJ, Li AM, Li J, Cheng Y, Li JY, Li YJ, Lian JQ, Li Y, Sun Y, Zhang WL, Zhang Y. Clinical Characteristics and Fatality Risk Factors for Patients with Listeria monocytogenes Infection: A 12-Year Hospital-Based Study in Xi'an, China. Infect Dis Ther 2024; 13:1359-1378. [PMID: 38733495 PMCID: PMC11128421 DOI: 10.1007/s40121-024-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Listeriosis is a severe food-borne disease caused by Listeria monocytogenes infection. The data of listeriosis in Xi'an population are limited. The aim of this study is to evaluate the clinical features and fatality risk factors for listeriosis in three tertiary-care hospitals in Xi'an, China METHODS: The characteristics of demographic data, underlying diseases, clinical manifestations, laboratory indicators, cranial imaging examination, antibiotics therapeutic schemes, and clinical outcomes were collected between 2011 and 2023. Logistic regression analysis was performed. RESULTS Seventy-one etiologically confirmed listeriosis patients were enrolled, including 12 neonatal and 59 non-neonatal cases. The majority of neonatal listeriosis presented as preterm (50%) and fetal distress (75%). The main clinical manifestations of non-neonatal listeriosis included fever (88%), headache (32%), disorder of consciousness (25%), vomiting (17%), abdominal pain (12%), and convulsions (8%). The fatality rate in neonatal cases was higher than in non-neonatal listeriosis (42 vs. 17%). Although no deaths were reported in maternal listeriosis, only two of 23 patients had an uneventful obstetrical outcome. Five maternal listeriosis delivered culture-positive neonates, three of whom decreased within 1 week post-gestation due to severe complications. Twenty-eight cases were neurolisteriosis and 43 cases were bacteremia. Neurolisteriosis had a higher fatality rate compared with bacteremia listeriosis (36 vs. 12%). The main neuroradiological images were cerebral edema/hydrocephalus, intracranial infection, and cerebral hernia. Listeria monocytogenes showed extremely low resistance to ampicillin (two isolates) and penicillin (one isolate). The fatality risk factors were the involvement of the central nervous system, hyperbilirubinemia, and hyponatremia for all enrolled subjects. Hyperuricemia contributed to the elevation of fatality risk in non-neonatal listeriosis. CONCLUSIONS When the patients suffered with symptoms of fever and central nervous system infection, they should be alert to the possibility of listeriosis. Early administration of ampicillin- or penicillin-based therapy might be beneficial for recovery of listeriosis.
Collapse
Affiliation(s)
- Wen Xu
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
- Department of Disease Prevention and Control, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Mei-Juan Peng
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Lin-Shan Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhen-Jun Guo
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - A-Min Li
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Jing Li
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Yan Cheng
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Jia-Yu Li
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Yi-Jun Li
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 17 Changle West Rd, Xi'an, 710032, Shaanxi, China
| | - Jian-Qi Lian
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital, 256 West Youyi Rd, Xi'an, 710068, Shaanxi, China.
| | - Yang Sun
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Medical University, 167 Fangdong St, Xi'an, 710038, Shaanxi, China.
| | - Wei-Lu Zhang
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 17 Changle West Rd, Xi'an, 710032, Shaanxi, China.
| | - Ye Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Rd, Baqiao District, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
4
|
Chen M, Ren G, Zhang X, Yang L, Ding Q, Sun J, Xia J, Xu J, Jiang L, Fang W, Cheng C, Song H. DegU-mediated suppression of carbohydrate uptake in Listeria monocytogenes increases adaptation to oxidative stress. Appl Environ Microbiol 2023; 89:e0101723. [PMID: 37787570 PMCID: PMC10617591 DOI: 10.1128/aem.01017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
The foodborne bacterial pathogen Listeria monocytogenes exhibits remarkable survival capabilities under challenging conditions, severely threatening food safety and human health. The orphan regulator DegU is a pleiotropic regulator required for bacterial environmental adaptation. However, the specific mechanism of how DegU participates in oxidative stress tolerance remains unknown in L. monocytogenes. In this study, we demonstrate that DegU suppresses carbohydrate uptake under stress conditions by altering global transcriptional profiles, particularly by modulating the transcription of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS)-related genes, such as ptsH, ptsI, and hprK. Specifically, in the absence of degU, the transcripts of ptsI are significantly upregulated and those of hprK are significantly downregulated in response to copper ion-induced stress. Overexpression of ptsI significantly increases bacterial growth in vitro, while overexpression of hprK leads to a decrease in growth. We further demonstrate that DegU directly senses oxidative stress, downregulates ptsI transcription, and upregulates hprK transcription. Additionally, through an electrophoretic mobility shift assay, we demonstrate that DegU directly regulates the transcription of ptsI and hprK by binding to specific regions within their respective promoter sequences. Notably, the putative pivotal DegU binding sequence for ptsI is located from 38 to 68 base pairs upstream of the ptsH transcription start site (TSS), whereas for hprK, it is mapped from 36 to 124 base pairs upstream of the hprK TSS. In summary, we elucidate that DegU plays a significant role in suppressing carbohydrate uptake in response to oxidative stress through the direct regulation of ptsI and hprK.ImportanceUnderstanding the adaptive mechanisms employed by Listeria monocytogenes in harsh environments is of great significance. This study focuses on investigating the role of DegU in response to oxidative stress by examining global transcriptional profiles. The results highlight the noteworthy involvement of DegU in this stress response. Specifically, DegU acts as a direct sensor of oxidative stress, leading to the modulation of gene transcription. It downregulates ptsI transcription while it upregulates hprK transcription through direct binding to their promoters. Consequently, these regulatory actions impede bacterial growth, providing a defense mechanism against stress-induced damage. These findings gained from this study may have broader implications, serving as a reference for studying adaptive mechanisms in other pathogenic bacteria and aiding in the development of targeted strategies to control L. monocytogenes and ensure food safety.
Collapse
Affiliation(s)
- Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Gengjia Ren
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xian Zhang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Yang
- Ningbo College of Health Sciences, Ningbo, China
| | - Qiang Ding
- Ningbo College of Health Sciences, Ningbo, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
5
|
Chen M, Zhang J, Xia J, Sun J, Zhang X, Xu J, Deng S, Han Y, Jiang L, Song H, Cheng C. Listeria monocytogenes GshF contributes to oxidative stress tolerance via regulation of the phosphoenolpyruvate-carbohydrate phosphotransferase system. Microbiol Spectr 2023; 11:e0236523. [PMID: 37668404 PMCID: PMC10580955 DOI: 10.1128/spectrum.02365-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023] Open
Abstract
Glutathione (GSH) is an essential component of the glutaredoxin (Grx) system, and it is synthesized by the enzyme glutathione synthase GshF in Listeria monocytogenes. GSH plays a crucial role in regulating Listeria virulence by modifying the virulence factors LLO and PrfA. In this study, we investigated the involvement of L. monocytogenes GshF in oxidative tolerance and intracellular infection. Our findings revealed that the deletion of gshF resulted in a significant reduction in bacterial growth in vitro when exposed to diamide and copper ions stress. More importantly, this deletion also impaired the efficiency of invasion and proliferation in macrophages and mice organs. Furthermore, GshF influenced global transcriptional profiles, including carbohydrate and amino acid metabolism, particularly those related to the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) genes lmo1997-lmo2004, under oxidative stress conditions. In the wild-type strain, the transcription of lmo1997-lmo2004 was notably downregulated in response to copper ions and diamide stress compared to normal conditions. However, in the absence of gshF, the transcripts of lmo1997-lmo2004 were upregulated in response to these stress conditions. Notably, the deletion of iiBman (lmo2002) enhanced oxidative stress tolerance to copper ions, whereas overexpression of iiBman reduced this resistance. In conclusion, our study provides the first evidence that L. monocytogenes GshF plays a crucial role in bacterial antioxidation through the regulation of iiBman.IMPORTANCEListeria monocytogenes has developed various mechanisms to withstand oxidative stress, including the thioredoxin and glutaredoxin systems. However, the specific role of the glutathione synthase GshF, responsible for synthesizing GSH in L. monocytogenes, in oxidative tolerance remains unclear. This study aimed to elucidate the relationship between GshF and oxidative tolerance in L. monocytogenes by examining the efficiency of invasion and proliferation in macrophages and mice organs, as well as analyzing global transcriptional profiles under oxidative stress conditions. The results revealed that GshF plays a significant role in L. monocytogenes' response to oxidative stress. Notably, GshF acts to suppress the transcription of phosphoenolpyruvate-carbohydrate phosphotransferase system genes lmo1997-lmo2004, among which iiBman (lmo2002) was identified as the most critical gene for resisting oxidative stress. These findings enhance our understanding of how L. monocytogenes adapts to its environment and provide valuable insights for investigating the environmental adaptation mechanisms of other pathogenic bacteria.
Collapse
Affiliation(s)
- Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiaxue Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Simin Deng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yue Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Simão Raimundo D, Viveiros E, Monteiro I, Gomes F. Challenges in Managing a Case of Neonatal Listeriosis in Portugal. Cureus 2023; 15:e38405. [PMID: 37265911 PMCID: PMC10231900 DOI: 10.7759/cureus.38405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
A male neonate was born at 34 weeks due to spontaneous labor with associated fetal distress and meconium-stained amniotic fluid. The neonate presented with septic shock and congenital pneumonia shortly after birth and later neurological symptoms. Listeria monocytogenes was identified in blood samples, but with negative urine and cerebrospinal fluid cultures. The neonate required assisted ventilation for a period of 10 days and received high-dose and long-term antibiotic therapy. Despite the fact that the mother denied an infectious risk for listeriosis infection, she developed mild respiratory symptoms. Her microbiological investigation was negative, although it did not include placental samples. Vertical transmission in this case was presumed but not confirmed. The newborn was discharged asymptomatic at day 26 of life and has presented normal developmental evolution until present, at eight months old. Listeria monocytogenes is a classic but relatively rare cause of neonatal sepsis and meningitis. This case describes a clinically successfully managed case with no possible epidemiological link and illustrates the challenges in managing cases of a public health disease. In neonatal listeriosis, communication between Neonatology and Obstetrics departments, as well as with public health, is vital, and long-term follow-up is crucial to identify possible neurological sequelae.
Collapse
Affiliation(s)
- Diana Simão Raimundo
- Pediatrics Department, Hospital do Divino Espírito Santo de Ponta Delgada, Ponta Delgada, PRT
| | - Eulália Viveiros
- Neonatal Unit, Pediatrics Department, Hospital do Divino Espírito Santo de Ponta Delgada, Ponta Delgada, PRT
| | - Isabel Monteiro
- Neonatal Unit, Pediatrics Department, Hospital do Divino Espírito Santo de Ponta Delgada, Ponta Delgada, PRT
| | - Fernanda Gomes
- Neonatal Unit, Pediatrics Department, Hospital do Divino Espírito Santo de Ponta Delgada, Ponta Delgada, PRT
| |
Collapse
|
7
|
Khalil A, Samara A, O'Brien P, Ladhani S. Listeria outbreaks cause maternal and perinatal mortality and morbidity: we must do better. THE LANCET. MICROBE 2023; 4:e206-e207. [PMID: 36623525 DOI: 10.1016/s2666-5247(22)00388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Asma Khalil
- Fetal Medicine Unit, Department of Obstetrics and Gynaecology, St George's University of London, London SW17 0QT, UK; Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0QT, UK.
| | - Athina Samara
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; FUTURE, Center for functional tissue reconstruction, University of Oslo, Oslo, Norway
| | - Pat O'Brien
- The Royal College of Obstetricians and Gynaecologists, London, UK; Department of Women's Health, University College London Hospitals NHS Foundation Trust, London, UK
| | - Shamez Ladhani
- Paediatric Infectious Diseases Research Group and Vaccine Institute, Institute of Infection and Immunity, St George's University of London, London SW17 0QT, UK; Immunisation and Countermeasures Division, UK Health Security Agency (Public Health England), London, UK; British Paediatric Surveillance Unit, Royal College of Paediatrics and Child Health, London, UK
| |
Collapse
|
8
|
Germanopoulou T, Ishak A, Hardy EJ, Johnson JE, Mylonakis E. Listeriosis in Pregnancy. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2023. [DOI: 10.1007/s40506-023-00262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
9
|
Huang P, Guo X, Duan M, Li H, Han C, Xue F. Maternal Infection with Listeria monocytogenes in Twin Pregnancy. Infect Drug Resist 2023; 16:2511-2518. [PMID: 37138841 PMCID: PMC10150742 DOI: 10.2147/idr.s407244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Listeria monocytogenes is the conditional pathogenic bacteria, and pregnant women are at higher risk of infection due to depressed immunity. Infection with Listeria monocytogenes in twin pregnancy is rare but devastating, which puts forwards a great challenge for clinical management. Here, a 24-year-old woman was diagnosed with twin pregnancy, intrauterine death of one fetus and fever at 29+4 week of gestation. Two days later, she developed into pericardial effusion, pneumonedema and potential septic shock. The emergent cesarean delivery was performed after anti-shock treatment. One alive and another dead fetus were delivered. Then, she developed postpartum hemorrhage after the surgery. Urgent exploratory laparotomy was conducted at the sites of cesarean section and B-Lynch suture to stop bleeding. The culture of blood and maternal side of both placentas indicated Listeria monocytogenes. Following anti-infection therapy with ampicillin-sulbactam, she recovered well and discharged with negative result of blood bacterial culture and normal inflammatory indicators. The patient was hospitalized for a total of 18 days including 2 days in the intensive care unit (ICU), and the anti-infection treatment was conducted throughout the course. Symptoms of the Listeria monocytogenes infection in pregnancy are non-specific, which should be paid more attention in case of unexplained fever and fetal distress. The blood culture is effective for accurate diagnosis. Listeria monocytogenes infection is associated with poor pregnancy outcomes. Close monitoring of fetal condition, early intervention with antibiotics, timely termination of pregnancy and comprehensive management of complications are essential for better prognosis.
Collapse
Affiliation(s)
- Pengzhu Huang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xin Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Mengke Duan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Correspondence: Fengxia Xue; Cha Han, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China, Tel +86-22-60363769, Fax +86-22-27813550, Email ;
| |
Collapse
|
10
|
Rhombencephalitis in Pregnancy-A Challenging Case of Probable Listeria Infection. Life (Basel) 2022; 12:life12101600. [PMID: 36295036 PMCID: PMC9604870 DOI: 10.3390/life12101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Rhombencephalitis refers to inflammation of the brainstem and cerebellum, and can be caused by infections, autoimmune disorders or paraneoplastic syndromes. The most common infective cause is the bacterium Listeria monocytogenes. Listeria monocytogenes is the predominant species to cause human listeriosis, and is commonly due to the ingestion of contaminated foods. Symptoms include a mild gastroenteritis, fever (often with extreme temperature variations), headache, and myalgia. In more severe cases, invasive disease may lead to bacteraemia and neurolisteriosis. Pregnant women are more susceptible to listeriosis, which is believed to be due to pregnancy-related immune modulation. Maternal-neonatal infection with adverse pregnancy outcomes include neonatal listeriosis, spontaneous miscarriage and intrauterine fetal demise. Diagnosis may be challenging due to initial nonspecific symptoms and low sensitivity and specificity of confirmatory diagnostic laboratory tests. Here, we describe a case of rhombencephalitis in pregnancy, attributed to Listeria, and review the clinical features, diagnosis and multidisciplinary management. Lastly, we describe the immunological response to Listeria monocytogenes and show in vitro pro-inflammatory effects of Listeria monocytogenes on peripheral blood mononuclear cells and placental explants.
Collapse
|
11
|
Patel S, Chapagain M, Mason C, Gingrich M, Athale S, Ribble W, Hoang T, Day J, Sun X, Jarvis T, Ochsner UA, Howe D, Gumbo T. Potency of the novel PolC DNA polymerase inhibitor CRS0540 in a disseminated Listeria monocytogenes intracellular hollow-fibre model. J Antimicrob Chemother 2022; 77:2876-2885. [PMID: 35929190 PMCID: PMC9525089 DOI: 10.1093/jac/dkac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Listeriosis is an orphan disease, which is nevertheless fatal in immunocompromised people. CRS0540 is a novel PolC DNA polymerase inhibitor that has demonstrated good in vitro and in vivo activity against Listeria monocytogenes. Methods Rodent-to-human allometry projection-based human population pharmacokinetics of CRS0540 were used for all studies. CRS0540 pharmacokinetics/pharmacodynamics studies in an intracellular hollow-fibre system model of disseminated listeriosis (HFS-Lister) examined the effect of eight treatment doses, administered daily over 7 days, in duplicate units. Total bacterial burden versus AUC/MIC exposures on each day were modelled using the inhibitory sigmoid Emax model, while CRS0540-resistant bacterial burden was modelled using a quadratic function. Ten thousand-subject Monte Carlo simulations were used to predict an optimal clinical dose for treatment. Results The mean CRS0540 intracellular/extracellular AUC0–24 ratio was 34.07 (standard error: 15.70) as measured in the HFS-Lister. CRS0540 demonstrated exposure-dependent bactericidal activity in the HFS-Lister, with the highest exposure killing approximately 5.0 log10 cfu/mL. The free drug AUC0–24/MIC associated with 80% of maximal kill (EC80) was 36.4. Resistance emergence versus AUC/MIC was described by a quadratic function, with resistance amplification at an AUC/MIC of 54.8 and resistance suppression at an AUC/MIC of 119. Monte Carlo simulations demonstrated that for the EC80 target, IV CRS0540 doses of 100 mg/kg achieved PTAs of >90% at MICs up to 1.0 mg/L. Conclusions CRS0540 is a promising orphan drug candidate for listeriosis. Future PK/PD studies comparing it with penicillin, the standard of care, could lead to this drug as a new treatment in immunocompromised patients.
Collapse
Affiliation(s)
- Swati Patel
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA
| | - Moti Chapagain
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA
| | | | | | - Shruti Athale
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA
| | | | | | | | | | | | | | - David Howe
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA.,Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA
| | - Tawanda Gumbo
- Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc., Dallas, TX, USA.,Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA
| |
Collapse
|
12
|
Zhang F, Graham J, Zhai T, Liu Y, Huang Z. Discovery of MurA Inhibitors as Novel Antimicrobials through an Integrated Computational and Experimental Approach. Antibiotics (Basel) 2022; 11:antibiotics11040528. [PMID: 35453279 PMCID: PMC9031695 DOI: 10.3390/antibiotics11040528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The bacterial cell wall is essential for protecting bacteria from the surrounding environment and maintaining the integrity of bacteria cells. The MurA enzyme, which is an essential enzyme involved in bacterial cell wall synthesis, could be a good drug target for antibiotics. Although fosfomycin is used clinically as a MurA inhibitor, resistance to this antibiotic is a concern. Here we used molecular docking-based virtual screening approaches to identify potential MurA inhibitors from 1.412 million compounds from three databases. Thirty-three top compounds from virtual screening were experimentally tested in Listeria innocua (Gram-positive bacterium) and Escherichia coli (Gram-negative bacterium). Compound 2-Amino-5-bromobenzimidazole (S17) showed growth inhibition effect in both L. innocua and E. coli, with the same Minimum Inhibitory Concentration (MIC) value of 0.5 mg/mL. Compound 2-[4-(dimethylamino)benzylidene]-n-nitrohydrazinecarboximidamide (C1) had growth inhibition effect only in L. innocua, with a MIC value of 0.5 mg/mL. Two FDA-approved drugs, albendazole (S4) and diflunisal (S8), had a growth inhibition effect only in E. coli, with a MIC value of 0.0625 mg/mL. The identified MurA inhibitors could be potential novel antibiotics. Furthermore, they could be potential fosfomycin substitutes for the fosfomycin-resistant strains.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (F.Z.); (J.G.); (T.Z.)
| | - Joshua Graham
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (F.Z.); (J.G.); (T.Z.)
| | - Tianhua Zhai
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (F.Z.); (J.G.); (T.Z.)
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
- Correspondence: (Y.L.); (Z.H.); Tel.: +1-215-233-6587 (Y.L.); +1-610-519-4848 (Z.H.)
| | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (F.Z.); (J.G.); (T.Z.)
- Correspondence: (Y.L.); (Z.H.); Tel.: +1-215-233-6587 (Y.L.); +1-610-519-4848 (Z.H.)
| |
Collapse
|
13
|
Park M, Horn L, Lappi V, Boxrud D, Hedberg C, Jeon B. Antimicrobial Synergy between Aminoglycosides and Licorice Extract in Listeria monocytogenes. Pathogens 2022; 11:pathogens11040440. [PMID: 35456115 PMCID: PMC9031314 DOI: 10.3390/pathogens11040440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can develop serious invasive infections. Among foodborne pathogens, L. monocytogenes exhibits the highest case fatality despite antibiotic treatment, suggesting the current therapy should be improved. Although ampicillin and gentamicin are used as a combination therapy to treat listeriosis, our results showed there is no synergy between the two antibiotics. We discovered that aqueous extract of licorice generated significant antimicrobial synergy when combined with aminoglycosides, such as gentamicin, in L. monocytogenes. In the presence of 1 mg/mL licorice extract, for instance, the minimum inhibitory concentration (MIC) of gentamicin was reduced by 32-fold. Moreover, antimicrobial synergy with licorice extract made gentamicin-resistant clinical isolates of L. monocytogenes susceptible to gentamicin. Given the common use of licorice as a food sweetener in Western countries and a herb in Oriental medicine, our findings suggest that licorice extract can be potentially used as an antibiotic adjuvant to improve the efficacy of antimicrobial treatment of listeriosis.
Collapse
Affiliation(s)
- Myungseo Park
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (M.P.); (C.H.)
| | - Liz Horn
- Public Health Laboratory, Minnesota Department of Health, Saint Paul, MN 55164, USA; (L.H.); (V.L.); (D.B.)
| | - Victoria Lappi
- Public Health Laboratory, Minnesota Department of Health, Saint Paul, MN 55164, USA; (L.H.); (V.L.); (D.B.)
| | - Dave Boxrud
- Public Health Laboratory, Minnesota Department of Health, Saint Paul, MN 55164, USA; (L.H.); (V.L.); (D.B.)
| | - Craig Hedberg
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (M.P.); (C.H.)
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (M.P.); (C.H.)
- Correspondence:
| |
Collapse
|