1
|
Abstract
Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion.
Collapse
|
2
|
Park E, Liu B, Xia X, Zhu F, Jami WB, Hu Y. Role of IKKα in skin squamous cell carcinomas. Future Oncol 2011; 7:123-34. [PMID: 21174543 DOI: 10.2217/fon.10.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are two major types of skin cancer derived from keratinocytes. SCC is a more aggressive type of cancer than BCC in humans. One significant difference between SCC and BCC is that SCC development is generally associated with cell dedifferentiation and morphological changes. When SCC is converted to spindle cell carcinoma, the latest stage of cancer, the tumor cells change to a fibroblastic cell morphology (epithelial-to-mesenchymal transition) and lose their differentiation markers. Recently, several laboratories have reported altered IκB kinase α (IKKα) protein localization, downregulated IKKα, and IKKα gene deletions and mutations in human SCCs of the skin, lung, esophagus, and neck and head. In addition, IKKα reduction promotes chemical carcinogen- and ultraviolet B-induced skin carcinogenesis, and IKKα deletion in keratinocytes causes spontaneous skin SCCs, but not BCCs, in mice. Thus, IKKα emerges as a bona fide skin tumor suppressor. In this article, we will discuss the role of IKKα in skin SCC development.
Collapse
Affiliation(s)
- Eunmi Park
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
3
|
El-Hoss J, Micallef AS, Fairfull-Smith KE, Bottle SE, Little DG, Schindeler A. Assessment of Tumor Prevention in Type 1 Neurofibromatosis using a Nitroxide Compound. ACTA ACUST UNITED AC 2011. [DOI: 10.5530/ax.2011.3.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Kiguchi K, Kitamura T, Moore T, Rumi M, Chang HC, Treece D, Ruffino L, Connolly K, DiGiovanni J. Dual inhibition of both the epidermal growth factor receptor and erbB2 effectively inhibits the promotion of skin tumors during two-stage carcinogenesis. Cancer Prev Res (Phila) 2010; 3:940-52. [PMID: 20682802 PMCID: PMC2940063 DOI: 10.1158/1940-6207.capr-10-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The erbB family of receptor tyrosine kinases are known to play important roles in normal epithelial development and epithelial neoplasia. Considerable evidence also suggests that signaling through the epidermal growth factor receptor (EGFR) plays an important role in multistage skin carcinogenesis in mice; however, less is known about the role of erbB2. In this study, to further examine the role of both erbB2 and EGFR in epithelial carcinogenesis, we examined the effect of a dual erbB2/EGFR tyrosine kinase inhibitor, GW2974, given in the diet on skin tumor promotion during two-stage carcinogenesis in wild-type and BK5.erbB2 mice. In BK5.erbB2 mice, erbB2 is overexpressed in the basal layer of epidermis and leads to heightened sensitivity to skin tumor development. GW2974 effectively inhibited skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in wild-type and BK5.erbB2 mice, although a more marked effect was seen in BK5.erbB2 mice. In addition, this inhibitory effect was reversible when GW2974 treatment was withdrawn. GW2974 inhibited 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperproliferation, which correlated with reduced activation of both the EGFR and erbB2. These results support the hypothesis that both the EGFR and erbB2 play an important role in the development of skin tumors during two-stage skin carcinogenesis, especially during the tumor promotion stage. Furthermore, the marked sensitivity of BK5.erbB2 mice to the inhibitory effects of GW2974 during tumor promotion suggest greater efficacy for this compound when erbB2 is overexpressed or amplified as an early event in the carcinogenic process.
Collapse
MESH Headings
- Algorithms
- Animals
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Drug Evaluation, Preclinical
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Mice
- Mice, Transgenic
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Protein Kinase Inhibitors/therapeutic use
- Quinazolines/therapeutic use
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Treatment Outcome
Collapse
Affiliation(s)
- Kaoru Kiguchi
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cichocki M, Blumczyńska J, Baer-Dubowska W. Naturally occurring phenolic acids inhibit 12-O-tetradecanoylphorbol-13-acetate induced NF-kappaB, iNOS and COX-2 activation in mouse epidermis. Toxicology 2009; 268:118-24. [PMID: 20026373 DOI: 10.1016/j.tox.2009.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/11/2009] [Accepted: 12/11/2009] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate the effects of naturally occurring protocatechuic, chlorogenic and tannic acids on the skin tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), induced NF-kappaB in mouse epidermis. The topical application of these phenolics 15min prior to TPA resulted in a significant decrease in the NF-kappaB activation which was measured in terms of p65-DNA binding. Tannic acid was the most potent inhibitor of the TPA-stimulated p65-DNA binding, while chlorogenic acid was the least effective compound. Tannic acid also reduced the most the NF-kappaB p65 subunit translocation from cytosol to the nucleus and enhanced the retention of IkappaBalpha in the cytosol. Although protocatechuic acid decreased p65-DNA binding, it did not affect TPA-stimulated degradation of IkappaBalpha. All the tested compounds inhibited the IkappaBalpha kinase (IKK) activity in mouse epidermis. Tannic acid was the most potent inhibitor and protocatechuic acid the weakest. Tannic and chlorogenic acids reduced the TPA-induced C-L activity of proteasome 20S to a similar extent. The blockade of upstream kinase IKK signaling by tannic acid, but also by protocatechuic acid, inhibited the enzyme level and the activity of COX-2. Protocatechuic acid also diminished the level and activity of TPA-induced iNOS, which might be related to its weak effect on IkappaBalpha degradation. Our earlier studies demonstrated that these compounds, particularly tannic acid, reduced the formation of the polycyclic aromatic hydrocarbon-DNA adducts in vitro and in vivo in mouse epidermis. The results of our present study indicate that the compounds which reduce the formation of electrophilic PAH metabolites may also diminish NF-kappaB activation. Thus, the phenolic acids, particularly tannic acid, by affecting the key events of initiation and promotion stage of carcinogenesis, have become of great interest for the prevention of cancer.
Collapse
Affiliation(s)
- Michał Cichocki
- Poznan University of Medical Sciences, Department of Pharmaceutical Biochemistry, Swiecickiego 4, 60-781 Poznań, Poland
| | | | | |
Collapse
|
6
|
Park E, Zhu F, Liu B, Xia X, Shen J, Bustos T, Fischer SM, Hu Y. Reduction in IκB Kinase α Expression Promotes the Development of Skin Papillomas and Carcinomas. Cancer Res 2007; 67:9158-68. [PMID: 17909021 DOI: 10.1158/0008-5472.can-07-0590] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We reported recently a marked reduction in IkappaB kinase alpha (IKKalpha) expression in a large proportion of human poorly differentiated squamous cell carcinomas (SCC) and the occurrence of Ikkalpha mutations in human SCCs. In addition, overexpression of IKKalpha in the epidermis inhibited the development of skin carcinomas and metastases in mice. However, whether a reduction in IKKalpha expression promotes skin tumor development is currently unknown. Here, we assessed the susceptibility of Ikkalpha hemizygotes to chemical carcinogen-induced skin carcinogenesis. Ikkalpha+/- mice developed 2 times more papillomas and 11 times more carcinomas than did Ikkalpha+/+ mice. The tumors were larger in Ikkalpha+/- than in Ikkalpha+/+ mice, but tumor latency was shorter in Ikkalpha+/- than in Ikkalpha+/+ mice. Some of the Ikkalpha+/- papillomas and most Ikkalpha+/- carcinomas lost the remaining Ikkalpha wild-type allele. Somatic Ikkalpha mutations were detected in carcinomas and papillomas. The chemical carcinogen-induced H-Ras mutations were detected in all the tumors. The phorbol ester tumor promoter induced higher mitogenic and angiogenic activities in Ikkalpha+/- than in Ikkalpha+/+ skin. These elevated activities were intrinsic to keratinocytes, suggesting that a reduction in IKKalpha expression provided a selective growth advantage, which cooperated with H-Ras mutations to promote papilloma formation. Furthermore, excessive extracellular signal-regulated kinase and IKK kinase activities were observed in carcinomas compared with those in papillomas. Thus, the combined mitogenic, angiogenic, and IKK activities might contribute to malignant conversion. Our findings provide evidence that a reduction in IKKalpha expression promotes the development of papillomas and carcinomas and that the integrity of the Ikkalpha gene is required for suppressing skin carcinogenesis.
Collapse
Affiliation(s)
- Eunmi Park
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hara T, Saito Y, Hirai T, Nakamura K, Nakao K, Katsuki M, Chida K. Deficiency of Protein Kinase Cα in Mice Results in Impairment of Epidermal Hyperplasia and Enhancement of Tumor Formation in Two-Stage Skin Carcinogenesis. Cancer Res 2005; 65:7356-62. [PMID: 16103087 DOI: 10.1158/0008-5472.can-04-4241] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We generated a mouse strain lacking protein kinase Calpha (PKCalpha) and evaluated the significance of the enzyme in epithelial hyperplasia and tumor formation. PKCalpha-deficient mice exhibited increased susceptibility to tumor formation in two-stage skin carcinogenesis by single application of 7,12-dimethylbenz(a)anthracene (DMBA) for tumor initiation and repeated applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) for tumor promotion. Tumor formation was not enhanced by DMBA or TPA treatment alone, suggesting that PKCalpha suppresses tumor promotion. However, the severity of epidermal hyperplasia induced by topical TPA treatment was markedly reduced. In mutant mice, the number of 5-bromo-2'-deoxyuridine-labeled epidermal basal keratinocytes increased 16 to 24 hours after topical TPA treatment as in the case of wild-type mice, but significantly decreased at 36 and 48 hours. Furthermore, the regenerating epithelium induced by skin wound significantly decreased in thickness but was not structurally impaired. The enhanced tumor formation may not be associated with epidermal hyperplasia. The induction levels of epidermal growth factor (EGF) receptor ligands, tumor growth factor alpha (TGF-alpha), and heparin-binding EGF-like growth factor, in the skin of mutant mice by TPA treatment were significantly lower than those in the skin of wild-type mice. PKCalpha may regulate the supply of these EGF receptor ligands in basal keratinocytes, resulting in a reduced epidermal hyperplasia severity in the mutant mice. We propose that PKCalpha positively regulates epidermal hyperplasia but negatively regulates tumor formation in two-stage skin carcinogenesis.
Collapse
Affiliation(s)
- Takeshi Hara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Riggs PK, Angel JM, Abel EL, DiGiovanni J. Differential gene expression in epidermis of mice sensitive and resistant to phorbol ester skin tumor promotion. Mol Carcinog 2005; 44:122-36. [PMID: 16044405 DOI: 10.1002/mc.20127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous data from two-stage carcinogenesis studies in mouse skin demonstrated that genetic control of susceptibility to skin tumor promotion by the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), in crosses between susceptible DBA/2J and resistant C57BL/6J mice is a multigenic trait. Utilizing a cDNA microarray approach, we compared global gene expression profiles in the epidermis of these two mouse strains treated with TPA or vehicle (acetone). Gene expression in the epidermis was analyzed after the treatment to identify global effects of TPA, as well as potential candidate genes that modify susceptibility to skin tumor promotion. DBA/2J and C57BL/6J mice were treated topically four times with 3.4 nmol TPA or acetone over a 2-wk period, and RNA was extracted from epidermis 6 h after the final treatment. Labeled cDNA generated from each group was hybridized to commercial cDNA microarrays (Agilent) containing more than 8000 targets. More than 450 genes were significantly influenced, directly or indirectly, by TPA treatment in the epidermis of either strain. Notably, 44 genes exhibited differential expression between the tumor promotion sensitive and resistant mouse strains. Several genes that were differentially expressed in DBA/2J versus C57BL/6J epidermis after TPA treatment were located in chromosomal regions linked to TPA promotion susceptibility. Three genes, Gsta4, Nmes1 (MGC58382), and Serpinb2, located within promotion susceptibility loci Psl1 (chr 9), Psl2 (chr 2), and Psl3 (chr 1), respectively, were identified in this analysis as potential candidates for modifiers of susceptibility to skin tumor promotion by TPA.
Collapse
Affiliation(s)
- Penny K Riggs
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957-0389, USA
| | | | | | | |
Collapse
|
9
|
Li AG, Lu SL, Zhang MX, Deng C, Wang XJ. Smad3 Knockout Mice Exhibit a Resistance to Skin Chemical Carcinogenesis. Cancer Res 2004; 64:7836-45. [PMID: 15520189 DOI: 10.1158/0008-5472.can-04-1331] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been shown that Smad3 exerts both tumor-suppressive and -promoting roles. To evaluate the role of Smad3 in skin carcinogenesis in vivo, we applied a chemical skin carcinogenesis protocol to Smad3 knockout mice (Smad3(-/-) and Smad3(+/-)) and wild-type littermates (Smad3(+/+)). Smad3(-/-) mice exhibited reduced papilloma formation in comparison with Smad3(+/+) mice and did not develop any squamous cell carcinomas. Further analysis revealed that Smad3 knockout mice were resistant to 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal hyperproliferation. Concurrently, increased apoptosis was observed in TPA-treated Smad3(-/-) skin and papillomas when compared with those of wild-type mice. Expression levels of activator protein-1 family members (c-jun, junB, junD, and c-fos) and transforming growth factor (TGF)-alpha were significantly lower in TPA-treated Smad3(-/-) skin, cultured keratinocytes, and papillomas, as compared with Smad3(+/+) controls. Smad3(-/-) papillomas also exhibited reduced leukocyte infiltration, particularly a reduction of tumor-associated macrophage infiltration, in comparison with Smad3(+/+) papillomas. All of these molecular and cellular alterations also occurred to a lesser extent in Smad3(+/-) mice as compared with Smad3(+/+) mice, suggesting a Smad3 gene dosage effect. Given that TGF-beta1 is a well-documented TPA-responsive gene and also has a potent chemotactic effect on macrophages, our study suggests that Smad3 may be required for TPA-mediated tumor promotion through inducing TGF-beta1-responsive genes, which are required for tumor promotion, and through mediating TGF-beta1-induced macrophage infiltration.
Collapse
Affiliation(s)
- Allen G Li
- Department of Otolaryngology, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
10
|
Angel JM, Caballero M, DiGiovanni J. Confirmation of the mapping of a 12-O-tetradecanoylphorbol-13-acetate promotion susceptibility locus, Psl1, to distal mouse chromosome 9. Mol Carcinog 2001; 32:169-75. [PMID: 11746828 DOI: 10.1002/mc.10010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Susceptibility to two-stage skin carcinogenesis in the mouse is affected by several genes. In addition, studies suggest that genes that modify the response of mice to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA) also may influence histologic changes in the skin as the result of TPA treatment. One TPA susceptibility locus, Psl1, previously was mapped to distal chromosome 9. The mapping of this locus was confirmed by marker-based genotypic selection. Furthermore, Psl1 or a gene closely linked to Psl1 influenced epidermal hyperplasia and epidermal labeling index of mice treated with TPA.
Collapse
Affiliation(s)
- J M Angel
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | |
Collapse
|
11
|
Atit RP, Mitchell K, Nguyen L, Warshawsky D, Ratner N. The neurofibromatosis type 1 (Nf1) tumor suppressor is a modifier of carcinogen-induced pigmentation and papilloma formation in C57BL/6 mice. J Invest Dermatol 2000; 114:1093-100. [PMID: 10844550 PMCID: PMC2862652 DOI: 10.1046/j.1523-1747.2000.00994.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is increasing evidence implicating the human NF1 gene in epithelial carcinogenesis. To test if NF1 can play a part in skin tumor formation, we analyzed effects of the skin cancer initiator dimethylbenz-anthracene and/or the tumor promoter 12-O-tetradecanoyl-13-acetylphorbol on mice heterozygous for null mutations in Nf1 (Nf1+/-). Mice were on the C57BL/6 background, noted for resistance to chemical carcinogens. Nf1+/- mice (18 of 24) developed papillomas after treatment with dimethylbenzanthracene and 12-O-tetradecanoyl-13-acetylphorbol; papillomas did not develop in wild-type C57BL/6 mice nor Nf1+/- mice treated with 12-O-tetradecanoyl-13-acetylphorbol alone. All papillomas analyzed (six of six) had mutations in codon 61 of H-ras, demonstrating strong cooperation between the Nf1 GTPase activating protein for Ras, neurofibromin, and Ras-GTP. After exposure to 12-O-tetradecanoyl-13-acetylphorbol, Nf1+/- keratinocytes showed significant, sustained, increases in proliferation, implicating Nf1 in phorbol ester responsive pathways. Thus, Nf1 levels regulate the response of keratinocytes to 12-O-tetradecanoyl-13-acetylphorbol. Nf1+/- mice also showed a 2-fold increase in the development of pigmented skin patches stimulated by dimethylbenzanthracene; patches were characterized by hair follicles in anagen phase, implicating keratinocytes in the aberrant hyperpigmentation. Our results show that mutation in the Nf1 gene causes abnormal keratinocyte proliferation that can be revealed by environmental assaults such as carcinogen exposure. The data support a plausible role for NF1 mutation in human epithelial carcinogenesis.
Collapse
Affiliation(s)
- Radhika P. Atit
- Division of Molecular and Developmental Biology, Children’s Hospital Research Foundation, Cincinnati, Ohio, U.S.A
| | - Kent Mitchell
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, Ohio, U.S.A
| | - Lam Nguyen
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, Cincinnati, Ohio, U.S.A
| | - David Warshawsky
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, Ohio, U.S.A
| | - Nancy Ratner
- Division of Molecular and Developmental Biology, Children’s Hospital Research Foundation, Cincinnati, Ohio, U.S.A
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati, College of Medicine, Cincinnati, Ohio, U.S.A
| |
Collapse
|
12
|
Coghlan LG, Gimenez-Conti I, Kleiner HE, Fischer SM, Rundhaug JE, Conti CJ, Slaga TJ, DiGiovanni J. Development and initial characterization of several new inbred strains of SENCAR mice for studies of multistage skin carcinogenesis. Carcinogenesis 2000; 21:641-6. [PMID: 10753198 DOI: 10.1093/carcin/21.4.641] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development and initial characterization of five new inbred strains of SENCAR mice are described in this paper. Ten randomly selected pairs of outbred SENCAR mice were mated and offspring from each separately maintained parental line were sib mated at each successive generation to result in inbred strains. Due to poor reproductive performance only five of the original 10 lines were bred to homogeneity. Initial characterization of the five remaining lines (referred to as SL2/sprd, SL5/sprd, SL7/sprd, SL8/sprd and SLl0/sprd) at F12 for their responsiveness to a two-stage carcinogenesis protocol (10 nmol 7,12-dimethylbenz[a]anthracene and 0.25 microg 12-O-tetradecanoylphorbol-13 acetate) revealed three groups of responders in terms of the number of papillomas per mouse: SL2/sprd and SL8/sprd > SL7/sprd and SL10/sprd >> SL5/sprd. The papilloma responses in SL2/sprd and SL8/sprd were very similar to SENCAR B/Pt compared at the same doses. Papillomas induced on SL2/sprd had the highest propensity to progress to squamous cell carcinomas, similar to that observed in outbred SENCAR and SENCAR B/Pt mice. More detailed comparison of the responsiveness of SL2/sprd and SL5/sprd at Fl5 showed that these two inbred strains differed in their sensitivity to TPA-induced epidermal hyperplasia and that the dose of TPA required to produce a tumor response in SL5/sprd in comparison with that in SL2/sprd was 4-20 times higher. Overall, the availability of the different inbred SENCAR strains will greatly aid mechanistic studies of multistage skin carcinogenesis as well as studies to understand the underlying genetic basis of resistance to tumor promotion and progression in this model system.
Collapse
Affiliation(s)
- L G Coghlan
- The University of Texas M.D. Anderson Cancer Center, Science Park-Department of Veterinary Sciences, Bastrop, TX 78602, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
McCann J, Kavet R, Rafferty CN. Assessing the potential carcinogenic activity of magnetic fields using animal models. ENVIRONMENTAL HEALTH PERSPECTIVES 2000; 108 Suppl 1:79-100. [PMID: 10698725 PMCID: PMC1637772 DOI: 10.1289/ehp.00108s179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We update our 1997 publication by reviewing 29 new reports of tests of magnetic fields (MFs) in six different in vivo animal models of carcinogenesis: 2-year, lifetime, or multigeneration exposure studies in rats or mice; and promotion/progression models (rat mammary carcinoma, rat liver focus, mouse skin, several models of human leukemia/lymphoma in rats and mice, and brain cancer in rats). Individual experiments are evaluated using a set of data quality criteria, and summary judgments are made across multiple experiments by applying a criterion of rough reproducibility. The potential for carcinogenicity of MFs is discussed in light of the significant body of carcinogenesis data from animal bioassays that now exists. Excluding abstracts, approximately 80% of the 41 completed studies identified in this and our previous review roughly satisfy data quality criteria. Among these studies, the criterion for independent reproducibility is not satisfied for any positive results but is satisfied for negative results in chronic bioassays in rats and mice and for negative results in both promotion and co-promotion assays using the SENCAR mouse skin model. Results of independent replication studies using the rat mammary carcinoma model were conflicting. We conclude that long-term exposure to continuous 50- or 60-Hz MFs in the range of 0.002-5 mT is unlikely to result in carcinogenesis in rats or mice. Though results of most promotion/progression assays are negative, a weak promoting effect of MFs under certain exposure conditions cannot be ruled out based on available data.
Collapse
Affiliation(s)
- J McCann
- Electric Power Research Institute, Palo Alto, California, USA.
| | | | | |
Collapse
|
14
|
Maruvada P, Levine AE. Increased transforming growth factor-alpha levels in human colon carcinoma cell lines over-expressing protein kinase C. Int J Cancer 1999; 80:72-7. [PMID: 9935234 DOI: 10.1002/(sici)1097-0215(19990105)80:1<72::aid-ijc15>3.0.co;2-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-alpha (TGF-alpha) is synthesized as a membrane-bound precursor protein, pro-TGF-alpha, that is converted to a soluble form by 2 endoproteolytic cleavages. Several factors have been implicated in the regulation of the second rate-limiting step, including protein kinase C (PKC). Earlier results indicated a potential role for the conventional class of PKC isozymes in the observed increase in TGF-alpha in the conditioned media of 2 human colon carcinoma cell lines. The present study addresses the potential role of specific PKC isozymes in this process using sense and anti-sense expression vectors for PKC isozymes. Two human colon carcinoma cell lines, HCT 116 and GEO, were transfected with plasmids, leading to the over-expression of PKC-alpha, -betaI or -betaII; and the secretion of TGF-alpha into the conditioned medium was determined. Over-expression of either PKC-betaI or PKC-betaII in these cell lines enhanced the levels of TGF-alpha in the media 2- to 5-fold. Over-expression of PKC-alpha did not alter the amount of TGF-alpha in the media to a significant extent. Transfection of HCT 116 cells with the anti-sense PKC-betaI cDNA resulted in a reduction in PKC-betaI protein expression. This was accompanied by a decrease in the amount of TGF-alpha in the conditioned media. Our results indicate that modulation of PKC-beta protein levels alters the amount of TGF-alpha found in the conditioned media from these colon carcinoma cells.
Collapse
Affiliation(s)
- P Maruvada
- Department of Basic Sciences, University of Texas-Houston, Health Science Center, 77225, USA
| | | |
Collapse
|
15
|
Humble MC, Szczesniak CJ, Luetteke NC, Spalding JW, Cannon RE, Hansen LA, Lee DC, Tennant RW. TGF alpha is dispensable for skin tumorigenesis in Tg.AC mice. Toxicol Pathol 1998; 26:562-9. [PMID: 9715516 DOI: 10.1177/019262339802600413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alterations in growth factor signaling pathways frequently accompany the development and maintenance of epithelial neoplasia. Transforming growth factor alpha (TGF alpha) and its epidermal growth factor receptor have been thought to play an especially important role in epithelial neoplasia. In this study, mice were derived genetically deficient (null) in functional TGF alpha expression and carrying the Tg.AC/v-Ha-ras transgene. The goals were to determine if (a) papillomagenesis was dependent on TGF alpha and (b) progression to malignancy was dependent on TGF alpha expression. Groups of male and female mice heterozygous or homozygous for the TGF alpha null allele and hemizygous for the Tg.AC transgene were treated twice weekly for 10 or 15 wk with doses of 12-O-tetradecanoylphorbol-13-acetate (TPA) known to produce papillomas in Tg.AC mice. Papillomas were readily induced in both male and female TGF alpha null mice. Malignant progression of papillomas was observed in all TGF alpha null treatment groups. Additionally, we examined the response of TGF alpha null mice to full thickness dorsal wounds, a stimulus known to promote papillomagenesis in Tg.AC mice. As in the TPA study, papillomas were induced in both male and female TGF alpha null mice. These studies indicate that TGF alpha is not required for the induction and maintenance of papillomas nor is it essential for the malignant conversion of papillomas in Tg.AC mice.
Collapse
Affiliation(s)
- M C Humble
- Curriculum in Toxicology, University of North Carolina, Chapel Hill 27514, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kiguchi K, Beltrán L, Rupp T, DiGiovanni J. Altered expression of epidermal growth factor receptor ligands in tumor promoter–treated mouse epidermis and in primary mouse skin tumors induced by an initiation-promotion protocol. Mol Carcinog 1998. [DOI: 10.1002/(sici)1098-2744(199806)22:2<73::aid-mc2>3.0.co;2-l] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|