1
|
Schäfer N, Rikkala PR, Veyhl-Wichmann M, Keller T, Jurowich CF, Geiger D, Koepsell H. A Modified Tripeptide Motif of RS1 ( RSC1A1) Down-Regulates Exocytotic Pathways of Human Na +-d-glucose Cotransporters SGLT1, SGLT2, and Glucose Sensor SGLT3 in the Presence of Glucose. Mol Pharmacol 2019; 95:82-96. [PMID: 30355744 DOI: 10.1124/mol.118.113514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
A domain of protein RS1 (RSC1A1) called RS1-Reg down-regulates the plasma membrane abundance of Na+-d-glucose cotransporter SGLT1 by blocking the exocytotic pathway at the trans-Golgi. This effect is blunted by intracellular glucose but prevails when serine in a QSP (Gln-Ser-Pro) motif is replaced by glutamate [RS1-Reg(S20E)]. RS1-Reg binds to ornithine decarboxylase (ODC) and inhibits ODC in a glucose-dependent manner. Because the ODC inhibitor difluoromethylornithine (DFMO) acts like RS1-Reg(S20E), and DFMO and RS1-Reg(S20E) are not cumulative, we raised the hypothesis that RS1-Reg(S20E) down-regulates the exocytotic pathway of SGLT1 at the trans-Golgi by inhibiting ODC. We investigated whether QEP down-regulates human SGLT1 (hSGLT1) like hRS1-Reg(S20E) and whether human Na+-d-glucose cotransporter hSGLT2 and the human glucose sensor hSGLT3 are also addressed. We expressed hSGLT1, hSGLT1 linked to yellow fluorescent protein (hSGLT1-YFP), hSGLT2-YFP and hSGLT3-YFP in oocytes of Xenopus laevis, injected hRS1-Reg(S20E), QEP, DFMO, and/or α-methyl-d-glucopyranoside (AMG), and measured AMG uptake, glucose-induced currents, and plasma membrane-associated fluorescence after 1 hour. We also performed in vitro AMG uptake measurements into small intestinal mucosa of mice and human. The data indicate that QEP down-regulates the exocytotic pathway of SGLT1 similar to hRS1-Reg(S20E). Our results suggests that both peptides also down-regulate hSGLT2 and hSGLT3 via the same pathway. Thirty minutes after application of 5 mM QEP in the presence of 5 mM d-glucose, hSGLT1-mediated AMG uptake into small intestinal mucosa was decreased by 40% to 50%. Thus oral application of QEP in a formulation that optimizes uptake into enterocytes but prevents entry into the blood is proposed as novel antidiabetic therapy.
Collapse
Affiliation(s)
- Nadine Schäfer
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (N.S., T.K., D.G., H.K.) and Institute of Anatomy and Cell Biology (P.R.R., M.V.-W., H.K.), University of Würzburg, Würzburg, Germany; and Department of General, Visceral, Vascular, and Paedriatic Surgery, University Hospital of Würzburg, Würzburg, Germany (C.F.J.)
| | - Prashanth Reddy Rikkala
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (N.S., T.K., D.G., H.K.) and Institute of Anatomy and Cell Biology (P.R.R., M.V.-W., H.K.), University of Würzburg, Würzburg, Germany; and Department of General, Visceral, Vascular, and Paedriatic Surgery, University Hospital of Würzburg, Würzburg, Germany (C.F.J.)
| | - Maike Veyhl-Wichmann
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (N.S., T.K., D.G., H.K.) and Institute of Anatomy and Cell Biology (P.R.R., M.V.-W., H.K.), University of Würzburg, Würzburg, Germany; and Department of General, Visceral, Vascular, and Paedriatic Surgery, University Hospital of Würzburg, Würzburg, Germany (C.F.J.)
| | - Thorsten Keller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (N.S., T.K., D.G., H.K.) and Institute of Anatomy and Cell Biology (P.R.R., M.V.-W., H.K.), University of Würzburg, Würzburg, Germany; and Department of General, Visceral, Vascular, and Paedriatic Surgery, University Hospital of Würzburg, Würzburg, Germany (C.F.J.)
| | - Christian Ferdinand Jurowich
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (N.S., T.K., D.G., H.K.) and Institute of Anatomy and Cell Biology (P.R.R., M.V.-W., H.K.), University of Würzburg, Würzburg, Germany; and Department of General, Visceral, Vascular, and Paedriatic Surgery, University Hospital of Würzburg, Würzburg, Germany (C.F.J.)
| | - Dietmar Geiger
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (N.S., T.K., D.G., H.K.) and Institute of Anatomy and Cell Biology (P.R.R., M.V.-W., H.K.), University of Würzburg, Würzburg, Germany; and Department of General, Visceral, Vascular, and Paedriatic Surgery, University Hospital of Würzburg, Würzburg, Germany (C.F.J.)
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (N.S., T.K., D.G., H.K.) and Institute of Anatomy and Cell Biology (P.R.R., M.V.-W., H.K.), University of Würzburg, Würzburg, Germany; and Department of General, Visceral, Vascular, and Paedriatic Surgery, University Hospital of Würzburg, Würzburg, Germany (C.F.J.)
| |
Collapse
|