1
|
Kuehner F, Wong M, Straub E, Doorbar J, Iftner T, Roden RBS, Stubenrauch F. Mus musculus papillomavirus 1 E8^E2 represses expression of late protein E4 in basal-like keratinocytes via NCoR/SMRT-HDAC3 co-repressor complexes to enable wart formation in vivo. mBio 2023; 14:e0069623. [PMID: 37382436 PMCID: PMC10470772 DOI: 10.1128/mbio.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
High-risk human papillomaviruses (PV) account for approximately 600,000 new cancers per year. The early protein E8^E2 is a conserved repressor of PV replication, whereas E4 is a late protein that arrests cells in G2 and collapses keratin filaments to facilitate virion release. While inactivation of the Mus musculus PV1 (MmuPV1) E8 start codon (E8-) increases viral gene expression, surprisingly, it prevents wart formation in FoxN1nu/nu mice. To understand this surprising phenotype, the impact of additional E8^E2 mutations was characterized in tissue culture and mice. MmuPV1 and HPV E8^E2 similarly interact with cellular NCoR/SMRT-HDAC3 co-repressor complexes. Disruption of the splice donor sequence used to generate the E8^E2 transcript or E8^E2 mutants (mt) with impaired binding to NCoR/SMRT-HDAC3 activates MmuPV1 transcription in murine keratinocytes. These MmuPV1 E8^E2 mt genomes also fail to induce warts in mice. The phenotype of E8^E2 mt genomes in undifferentiated cells resembles productive PV replication in differentiated keratinocytes. Consistent with this, E8^E2 mt genomes induced aberrant E4 expression in undifferentiated keratinocytes. In line with observations for HPV, MmuPV1 E4-positive cells displayed a shift to the G2 phase of the cell cycle. In summary, we propose that in order to enable both expansion of infected cells and wart formation in vivo, MmuPV1 E8^E2 inhibits E4 protein expression in the basal keratinocytes that would otherwise undergo E4-mediated cell cycle arrest. IMPORTANCE Human papillomaviruses (PVs) initiate productive replication, which is characterized by genome amplification and expression of E4 protein strictly within suprabasal, differentiated keratinocytes. Mus musculus PV1 mutants that disrupt splicing of the E8^E2 transcript or abolish the interaction of E8^E2 with cellular NCoR/SMRT-HDAC3 co-repressor complexes display increased gene expression in tissue culture but are unable to form warts in vivo. This confirms that the repressor activity of E8^E2 is required for tumor formation and genetically defines a conserved E8 interaction domain. E8^E2 prevents expression of E4 protein in basal-like, undifferentiated keratinocytes and thereby their arrest in G2 phase. Since binding of E8^E2 to NCoR/SMRT-HDAC3 co-repressor is required to enable expansion of infected cells in the basal layer and wart formation in vivo, this interaction represents a novel, conserved, and potentially druggable target.
Collapse
Affiliation(s)
- Franziska Kuehner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Margaret Wong
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Elke Straub
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Iftner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Richard B. S. Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Frank Stubenrauch
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Passmore JAS, Williamson AL. Host Immune Responses Associated with Clearance or Persistence of Human Papillomavirus Infections. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2016. [DOI: 10.1007/s13669-016-0163-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Stanley MA, Masterson PJ, Nicholls PK. In vitro and Animal Models for Antiviral Therapy in Papillomavirus Infections. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029700800501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The need for antiviral therapies for papillomavirus infections is well recognized but the difficulties of reproducing the infectious cycle of papillomaviruses in vitro has hindered our understanding of virus-cell interactions and the regulation of viral gene expression during permissive growth. Recent advances in understanding the temporal expression and function of papillomavirus proteins has enabled consideration of a targeted approach to papillomavirus chemotherapy and in particular the inhibition of viral replication by targeting the E1 and E2 proteins. There are in vitro culture systems available for the screening of new chemotherapeutic agents, since significant advances have been made with culture systems which promote epithelial differentiation in vitro. However, to date, there are no published data which show that virions generated in vitro can infect keratinocytes and initiate another round of replication in vitro. In vivo animal models are therefore necessary to assess the efficacy of antivirals in preventing and treating viral infection, particularly for the low-risk genital viruses which are on the whole refractory to culture in vitro. Although papillomaviruses affect a wide variety of hosts in a species-specific manner, the animals most useful for modelling papillomavirus infections include the rabbit, ox, mouse, dog, horse, primate and sheep. The ideal animal model should be widely available, easy to house and handle, be large enough to allow for adequate tissue sampling, develop lesions on anatomical sites comparable with those in human diseases and these lesions should be readily accessible for monitoring and ideally should yield large amounts of infectious virus particles for use in both in vivo and in vitro studies. The relative merits of the various papillomavirus animal models available in relation to these criteria are discussed.
Collapse
Affiliation(s)
- MA Stanley
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - PJ Masterson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - PK Nicholls
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
4
|
Amador-Molina A, Hernández-Valencia JF, Lamoyi E, Contreras-Paredes A, Lizano M. Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses 2013; 5:2624-42. [PMID: 24169630 PMCID: PMC3856406 DOI: 10.3390/v5112624] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023] Open
Abstract
During the early stages of human papillomavirus (HPV) infections, the innate immune system creates a pro-inflammatory microenvironment by recruiting innate immune cells to eliminate the infected cells, initiating an effective acquired immune response. However, HPV exhibits a wide range of strategies for evading immune-surveillance, generating an anti-inflammatory microenvironment. The administration of new adjuvants, such as TLR (Toll-like receptors) agonists and alpha-galactosylceramide, has been demonstrated to reverse the anti-inflammatory microenvironment by down-regulating a number of adhesion molecules and chemo-attractants and activating keratinocytes, dendritic (DC), Langerhans (LC), natural killer (NK) or natural killer T (NKT) cells; thus, promoting a strong specific cytotoxic T cell response. Therefore, these adjuvants show promise for the treatment of HPV generated lesions and may be useful to elucidate the unknown roles of immune cells in the natural history of HPV infection. This review focuses on HPV immune evasion mechanisms and on the proposed response of the innate immune system, suggesting a role for the surrounding pro-inflammatory microenvironment and the NK and NKT cells in the clearance of HPV infections.
Collapse
Affiliation(s)
- Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
| | - José Fernando Hernández-Valencia
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
| | - Edmundo Lamoyi
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado postal 70228, Ciudad Universitaria, Distrito Federal CP 04510, México; E-Mail:
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado postal 70228, Ciudad Universitaria, Distrito Federal CP 04510, México; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+52-55-5573-4662
| |
Collapse
|
5
|
Tindle RW, Frazer IH. Section Review: Biologicals & Immunologicals: Human papillomavirus infection, genital warts and cervical cancer: prospects for prophylactic and therapeutic vaccines. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.9.783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Abstract
The immune system uses innate and adaptive immunity to recognize and combat foreign agents that invade the body, but these methods are sometimes ineffective against human papillomavirus (HPV). HPV has several mechanisms for avoiding the immune system. HPV infects, and multiplies in keratinocytes, which are distant from immune centers and have a naturally short lifespan. The naturally short life cycle of the keratinocyte circumvents the need for the virus to destroy the cell, which would trigger inflammation and immune response. In addition, HPV downregulates the expression of interferon genes. Despite viral immune evasion, the immune system effectively repels most HPV infections, and is associated with strong localized cell mediated immune responses. New prophylactic L1 virus-like protein vaccines for HPV 16 and 18 and HPV 6, 11, 16, and 18 are in phase 3 trials. Available data suggests that these vaccines are safe, produce high levels of antibodies, and are effective at preventing HPV infection.
Collapse
Affiliation(s)
- Margaret Stanley
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
7
|
Hebner CM, Laimins LA. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 2006; 16:83-97. [PMID: 16287204 DOI: 10.1002/rmv.488] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomaviruses (HPVs) are small double-stranded DNA viruses that infect the cutaneous and mucosal epithelium. Infection by specific HPV types has been linked to the development of cervical carcinoma. HPV infects epithelial cells that undergo terminal differentiation and so encode multiple mechanisms to override the normal regulation of differentiation to produce progeny virions. Two viral proteins, E6 and E7, alter cell cycle control and are the main arbitrators of HPV-induced oncogenesis. Recent data suggest that E6 and E7 also play a major role in the inhibition of the host cell innate immune response to HPV. The E1 and E2 proteins, in combination with various cellular factors, mediate viral replication. In addition, E2 has been implicated in both viral and cellular transcriptional control. Despite decades of research, the function of other viral proteins still remains unclear. While prophylactic vaccines to block genital HPV infection will soon be available, the widespread nature of HPV infection requires greater understanding of both the HPV life cycle as well as the mechanisms underlying HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Christy M Hebner
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
8
|
Nakahara T, Peh WL, Doorbar J, Lee D, Lambert PF. Human papillomavirus type 16 E1circumflexE4 contributes to multiple facets of the papillomavirus life cycle. J Virol 2005; 79:13150-65. [PMID: 16189016 PMCID: PMC1235822 DOI: 10.1128/jvi.79.20.13150-13165.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is tightly linked to the differentiation program of the host's stratified epithelia that it infects. E1(circumflex)E4 is a viral protein that has been ascribed multiple biochemical properties of potential biological relevance to the viral life cycle. To identify the role(s) of the viral E1(circumflex)E4 protein in the HPV life cycle, we characterized the properties of HPV type 16 (HPV16) genomes harboring mutations in the E4 gene in NIKS cells, a spontaneously immortalized keratinocyte cell line that when grown in organotypic raft cultures supports the HPV life cycle. We learned that E1(circumflex)E4 contributes to the replication of the viral plasmid genome as a nuclear plasmid in basal cells, in which we also found E1(circumflex)E4 protein to be expressed at low levels. In the suprabasal compartment of organotypic raft cultures harboring E1(circumflex)E4 mutant HPV16 genomes there were alterations in the frequency of suprabasal cells supporting DNA synthesis, the levels of viral DNA amplification, and the degree to which the virus perturbs differentiation. Interestingly, the comparison of the phenotypes of various mutations in E4 indicated that the E1(circumflex)E4 protein-encoding requirements for these various processes differed. These data support the hypothesis that E1(circumflex)E4 is a multifunctional protein and that the different properties of E1(circumflex)E4 contribute to different processes in both the early and late stages of the virus life cycle.
Collapse
Affiliation(s)
- Tomomi Nakahara
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, 53706, USA
| | | | | | | | | |
Collapse
|
9
|
Spartz H, Lehr E, Zhang B, Roman A, Brown DR. Progression from productive infection to integration and oncogenic transformation in human papillomavirus type 59-immortalized foreskin keratinocytes. Virology 2005; 336:11-25. [PMID: 15866067 DOI: 10.1016/j.virol.2005.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 10/08/2004] [Accepted: 02/09/2005] [Indexed: 11/20/2022]
Abstract
Studies of changes in the virus and host cell upon progression from human papillomavirus (HPV) episomal infection to integration are critical to understanding HPV-related malignant transformation. However, there exist only a few in vitro models of both productive HPV infection and neoplastic progression on the same host background. We recently described a unique foreskin keratinocyte cell line (ERIN 59) that contains HPV 59 (a close relative of HPV 18). Early passages of ERIN 59 cells (passages 9-13) contained approximately 50 copies of episomes/cell, were feeder cell-dependent, and could be induced to differentiate and produce infectious virus in a simple culture system. We now report that late passage cells (passages greater than 50) were morphologically different from early passage cells, were feeder cell independent, and did not differentiate or produce virus. These late passage cells contained HPV in an integrated form. An integration-derived oncogene transcript was expressed in late passage cells. The E2 open reading frame was interrupted in this transcript at nucleotide 3351. Despite a lower viral genome copy number in late passage ERIN 59 cells, expression of E6/E7 oncogene transcripts was similar to early passage cells. We conclude that ERIN 59 cells are a valuable cell line representing a model of progression from HPV 59 episomal infection and virus production to HPV 59 integration and associated oncogenic transformation on the same host background.
Collapse
Affiliation(s)
- Helena Spartz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, with > 50% of sexually active women being affected. The virus causes a wide variety of benign and pre-malignant epithelial tumours and although most infections are transient, it is estimated that 1% of the sexually active population in the US have clinically apparent genital warts. A subset of genital HPVs, termed high-risk HPVs, is highly associated with the development of genital cancers including cervical carcinoma. Therapies for these HPV related cancers are however outside of the scope of this review. The absence of a simple monolayer cell culture system for analysis and propagation of the virus has substantially retarded progress in the development of diagnostic and therapeutic strategies for HPV infection. In spite of these difficulties, great progress has been made in the elucidation of the molecular controls of virus gene expression, replication and pathogenesis, and there has been some progress in the development of prophylactic and therapeutic vaccines and of other therapies.
Collapse
Affiliation(s)
- F X Wilson
- Roche Discovery Welwyn, Broadwater Road, Welwyn Garden City, Herts, AL7 3AY, UK
| |
Collapse
|
11
|
Nakahara T, Nishimura A, Tanaka M, Ueno T, Ishimoto A, Sakai H. Modulation of the cell division cycle by human papillomavirus type 18 E4. J Virol 2002; 76:10914-20. [PMID: 12368334 PMCID: PMC136601 DOI: 10.1128/jvi.76.21.10914-10920.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is tightly coupled to the differentiation program of their host epithelial cells. HPV E4 gene expression is first observed in the parabasal layers of squamous epithelia, suggesting that the E4 gene product contributes to the mechanism of differentiation-dependent virus replication, although its biological function remains unclear. We analyzed the effect of HPV type 18 E4 on cell proliferation and found that E4 expression induced cell cycle arrest at the G(2)/M boundary. The functional region of E4 necessary for the growth arrest activity was located in the central portion of the molecule, and this activity was independent of the E4-mediated collapse of cytokeratin intermediate filament structures.
Collapse
Affiliation(s)
- Tomomi Nakahara
- Laboratory of Gene Analysis, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-Ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Nicholls PK, Doorbar J, Moore RA, Peh W, Anderson DM, Stanley MA. Detection of Viral DNA and E4 Protein in Basal Keratinocytes of Experimental Canine Oral Papillomavirus Lesions. Virology 2001; 284:82-98. [PMID: 11352670 DOI: 10.1006/viro.2001.0868] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We studied experimental canine oral papillomavirus (COPV) infection by in situ hybridization and immunohistochemistry of weekly biopsies. After 4 weeks, viral DNA in rete ridges suggested a keratinocyte stem cell target. Abundant viral DNA was seen in E4-positive cells only. E4 was predominantly cytoplasmic but also nuclear, being concentrated in the nucleoli during wart formation. Infected cells spread laterally along the basal layer and into the parabasal layers, accompanied by E7 transcription and increased mitoses. Most of the lower epithelium was positive for viral DNA, but, in mature warts, higher levels of E4 expression and genome amplification occurred in only sporadic superficial cells. L1 expression was late and in only a subset of E4-positive cells. During regression, viral DNA was less abundant in deep epithelial layers, suggesting downregulation of replication prior to replacement of infected cells from beneath. Detection of viral DNA in post-regression tissue indicated latent infection.
Collapse
Affiliation(s)
- P K Nicholls
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
Ai W, Narahari J, Roman A. Yin yang 1 negatively regulates the differentiation-specific E1 promoter of human papillomavirus type 6. J Virol 2000; 74:5198-205. [PMID: 10799595 PMCID: PMC110873 DOI: 10.1128/jvi.74.11.5198-5205.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human papillomavirus type 6 (HPV-6) is a low-risk HPV whose replication cycle, like that of all HPVs, is differentiation dependent. We have previously shown that CCAAT displacement protein (CDP) binds the differentiation-induced HPV-6 E1 promoter and negatively regulates its activity in undifferentiated cells (W. Ai, E. Toussaint, and A. Roman, J. Virol. 73:4220-4229, 1999). Using electrophoretic mobility shift assays (EMSAs), we now report that Yin Yang 1 (YY1), a multifunctional protein that can act as a transcriptional activator or repressor and that can also inhibit HPV replication in vitro, binds the HPV-6 E1 promoter. EMSAs, using subfragments of the promoter as competitors, showed that the YY1 binding site is located at the 5' end of the E1 promoter. When a putative YY1 site was mutated, the ability of YY1 to bind was greatly decreased. The activity of the mutated E1 promoter, monitored with the reporter gene luciferase, was threefold greater than that of the wild-type promoter, suggesting that YY1 negatively regulates HPV-6 E1 promoter activity. Nuclear extracts from differentiated keratinocytes showed decreased binding of YY1 to the wild-type promoter. Consistent with this, in differentiated keratinocytes, the activity of the transfected luciferase gene transcribed from the mutated promoter was comparable to that of the wild-type promoter; both promoters were up-regulated in differentiated keratinocytes compared to undifferentiated cells. These data suggest that YY1 functions in undifferentiated keratinocytes but not in differentiated keratinocytes. Both the wild-type and mutated promoters could be negatively regulated by overexpression of a plasmid encoding CDP. Thus, both YY1 and CDP appear to be negative regulators of the differentiation-induced HPV-6 E1 promoter and thereby the HPV life cycle. In contrast, only binding of CDP was detected using the E1 promoter of the high-risk HPV-31.
Collapse
Affiliation(s)
- W Ai
- Department of Microbiology and Immunology, Indiana University School of Medicine, and Walther Cancer Institute, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
14
|
Steele JC, Young SP, Goodall JC, Gallimore PH. Structural Aspects of the Interaction Between Heterogeneic Human Papillomavirus Type 1 E4-Specific T Cell Receptors and the Same Peptide/HLA-DQ8 Complex. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
TCR usage has been studied in a panel of Th cell clones specific for the same peptide epitope (P N S Q D R G R P R R S D), derived from the human papillomavirus type 1 (HPV1) E4 protein, and restricted through HLA-DQ8. After identifying the V, D, and J genes used by the TCRs and sequencing across the V(D)J junctions, five different α-chain sequences and five different β-chain sequences, comprising six independent clones, were identified. A structural model of our E4 peptide/HLA-DQ8 complex predicted that the guanidinyl side chain on the arginine residue at position 6 of the peptide could exist in different orientations. An intramolecular interaction between this arginine and the glutamine residue at position four appeared to control this orientation. Interacting HPV1 E4-specific TCRs would therefore have to recognize the complex in different conformations, and molecular modeling of the TCRs suggested that this could be achieved by changing the dimensions of the central pocket formed where the CDR3 loops of the TCR α- and β-chains converge. It is known that interactions between bound peptide and amino acid residues lining the peptide-binding cleft of HLA molecules are important for determining the conformation and orientation of the peptide/MHC complex. The suggestion here that intramolecular interactions between amino acids of close proximity on the bound peptide are also important adds a further level of complexity to the mechanism by which TCRs interact with Ag.
Collapse
Affiliation(s)
- Jane C. Steele
- *Cancer Research Campaign Institute for Cancer Studies and
| | - Stephen P. Young
- †Department of Rheumatology, The Medical School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jane C. Goodall
- †Department of Rheumatology, The Medical School, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
15
|
Phelps WC, Barnes JA, Lobe DC. Molecular targets for human papillomaviruses: prospects for antiviral therapy. Antivir Chem Chemother 1998; 9:359-77. [PMID: 9875390 DOI: 10.1177/095632029800900501] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A substantial medical need exists for the development of antiviral medicines for the treatment of diseases associated with infection by human papillomaviruses (HPVs). HPVs are associated with various benign and malignant lesions including benign genital condyloma, common skin warts, laryngeal papillomas and anogenital cancer. Since treatment options are limited and typically not very satisfactory, the development of safe and effective antiviral drugs for HPV could have substantial clinical impact. In the last few years, exciting advances have been made in our understanding of papillomavirus replication and the effects that the virus has on growth of the host cell. Although still somewhat rudimentary, techniques have been developed for limited virion production in vitro offering the promise of more rapid advances in the dissection and understanding of the virus life cycle. Of the 8-10 HPV gene products that are made during infection, only one encodes enzymatic activities, the E1 helicase. Successful antiviral therapies have traditionally targeted viral enzymes such as polymerases, kinases and proteases. In contrast, macromolecular interactions which mediate the functions of E6, E7 and E2 are thought to be more difficult targets for small molecule therapy.
Collapse
Affiliation(s)
- W C Phelps
- Department of Virology, Glaxo Wellcome Inc, Research Triangle Park, North Carolina 27709-3398, USA.
| | | | | |
Collapse
|
16
|
Ashmole I, Gallimore PH, Roberts S. Identification of conserved hydrophobic C-terminal residues of the human papillomavirus type 1 E1E4 protein necessary for E4 oligomerisation in vivo. Virology 1998; 240:221-31. [PMID: 9454695 DOI: 10.1006/viro.1997.8909] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have shown that human papillomavirus (HPV) E4 proteins undergo oligomerisation, although the precise sequences involved have not been identified. Using the yeast two-hybrid system we have identified HPV 1 E4 sequences that are critical to multimerisation. Fusion proteins were created by linking wild-type and mutant E4 proteins to a LexA DNA-binding domain or a B42 transactivation domain. HPV 1 E4:E4 interactions were examined by expression of these fusion proteins in Saccharomyces cerevisiae. This assay showed that (1) amino acid residues 95 to 115 at the carboxy-terminus were critical for oligomerisation and (2) hydrophobic residues (isoleucine 107, phenylalanine 114) in this domain are major determinants in the formation of oligomers. Interestingly, the carboxy-terminal domain shares homology with other E4 proteins of cutaneous HPV types and, furthermore, positions 107 and 114 are conserved residues. Substitution of the conserved aspartate amino acids (residues 110 and 112) did not abrogate E4 oligomerisation. Chemical cross-linking of wart and recombinant (baculovirus-expressed) HPV 1 E4 protein indicated that in solution this viral protein forms complexes consistent in size with either trimers or tetramers. These complexes were resistant to urea denaturation and are not dependent on the formation of disulphide linkages. A mutant protein containing a deletion of residues 110 to 115 was unable to form oligomers following cross-linking supporting a role for this region in mediating E4:E4 interactions. We conclude that oligomerisation of the HPV 1 E4 protein is likely to be mediated by carboxy-terminal residues and that conserved hydrophobic residues of this domain play a major role in E4 oligomerisation.
Collapse
Affiliation(s)
- I Ashmole
- Cancer Research Campaign Institute for Cancer Studies, Medical School, University of Birmingham, United Kingdom
| | | | | |
Collapse
|
17
|
Roberts S, Ashmole I, Rookes SM, Gallimore PH. Mutational analysis of the human papillomavirus type 16 E1--E4 protein shows that the C terminus is dispensable for keratin cytoskeleton association but is involved in inducing disruption of the keratin filaments. J Virol 1997; 71:3554-62. [PMID: 9094627 PMCID: PMC191502 DOI: 10.1128/jvi.71.5.3554-3562.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The function of the human papillomavirus (HPV) E4 proteins is unknown. In cultured epithelial cells the proteins associate with the keratin intermediate filaments (IFs) and, for some E4 types, e.g., HPV type 16 (HPV-16), induce collapse of the keratin networks. An N-terminal leucine-rich motif (LLXLL) is a conserved feature of many E4 proteins. In a previous study we showed that deletion of this region from the HPV-1 and -16 E4 proteins abrogated the localization of the mutant proteins to the keratin cytoskeleton in a simian virus 40-transformed human keratinocyte cell line (S. Roberts, I. Ashmole, L. J. Gibson, S. M. Rookes, G. J. Barton, and P. H. Gallimore, J. Virol. 68:6432-6445, 1994). The E4 proteins of HPV-1 and -16 have little sequence homology except at the N terminus. Therefore, to establish the role of sequences other than those at the N terminus, we have performed a mutational analysis of the HPV-16 E4 protein. The results of the analysis were as follows: (i) similar to findings for the HPV-1 protein, no mutation of HPV-16 E4 sequences (other than the N-terminal leucine motif) results in a mutant protein which fails to colocalize to the keratin IFs; (ii) the C-terminal domain (residues 61 to 92) is not essential for association with the cytoskeleton; and (iii) deletion of C-terminal sequences (residues 84 to 92; LTVIVTLHP) corresponding to part of a domain conserved between mucosal E4 proteins affects the ability of the mutant protein to induce cytoskeletal collapse, despite colocalization with the keratin IFs. Further analysis of this region showed that conserved hydrophobic residues valines 86 and 88 are important. In addition, we show that the HPV-16 E4 protein is detergent insoluble and exists as several disulfide-linked, high-molecular-weight complexes which could represent homo-oligomers. The C-terminal sequences (residues 84 to 92), in particular valines 86 and 88, are important in the formation of these insoluble complexes. The results of this study support our postulate that the E4 proteins include functional domains at the N terminus and the C terminus, with the intervening sequences possibly acting as a flexible hinge.
Collapse
Affiliation(s)
- S Roberts
- Cancer Research Campaign Institute for Cancer Studies, The Medical School, University of Birmingham, United Kingdom
| | | | | | | |
Collapse
|
18
|
Pray TR, Laimins LA. Differentiation-dependent expression of E1--E4 proteins in cell lines maintaining episomes of human papillomavirus type 31b. Virology 1995; 206:679-85. [PMID: 7831825 DOI: 10.1016/s0042-6822(95)80088-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The life cycle of human papillomaviruses (HPVs) is dependent on epithelial differentiation. Among the viral proteins expressed in differentiated epithelial cells are the viral capsid proteins, L1 and L2, as well as the E1E4 fusion proteins. In this study, the expression and intracellular localization of the E1E4 proteins of HPV type 31b were examined in both monolayer and raft cultures of the CIN-612 cell line which maintains episomal copies of HPV-31b. In this cell line, a high level of E1E4 protein expression was observed in the cytoplasm of a small percentage of cells in monolayer culture. A large increase in E1E4 protein levels was observed upon stratification of the CIN-612 cell line in raft cultures, with E1E4 protein expression limited to the uppermost layers of the epithelium. A diffuse, slightly grainy cytoplasmic localization of E1E4 protein was observed in both monolayer and raft culture systems. Although virion synthesis is entirely dependent upon phorbol ester or synthetic diacylglycerol treatment of raft cultures, E1E4 expression was observed in both treated and untreated monolayer and raft cultures of the CIN-612 cell line. In monolayer cultures of two simian virus 40-transformed cell lines, cos-7 and MK-6, transiently transfected with an E1E4 expression vector, the distribution of E1E4 protein was found to differ substantially from that in the CIN-612 cells. In these cell lines E1E4 protein was found to exhibit a total collapse into either cytoplasmic inclusion granules in the cos-7 cells or a perinuclear halo-like structure in the MK-6 cell line. The host cell, its differentiation state, and the amount of expression can therefore significantly affect the distribution of the E1E4 proteins.
Collapse
Affiliation(s)
- T R Pray
- Department of Microbiology-Immunology and Biochemistry, Northwestern University, Chicago, Illinois 60611
| | | |
Collapse
|
19
|
Cerni C, Seelos C. Papillomaviruses as Promoting Agents in Human Epithelial Tumors. INFECTIOUS AGENTS AND PATHOGENESIS 1995. [DOI: 10.1007/978-1-4899-1100-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Roberts S, Ashmole I, Gibson LJ, Rookes SM, Barton GJ, Gallimore PH. Mutational analysis of human papillomavirus E4 proteins: identification of structural features important in the formation of cytoplasmic E4/cytokeratin networks in epithelial cells. J Virol 1994; 68:6432-45. [PMID: 7521917 PMCID: PMC237063 DOI: 10.1128/jvi.68.10.6432-6445.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously demonstrated that human papillomavirus type 1 (HPV 1) and 16 (HPV 16) E4 proteins form cytoplasmic filamentous networks which specifically colocalize with cytokeratin intermediate-filament (IF) networks when expressed in simian virus 40-transformed keratinocytes. The HPV 16 (but not the HPV 1) E4 protein induced the collapse of the cytokeratin networks. (S. Roberts, I. Ashmole, G. D. Johnson, J. W. Kreider, and P. H. Gallimore, Virology 197:176-187, 1993). The mode of interaction of E4 with the cytokeratin IFs is unknown. To identify E4 sequences important in mediating this interaction, we have constructed a large panel of mutant HPV (primarily HPV 1) E4 proteins and expressed them by using the same simian virus 40-epithelial expression system. Mutation of HPV 1 E4 residues 10 to 14 (LLGLL) abrogated the formation of cytoplasmic filamentous networks. This sequence corresponds to a conserved motif, LLXLL, found at the N terminus of other E4 proteins, and similar results were obtained on deletion of the HPV 16 motif, LLKLL (residues 12 to 16). Our findings indicate that this conserved motif is likely to play a central role in the association between E4 and the cytokeratins. An HPV 1 E4 mutant protein containing a deletion of residues 110 to 115 induced the collapse of the cytokeratin IFs in a manner analogous to the HPV 16 E4 protein. The sequence deleted, DLDDFC, is highly conserved between cutaneous E4 proteins. HPV 1 E4 residues 42 to 80, which are rich in charged amino acids, appeared to be important in the cytoplasmic localization of E4. In addition, we have mapped the N-terminal residues of HPV 1 E4 16-kDa and 10/11-kDa polypeptides expressed by using the baculovirus system and shown that they begin at tyrosine 16 and alanine 59, respectively. Similar-sized E4 proteins are also found in vivo. N-terminal deletion proteins, which closely resemble the 16-kDa and 10/11-kDa species, expressed in keratinocytes were both cytoplasmic and nuclear but did not form cytoplasmic filamentous networks. These findings support the postulate that N-terminal proteolytic processing of the E1-- E4 protein may modulate its function in vivo.
Collapse
Affiliation(s)
- S Roberts
- Department of Cancer Studies, Medical School, University of Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- E J Androphy
- Department of Dermatology, New England Medical Center, Boston, MA
| |
Collapse
|
22
|
Affiliation(s)
- M A Stanley
- Department of Pathology, University of Cambridge, UK
| |
Collapse
|
23
|
Rogel-Gaillard C, Pehau-Arnaudet G, Breitburd F, Orth G. Cytopathic effect in human papillomavirus type 1-induced inclusion warts: in vitro analysis of the contribution of two forms of the viral E4 protein. J Invest Dermatol 1993; 101:843-51. [PMID: 7504028 DOI: 10.1111/1523-1747.ep12371705] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myrmecia warts induced by human papillomavirus type 1 (HPV1) are characterized by abundant eosinophilic inclusions associated with HPV1 E4 gene products. The major HPV1 E4 proteins are a 17-kilodalton (kDa) E1-E4 fusion protein and a 16-kDa species lacking the five E1 amino acids and a few E4 residues. To study the contribution of E4 proteins to the formation of myrmecia inclusions, we used a previously designed transient expression system in the rabbit VX2-R keratinocyte line. We find that the E1-E4 and an E4 protein without the E1 residues (E4-3200) form eosinophilic inclusions. Ultrastructural and immunoelectron microscopic studies show that the electron-dense, keratohyalin-like myrmecia inclusions are recognized by anti-E4 antibodies. They are associated with tonofilament bundles at their periphery in the cytoplasm or free of filaments in the nucleus. The E1-E4 inclusions formed in vitro are also homogeneously electron dense, and are usually associated with tonofilaments at their periphery in the cytoplasm and free of filaments in the nucleus. The E4-3200 inclusions are exclusively cytoplasmic and heterogeneously electron dense, with a fibrillar structure made of entangled 10-nm filaments. The expression of either protein in VX2-R cells does not result in the collapse of the cytokeratin network, as shown by immunofluorescence double-labeling experiments. This is in contrast to data reported for the HPV16 E1-E4 protein. Our findings indicate that the E1-E4 protein by itself accounts for the formation of myrmecia inclusions, and suggest that the five N-terminal E1 amino acids play a major role in the interaction of E4 proteins with intermediate filaments.
Collapse
|