1
|
Czyz CM, Kunth PW, Gruber F, Kremslehner C, Hammers CM, Hundt JE. Requisite instruments for the establishment of three-dimensional epidermal human skin equivalents-A methods review. Exp Dermatol 2023; 32:1870-1883. [PMID: 37605856 DOI: 10.1111/exd.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.
Collapse
Affiliation(s)
- Christianna Marie Czyz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Paul Werner Kunth
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christoph Matthias Hammers
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | | |
Collapse
|
2
|
Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020; 7:E115. [PMID: 32957528 PMCID: PMC7552665 DOI: 10.3390/bioengineering7030115] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Animal testing has long been used in science to study complex biological phenomena that cannot be investigated using two-dimensional cell cultures in plastic dishes. With time, it appeared that more differences could exist between animal models and even more when translated to human patients. Innovative models became essential to develop more accurate knowledge. Tissue engineering provides some of those models, but it mostly relies on the use of prefabricated scaffolds on which cells are seeded. The self-assembly protocol has recently produced organ-specific human-derived three-dimensional models without the need for exogenous material. This strategy will help to achieve the 3R principles.
Collapse
Affiliation(s)
- Patrick Bédard
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Sara Gauvin
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Karel Ferland
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Siengdee P, Klinhom S, Thitaram C, Nganvongpanit K. Isolation and culture of primary adult skin fibroblasts from the Asian elephant ( Elephas maximus). PeerJ 2018; 6:e4302. [PMID: 29379691 PMCID: PMC5786883 DOI: 10.7717/peerj.4302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Background Primary cultures from Asian elephants (Elephas maximus) allow scientists to obtain representative cells that have conserved most of their original characteristics, function, physiology and biochemistry. This technique has thus gained significant importance as a foundation for further cellular, cell biology and molecular research. Therefore, the aim of this study was to describe conditions for the successful establishment of primary adult fibroblasts from Asian elephant carcasses. Methods Ear tissue sample collection from Asian elephant carcasses and our recommendations are given. We describe here a simple modified protocol for successful isolation and maintenance of primary adult fibroblasts from elephant ear skin. Ear samples from each individual (five 3 × 3 cm2 pieces) were brought to the laboratory within 3 h after collection, kept in transportation medium at 0–4 °C. The ear tissues were prepared by a combination of 10% collagenase type II digestion procedure together with a simple explant procedure. Primary fibroblasts were cultured at 37 °C in Dulbecco’s modified Eagle’s medium (DMEM) with 20% fetal calf serum (FCS) in a humidified atmosphere containing 5% CO2. After the third passage, fibroblasts were routinely trypsinized with 0.25% trypsin/EDTA and cultured in DMEM with 10% FCS at 37 °C and 5% CO2. Traditional cell counting method was used to measure cell viability and growth curve. Long-term storage of cells used freezing medium consisting of 40% FCS (v/v). Results We explored the most suitable conditions during sample collection (post-mortem storage time and sample storage temperature), which is the most important step in determining primary outgrowth. Our study successfully established and cultured primary adult skin fibroblasts obtained from post-mortem E. maximus ear skin tissues from six carcasses, with a success rate of around 83.3%. Outgrowth could be seen 4–12 days after explantation, and epithelial-like cells were found after 4–7 days of culture, while fibroblasts appeared at around day 7–10. The fibroblasts had viability and post-freezing recovery rates of around 97.3 ± 4.3% and 95.5 ± 7.3%, respectively, and doubling time was about 25 h (passage 6). Discussion To our knowledge, this report is the first to describe primary cell cultures derived from adult Asian elephant skin. Future studies should benefit from the information and useful suggestions herein, which may be used as a standard method for establishing primary skin fibroblast cultures in future experiments.
Collapse
Affiliation(s)
- Puntita Siengdee
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarisa Klinhom
- Center of Excellence in Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchote Thitaram
- Center of Excellence in Elephant and Wildlife Research, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Massenkeil G, Zschieschang P, Thiel G, Hemmati PG, Budach V, Dörken B, Pross J, Arnold R. Frequent induction of chromosomal aberrations in in vivo skin fibroblasts after allogeneic stem cell transplantation: hints to chromosomal instability after irradiation. Radiat Oncol 2015; 10:266. [PMID: 26715553 PMCID: PMC4696175 DOI: 10.1186/s13014-015-0576-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 12/21/2015] [Indexed: 11/21/2022] Open
Abstract
Background Total body irradiation (TBI) has been part of standard conditioning regimens before allogeneic stem cell transplantation for many years. Its effect on normal tissue in these patients has not been studied extensively. Method We studied the in vivo cytogenetic effects of TBI and high-dose chemotherapy on skin fibroblasts from 35 allogeneic stem cell transplantation (SCT) patients. Biopsies were obtained prospectively (n = 18 patients) before, 3 and 12 months after allogeneic SCT and retrospectively (n = 17 patients) 23–65 months after SCT for G-banded chromosome analysis. Results Chromosomal aberrations were detected in 2/18 patients (11 %) before allogeneic SCT, in 12/13 patients (92 %) after 3 months, in all patients after 12 months and in all patients in the retrospective group after allogeneic SCT. The percentage of aberrant cells was significantly higher at all times after allogeneic SCT compared to baseline analysis. Reciprocal translocations were the most common aberrations, but all other types of stable, structural chromosomal aberrations were also observed. Clonal aberrations were observed, but only in three cases they were detected in independently cultured flasks. A tendency to non-random clustering throughout the genome was observed. The percentage of aberrant cells was not different between patients with and without secondary malignancies in this study group. Conclusion High-dose chemotherapy and TBI leads to severe chromosomal damage in skin fibroblasts of patients after SCT. Our long-term data suggest that this damage increases with time, possibly due to in vivo radiation-induced chromosomal instability.
Collapse
Affiliation(s)
- G Massenkeil
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany. .,Present address: Department of Internal Medicine, Clinic for Hematology and Oncology, Klinikum Guetersloh, Guetersloh, Germany.
| | - P Zschieschang
- Institute for Medical Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Present address: Medical practice for Human Genetics, Friedrichstrasse, Berlin, Germany
| | - G Thiel
- Institute for Medical Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Present address: Medical practice for Human Genetics, Friedrichstrasse, Berlin, Germany
| | - P G Hemmati
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - V Budach
- Clinic for Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - B Dörken
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - J Pross
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - R Arnold
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
|
6
|
Lootens L, Brusselaers N, Beele H, Monstrey S. Keratinocytes in the treatment of severe burn injury: an update. Int Wound J 2013; 10:6-12. [PMID: 22958654 PMCID: PMC7950461 DOI: 10.1111/j.1742-481x.2012.01083.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Burns are among the most life-threatening physical injuries, in which fast wound closure is crucial. The surgical burn care has evolved considerably throughout the past decennia resulting in a shift of therapeutic goals. Therapies aiming to provide coverage of the burn have been replaced by treatments that have both functional as aesthetic outcomes. The standard in treating severe burns is still early excision followed by skin grafting. The use of cultured keratinocytes to cover extensive burn wounds appeared very promising at first, but the technique still has several limitations of which the long time to culture, the major costs, the risk of infection and the need for an adequate dermal layer limit clinical application. The introduction of dermal substitutes, composite grafts, tissue engineering based on stem cell application have been advocated. The aim of this review is to assess the use of cultured keratinocytes in terms of technical aspects, clinical application, limitations and future perspectives. Cultured keratinocytes are expected to keep playing a role in wound healing, especially in the field of chronic wounds. In severe burns, despite its limitations, keratinocytes can be beneficial if implemented as one of the elements in a broader wound management.
Collapse
Affiliation(s)
- Liesbeth Lootens
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
7
|
Hautier A, Sabatier F, Stellmann P, Andrac L, Nouaille De Gorce Y, Dignat-George F, Magalon G. Assessment of organ culture for the conservation of human skin allografts. Cell Tissue Bank 2007; 9:19-29. [PMID: 17458519 DOI: 10.1007/s10561-007-9042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2006] [Accepted: 03/28/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Human skin allografts are used in the treatment of severe burns and their preservation is therefore critical for optimal clinical benefit. Current preservation methods, such as 4 degrees C storage or cryopreservation, cannot prevent the decrease of tissue viability. The aim of this study was to assess viability and function of skin allografts in a new skin organ culture model, allowing conservation parameters as close as possible to physiological conditions: 32 degrees C, air-liquid interface and physiological skin tension. DESIGN Twelve skin samples, harvested from 6 living surgical donors, were conserved 35 days in two conditions: conservation at 4 degrees C and organ culture. Viability and function of skin samples were investigated at Day 0, 7, 14, 21, 28 and 35 using cell culture methods (trypan blue exclusion, Colony Forming Efficiency and Growth Rate), histopathological and histoenzymological studies (Ki67 immunostaining). RESULTS In the two conditions, fibroblast and keratinocyte viability was progressively affected by storage, with a significant decrease observed after 35 days. No statistical difference could be observed between the two conditions. The two methods were also comparable regarding alterations of fibroblast and keratinocyte culture parameters, which were respectively significantly reduced at Day 7 and 21, compared to fresh skin. By contrast, histopathological and histoenzymological studies revealed a better preservation of skin architecture and proliferative potential at 4 degrees C, as compared to organ culture. CONCLUSION These results indicate that skin organ culture does not provide significant advantages for skin allograft preservation. However, its potential use as an experimental model to study skin physiology and wound healing should be further evaluated.
Collapse
Affiliation(s)
- A Hautier
- Service de Chirurgie Plastique, Centre des Grands Brûlés, Hôpital de La Conception, 147 boulevard Baille, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
8
|
Gragnani A, Sobral CS, Ferreira LM. Thermolysin in human cultured keratinocyte isolation. BRAZ J BIOL 2007; 67:105-9. [PMID: 17505756 DOI: 10.1590/s1519-69842007000100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 02/28/2007] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND: When treating extensively burned patients using cultured epidermal sheets, the main problem is the time required for its production. Conventional keratinocyte isolation is usually done using Trypsin. We used a modification of the conventional isolation method in order to improve this process and increase the number of colonies from the isolated epidermal cell population. PURPOSE: To compare the action of trypsin and thermolysin in the keratinocyte isolation using newborn foreskin. METHODS: This method used thermolysin as it selectively digests the dermo-epidermal junction. After dermis separation, the epidermis was digested by trypsin in order to obtain a cell suspension. RESULTS: Compared to the conventional procedure, these experiments demonstrated that in the thermolysin group, the epidermis was easily detached from the dermis, there was no fibroblast contamination and there were a larger number of keratinocyte colonies which had a significant statistical difference. CONCLUSION: The number of colonies in the thermolysin group was significantly greater than in the trypsin group.
Collapse
Affiliation(s)
- A Gragnani
- Division of Plastic Surgery, Surgery Department, Federal University of São Paulo - UNIFESP/EPM, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
9
|
Acker JP. Biopreservation of cells and engineered tissues. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 103:157-87. [PMID: 17195463 DOI: 10.1007/b137204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The development of effective preservation and long-term storage techniques is a critical requirement for the successful clinical and commercial application of emerging cell-based technologies. Biopreservation is the process of preserving the integrity and functionality of cells, tissues and organs held outside the native environment for extended storage times. Biopreservation can be categorized into four different areas on the basis of the techniques used to achieve biological stability and to ensure a viable state following long-term storage. These include in vitro culture, hypothermic storage, cryopreservation and desiccation. In this chapter, an overview of these four techniques is presented with an emphasis on the recent developments that have been made using these technologies for the biopreservation of cells and engineered tissues.
Collapse
Affiliation(s)
- Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, 8249-114 Street, Edmonton, AB T6G 2R8, Canada.
| |
Collapse
|
10
|
Abstract
The integrity of the skin should be restored as soon as possible whenever the skin gets wounded. Recent research has revealed some of the complex pathways in wound healing. Based on this knowledge, researchers have been looking for better skin substitutes to treat difficultly healing or large wounds. Some of these highly sophisticated wound dressings, also known as bio-dressings, contain material of human or animal origin, e.g. cultured skin cells. Although the ideal skin substitute has not been established yet, the currently available bio-dressings help clinicians close difficultly healing skin wounds.
Collapse
Affiliation(s)
- H Beele
- Department of Dermatology, Tissue Bank, Ghent University Hospital, Belgium.
| |
Collapse
|
11
|
Abstract
The skin is a complex organ that is difficult to replace when it is irreversibly damaged by burns, trauma, or disease. Although autologous skin transplantation remains the most common form of treatment in patients with significant skin loss, there are now a number of commercially available products that can be used to replace the skin temporarily or permanently. Here we describe several such products under the rubric "artificial skin," focusing on two types of technology that have been applied to the problem of permanent skin replacement.
Collapse
Affiliation(s)
- J T Schulz
- Division of Burns and Trauma, Massachusetts General Hospital, Boston 02114, USA.
| | | | | |
Collapse
|
12
|
Terskikh VV, Vasiliev AV. Cultivation and transplantation of epidermal keratinocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 188:41-72. [PMID: 10208010 DOI: 10.1016/s0074-7696(08)61565-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transplantation of autologous cultured keratinocytes is the most advanced area of tissue engineering which has clinical application in restoration of skin lesions. In vitro, disaggregated keratinocytes undergo activation and after adhesion and histogenic aggregation form three-dimensional epithelial sheets suitable for grafting on prepared wounds that provide a reparative environment. Epidermal stem cells survive and proliferate in culture, retaining their potential to differentiate and to produce neoepidermis. Reconstructed skin is physiologically compatible to split-thickness autografts. Autotransplantation of cultured keratinocytes is a promising technique for gene therapy. In many cases allografting of cultured keratinocytes promotes wound healing by stimulation of epithelialization. Banking of cryopreserved keratinocytes is a significant improvement in usage of cultured keratinocytes for wound healing. Skin substitutes reconstructed in vitro that have morphological, biochemical, and functional features of the native tissue are of interest as model systems that enable extrapolation to situations in vivo.
Collapse
Affiliation(s)
- V V Terskikh
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
13
|
Pomahac B, Svensjö T, Yao F, Brown H, Eriksson E. Tissue engineering of skin. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1998; 9:333-44. [PMID: 9715370 DOI: 10.1177/10454411980090030601] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The skin plays a crucial role in protecting the integrity of the body's internal milieu. The loss of this largest organ is incompatible with sustained life. In reconstructive surgery or burn management, substitution of the skin is often necessary. In addition to traditional approaches such as split- or full-thickness skin grafts, tissue flaps and free-tissue transfers, skin bioengineering in vitro or in vivo has been developing over the past decades. It applies the principles and methods of both engineering and life sciences toward the development of substitutes to restore and maintain skin structure and function. Currently, these methods are valuable alternatives or complements to other techniques in reconstructive surgery. This review article deals with the evolution and current approaches to the development of in vitro and in vivo epidermis and dermis.
Collapse
Affiliation(s)
- B Pomahac
- Division of Plastic Surgery, Brigham/Children's/Harvard, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Culture of epidermocytes from man and experimental animals. Bull Exp Biol Med 1987. [DOI: 10.1007/bf00841927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Bertolero F, Kaighn ME, Gonda MA, Saffiotti U. Mouse epidermal keratinocytes. Clonal proliferation and response to hormones and growth factors in serum-free medium. Exp Cell Res 1984; 155:64-80. [PMID: 6208047 DOI: 10.1016/0014-4827(84)90768-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A serum-free medium (LEP-1) has been developed for mouse epidermal keratinocytes. LEP-1 consists of "Ca2+-free" Eagle's MEM with non-essential amino acids and seven added supplements (transferrin, 5 micrograms/ml; epidermal growth factor (EGF), 5 ng/ml; hydrocortisone, 0.5 microM; insulin, 5 micrograms/ml; phosphoethanolamine and ethanolamine, each 50 microM; bovine pituitary extract, 180 micrograms of protein/ml). Although serum-free the culture system was dependent for growth on bovine pituitary extract as the only still undefined supplement. LEP-1 supports sustained multiplication of mouse keratinocytes for 25 or more population doublings. A clonal growth assay was developed to investigate the action of growth factors, hormones and other supplements on keratinocytes. Cells grown in LEP-1 (calcium concentration was 0.03 mM) maintained a high proliferative rate and presented the typical morphology of basal epidermal cells. When the calcium concentration of the medium was raised to 1.0 mM, the cells were triggered to differentiate terminally. The epithelial nature of the cells was demonstrated both by electron microscopy and by immunostaining with anti-keratin antibody. The maturation stage of the keratinocytes was defined by several morphological features during the proliferative phase and in terminally differentiating cultures. This serum-free system supported a useful number of cell divisions while keratinocytes retained the capacity to undergo terminal differentiation when given the appropriate stimulus. It provides, therefore, provides a useful model for investigations on growth, differentiation and malignant transformation of epidermal cells in culture.
Collapse
|
17
|
Bohrman JS. Identification and assessment of tumor-promoting and cocarcinogenic agents: state-of-the-art in vitro methods. Crit Rev Toxicol 1983; 11:121-67. [PMID: 6340968 DOI: 10.3109/10408448309089850] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 1982; 215:174-6. [PMID: 7031899 DOI: 10.1126/science.7031899] [Citation(s) in RCA: 379] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prompt and long-term closure of full-thickness skin wounds is guinea pigs and humans is achieved by applying a bilayer polymeric membrane. The membrane comprises a top layer of a silicone elastomer and a bottom layer of a porous cross-linked network of collagen and glycosaminoglycan. The bottom layer can be seeded with a small number of autologous basal cells before grafting. No immunosuppression is used and infection, exudation, and rejection are absent. Host tissue utilizes the sterile membrane as a culture medium to synthesize neoepidermal and neodermal tissue. A functional extension of skin over the entire wound area is formed in about 4 weeks.
Collapse
|
19
|
Birkedal-Hansen H, Hansen IL, Nellemann K, Westergaard J. Growth and differentiation of an established rat keratinocyte line in serial culture. IN VITRO 1981; 17:553-62. [PMID: 7327589 DOI: 10.1007/bf02618452] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This paper describes the growth and differentiation of an established, feeder layer independent line of rat keratinocytes originally developed from tongue epithelium. The cells grew from any seeding density with a population doubling time of 14 to 16 h and a plating efficiency of 60 to 90%. The cells were kept in continuous culture for more than 3 yr and were cloned several times during this period. After more than 700 population doublings the cultures maintained typical expressions of the keratinocyte phenotype such as desmosomes and tonofilaments. The cells required 10 to 15% fetal bovine serum but no additional supplement of growth factors. Single colonies, as well as confluent multilayers, keratinized and displayed the whole complement of keratinization markers including keratin filaments, cornified envelopes, increased plasma membrane permeability, and destruction of cytoplasmic and nuclear components. However, the ability to stratify in a regular manner was lost although sporadic attempts of stratification were present. In suspension culture the cells terminally differentiated in 1 or 2 wk and developed highly cross-linked cornified envelopes that were resistant to boiling detergent solutions under reducing conditions. Chromosome numbers were in the diploid range (2N = 38 to 46), but aberrations were frequent.
Collapse
|
20
|
Prunieras M, Delescluse C, Regnier M. A cell culture model for the study of epidermal (chalone) homeostasis. Pharmacol Ther 1980; 9:271-95. [PMID: 6447881 DOI: 10.1016/0163-7258(80)90020-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Jepsen A, MacCallum DK, Lillie JH. Fine structure of subcultivated stratified squamous epithelium. Exp Cell Res 1980; 125:141-52. [PMID: 7188688 DOI: 10.1016/0014-4827(80)90198-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Abstract
A histometric method is used for the study of human skin kept in organ culture in a defined medium for up to 10 days. The method provides quantitative, reproducible data on tissue survival, cell migration, and cellular differentiation (keratinization). With this method, the behavior of epidermal skin tissue can be effectively monitored during organ culture. As quantitative data are obtained, even subtle changes can be accurately demonstrated, and accumulated data may be subjected to statistical analysis. The various applications of this method are pointed out.
Collapse
|
23
|
Abstract
Among the many skin culture systems, three have been selected in this short review because of their specific potentials in dermatological research. H. Green cultures newborn human forsekin keratinocytes on a mouse 3T3 feeder layer. Keratinocytes grow and keratinize. The feeder cells release factor(a) which allows serial propagation of keratinocytes to be achieved. The cell yield is further increased by adding epidermal grohth factor. This system has already proved to be a potent tool for the study of keratinization at the molecular level. A. Freeman has described a system in which explants of adult human skin are cultured on the dermal aspect of dead split-thickness pig skin. Keratinocytes can be passaged several times. Their differentiation is remarkable: it includes the production of keratohyaline, membrane coating granules, pemphigus as well as pemphigoid antigens. This system is interesting in the study of epidermal morphogenesis and may be applicable to the treatment of burns. The culture of epidermal cells from adult guinea pig ear in comparison with that of dermal fibroblasts is being used to study the specificity of action of pharmacological compounds on growth and keratinization of epidermal cells. Furthermore, the isolation (and culture) of pure populations of basal cells appears as a promising approach to the study of the mechanisms which moderate epidermal cell proliferation.
Collapse
|
24
|
|
25
|
|
26
|
Glimcher ME, Garcia RI, Szabó G. Organ culture of mammalian skin and the effects of ultraviolet light and testosterone on melanocyte morphology and function. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1978; 204:229-37. [PMID: 641488 DOI: 10.1002/jez.1402040210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Scrotal skin of black Long-Evans rats and human thigh skin were maintained in vitro as organ cultures for as long as 14 days, and examined histologically using the combined skin splitting and Dopa techniques. Selected rat skin cultures received testosterone in the culture medium and/or were irradiated with ultraviolet light (290-320 nm UVL). With increased time in culture, scrotal melanocytes round up and there is an increase in epidermal pigmentation. Human skin behaves similarly; after eight days in vitro human melanocytes also become rounded, but remain strongly Dopa-positive. Addition of exogenous testosterone to cultured rat skin maintains dendritic morphology of melanocytes, but cell body size is still reduced. UVL irradiation stimulates melanocytes in rat skin cultures, maintaining their dendritic morphology and increasing epidermal and dermal pigmentation. Cultured skin receiving both UVL and testosterone illustrates a synergistic effect. Electron microscopic examination of cultured rat skin shows the presence of large melanosome complexes in keratinocytes, much larger than those found in vivo. Melanocytes appear to be active as they contain an extensive Golgi zone, rough endoplasmic reticulum, and melanosomes in various stages of formation. Dermis contained many dermal melanocytes and macrophages laden with melanosomes, correlating with the increased visible dermal pigmentation in vitro. This UVL stimulation of melanocytes in our skin organ cultures contrasts with the lack of melanogenic stimulation found in melanoma cell cultures. Our findings suggest that the intact epidermal melanin unit may be necessary for UVL stimulation of melanocytes.
Collapse
|
27
|
Organ culture of human and rodent skin and in vitro ultraviolet-light irradiation. ACTA ACUST UNITED AC 1978. [DOI: 10.1007/bf00918544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|