1
|
CHAMBERS JK, ITO S, UCHIDA K. Feline papillomavirus-associated Merkel cell carcinoma: a comparative review with human Merkel cell carcinoma. J Vet Med Sci 2023; 85:1195-1209. [PMID: 37743525 PMCID: PMC10686778 DOI: 10.1292/jvms.23-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin tumor that shares a similar immunophenotype with Merkel cells, although its origin is debatable. More than 80% of human MCC cases are associated with Merkel cell polyomavirus infections and viral gene integration. Recent studies have shown that the clinical and pathological characteristics of feline MCC are comparable to those of human MCC, including its occurrence in aged individuals, aggressive behavior, histopathological findings, and the expression of Merkel cell markers. More than 90% of feline MCC are positive for the Felis catus papillomavirus type 2 (FcaPV2) gene. Molecular changes involved in papillomavirus-associated tumorigenesis, such as increased p16 and decreased retinoblastoma (Rb) and p53 protein levels, were observed in FcaPV2-positive MCC, but not in FcaPV2-negative MCC cases. These features were also confirmed in FcaPV2-positive and -negative MCC cell lines. The expression of papillomavirus E6 and E7 genes, responsible for p53 degradation and Rb inhibition, respectively, was detected in tumor cells by in situ hybridization. Whole genome sequencing revealed the integration of FcaPV2 DNA into the host feline genome. MCC cases often develop concurrent skin lesions, such as viral plaque and squamous cell carcinoma, which are also associated with papillomavirus infection. These findings suggest that FcaPV2 infection and integration of viral genes are involved in the development of MCC in cats. This review provides an overview of the comparative pathology of feline and human MCC caused by different viruses and discusses their cell of origin.
Collapse
Affiliation(s)
- James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soma ITO
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Sensory nerve sprouting of human skin explants confers improved survival to Merkel cells independent of Merkel cell-neurite complexes. J Invest Dermatol 2023:S0022-202X(23)00157-4. [PMID: 36863447 DOI: 10.1016/j.jid.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
|
3
|
Brown TL, Horton EC, Craig EW, Goo CEA, Black EC, Hewitt MN, Yee NG, Fan ET, Raible DW, Rasmussen JP. Dermal appendage-dependent patterning of zebrafish atoh1a+ Merkel cells. eLife 2023; 12:85800. [PMID: 36648063 PMCID: PMC9901935 DOI: 10.7554/elife.85800] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Touch system function requires precise interactions between specialized skin cells and somatosensory axons, as exemplified by the vertebrate mechanosensory Merkel cell-neurite complex. Development and patterning of Merkel cells and associated neurites during skin organogenesis remain poorly understood, partly due to the in utero development of mammalian embryos. Here, we discover Merkel cells in the zebrafish epidermis and identify Atonal homolog 1a (Atoh1a) as a marker of zebrafish Merkel cells. We show that zebrafish Merkel cells derive from basal keratinocytes, express neurosecretory and mechanosensory machinery, extend actin-rich microvilli, and complex with somatosensory axons, all hallmarks of mammalian Merkel cells. Merkel cells populate all major adult skin compartments, with region-specific densities and distribution patterns. In vivo photoconversion reveals that Merkel cells undergo steady loss and replenishment during skin homeostasis. Merkel cells develop concomitant with dermal appendages along the trunk and loss of Ectodysplasin signaling, which prevents dermal appendage formation, reduces Merkel cell density by affecting cell differentiation. By contrast, altering dermal appendage morphology changes the distribution, but not density, of Merkel cells. Overall, our studies provide insights into touch system maturation during skin organogenesis and establish zebrafish as an experimentally accessible in vivo model for the study of Merkel cell biology.
Collapse
Affiliation(s)
- Tanya L Brown
- Department of Biology, University of WashingtonSeattleUnited States
| | - Emma C Horton
- Department of Biology, University of WashingtonSeattleUnited States
| | - Evan W Craig
- Department of Biology, University of WashingtonSeattleUnited States
| | - Camille EA Goo
- Department of Biology, University of WashingtonSeattleUnited States
| | - Erik C Black
- Department of Biology, University of WashingtonSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Madeleine N Hewitt
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Nathaniel G Yee
- Department of Biology, University of WashingtonSeattleUnited States
| | - Everett T Fan
- Department of Biology, University of WashingtonSeattleUnited States
| | - David W Raible
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Department of Otolaryngology - Head and Neck Surgery, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Jeffrey P Rasmussen
- Department of Biology, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
4
|
Bataille A, Le Gall C, Misery L, Talagas M. Merkel Cells Are Multimodal Sensory Cells: A Review of Study Methods. Cells 2022; 11:cells11233827. [PMID: 36497085 PMCID: PMC9737130 DOI: 10.3390/cells11233827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Merkel cells (MCs) are rare multimodal epidermal sensory cells. Due to their interactions with slowly adapting type 1 (SA1) Aβ low-threshold mechanoreceptor (Aβ-LTMRs) afferents neurons to form Merkel complexes, they are considered to be part of the main tactile terminal organ involved in the light touch sensation. This function has been explored over time by ex vivo, in vivo, in vitro, and in silico approaches. Ex vivo studies have made it possible to characterize the topography, morphology, and cellular environment of these cells. The interactions of MCs with surrounding cells continue to be studied by ex vivo but also in vitro approaches. Indeed, in vitro models have improved the understanding of communication of MCs with other cells present in the skin at the cellular and molecular levels. As for in vivo methods, the sensory role of MC complexes can be demonstrated by observing physiological or pathological behavior after genetic modification in mouse models. In silico models are emerging and aim to elucidate the sensory coding mechanisms of these complexes. The different methods to study MC complexes presented in this review may allow the investigation of their involvement in other physiological and pathophysiological mechanisms, despite the difficulties in exploring these cells, in particular due to their rarity.
Collapse
Affiliation(s)
- Adeline Bataille
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Correspondence:
| | - Christelle Le Gall
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Laurent Misery
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| | - Matthieu Talagas
- LIEN—Laboratoire Interactions Epithélium Neurones, Brest University, F-29200 Brest, France
- Department of Dermatology, Brest University Hospital, F-29200 Brest, France
| |
Collapse
|
5
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Sex-Dependent Reduction in Mechanical Allodynia in the Sural-Sparing Nerve Injury Model in Mice Lacking Merkel Cells. J Neurosci 2021; 41:5595-5619. [PMID: 34031166 DOI: 10.1523/jneurosci.1668-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Innocuous touch sensation is mediated by cutaneous low-threshold mechanoreceptors (LTMRs). Aβ slowly adapting type I (SAI) neurons constitute one LTMR subtype that forms synapse-like complexes with associated Merkel cells in the basal skin epidermis. Under healthy conditions, these complexes transduce indentation and pressure stimuli into Aβ SAI LTMR action potentials that are transmitted to the CNS, thereby contributing to tactile sensation. However, it remains unknown whether this complex plays a role in the mechanical hypersensitivity caused by peripheral nerve injury. In this study, we characterized the distribution of Merkel cells and associated afferent neurons across four diverse domains of mouse hind paw skin, including a recently described patch of plantar hairy skin. We also showed that in the spared nerve injury (SNI) model of neuropathic pain, Merkel cells are lost from the denervated tibial nerve territory but are relatively preserved in nearby hairy skin innervated by the spared sural nerve. Using a genetic Merkel cell KO mouse model, we subsequently examined the importance of intact Merkel cell-Aβ complexes to SNI-associated mechanical hypersensitivity in skin innervated by the spared neurons. We found that, in the absence of Merkel cells, mechanical allodynia was partially reduced in male mice, but not female mice, under sural-sparing SNI conditions. Our results suggest that Merkel cell-Aβ afferent complexes partially contribute to mechanical allodynia produced by peripheral nerve injury, and that they do so in a sex-dependent manner.SIGNIFICANCE STATEMENT Merkel discs or Merkel cell-Aβ afferent complexes are mechanosensory end organs in mammalian skin. Yet, it remains unknown whether Merkel cells or their associated sensory neurons play a role in the mechanical hypersensitivity caused by peripheral nerve injury. We found that male mice genetically lacking Merkel cell-Aβ afferent complexes exhibited a reduction in mechanical allodynia after nerve injury. Interestingly, this behavioral phenotype was not observed in mutant female mice. Our study will facilitate understanding of mechanisms underlying neuropathic pain.
Collapse
|
7
|
Asano K, Nakano T, Tokutake K, Ishii H, Nishizuka T, Iwatsuki K, Onishi T, Kurimoto S, Yamamoto M, Tatebe M, Hirata H. Innervation of Meissner's corpuscles and Merkel -cells by transplantation of embryonic dorsal root ganglion cells after peripheral nerve section in rats. J Tissue Eng Regen Med 2021; 15:586-595. [PMID: 33837671 DOI: 10.1002/term.3196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/26/2021] [Indexed: 11/08/2022]
Abstract
Transplantation of embryonic motor neurons has been shown to improve motor neuron survival and innervation of neuromuscular junctions in peripheral nerves. However, there have been no reports regarding transplantation of sensory neurons and innervation of sensory receptors. Therefore, we hypothesized that the transplantation of embryonic sensory neurons may improve sensory neurons in the skin and innervate Merkel cells and Meissner's corpuscles. We obtained sensory neurons from dorsal root ganglia of 14-day rat embryos. We generated a rat model of Wallerian-degeneration by performing sciatic nerve transection and waiting for one week after. Six months after cell transplantation, we performed histological and electrophysiological examinations in naïve control, surgical control, and cell transplantation groups. The number of nerve fibers in the papillary dermis and epidermal-dermal interface was significantly greater in the cell transplantation than in the surgical control group. The percent of Merkel cells with nerve terminals, as well as the average number of Meissner corpuscles with nerve terminals, were higher in the cell transplantation than in the surgical control group, but differences were not significant between the two groups. Moreover, the amplitude and latency of sensory conduction velocity were evoked in rats of the cell transplantation group. We demonstrated that the transplantation of embryonic dorsal root ganglion cells improved sensory nerve fiber number and innervation of Merkel cells and Meissner's corpuscles in peripheral nerves.
Collapse
Affiliation(s)
- Kenichi Asano
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tomonori Nakano
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Katsuhiro Tokutake
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hisao Ishii
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Takanobu Nishizuka
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tetsuro Onishi
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Shigeru Kurimoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Michiro Yamamoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Masahiro Tatebe
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
8
|
Lauriano E, Pergolizzi S, Aragona M, Spanò N, Guerrera M, Capillo G, Faggio C. Merkel cells immunohistochemical study in striped dolphin (Stenella coeruleoalba) skin. Tissue Cell 2019; 56:1-6. [DOI: 10.1016/j.tice.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 11/17/2018] [Indexed: 01/26/2023]
|
9
|
Hoffman BU, Baba Y, Griffith TN, Mosharov EV, Woo SH, Roybal DD, Karsenty G, Patapoutian A, Sulzer D, Lumpkin EA. Merkel Cells Activate Sensory Neural Pathways through Adrenergic Synapses. Neuron 2018; 100:1401-1413.e6. [PMID: 30415995 DOI: 10.1016/j.neuron.2018.10.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023]
Abstract
Epithelial-neuronal signaling is essential for sensory encoding in touch, itch, and nociception; however, little is known about the release mechanisms and neurotransmitter receptors through which skin cells govern neuronal excitability. Merkel cells are mechanosensory epidermal cells that have long been proposed to activate neuronal afferents through chemical synaptic transmission. We employed a set of classical criteria for chemical neurotransmission as a framework to test this hypothesis. RNA sequencing of adult mouse Merkel cells demonstrated that they express presynaptic molecules and biosynthetic machinery for adrenergic transmission. Moreover, live-cell imaging directly demonstrated that Merkel cells mediate activity- and VMAT-dependent release of fluorescent catecholamine neurotransmitter analogs. Touch-evoked firing in Merkel-cell afferents was inhibited either by pre-synaptic silencing of SNARE-mediated vesicle release from Merkel cells or by neuronal deletion of β2-adrenergic receptors. Together, these results identify both pre- and postsynaptic mechanisms through which Merkel cells excite mechanosensory afferents to encode gentle touch. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Benjamin U Hoffman
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, USA; Program in Neurobiology & Behavior, Columbia University, New York, NY, USA
| | - Yoshichika Baba
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, USA
| | - Theanne N Griffith
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, USA
| | - Eugene V Mosharov
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Seung-Hyun Woo
- The Scripps Research Institute & Howard Hughes Medical Institute, La Jolla, CA, USA
| | - Daniel D Roybal
- Pharmacology Graduate Program, Columbia University, New York, NY, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Ardem Patapoutian
- The Scripps Research Institute & Howard Hughes Medical Institute, La Jolla, CA, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Ellen A Lumpkin
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, USA; Program in Neurobiology & Behavior, Columbia University, New York, NY, USA; Department of Dermatology, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Ramírez GA, Rodríguez F, Quesada Ó, Herráez P, Fernández A, Espinosa-de-los-Monteros A. Anatomical Mapping and Density of Merkel Cells in Skin and Mucosae of the Dog. Anat Rec (Hoboken) 2016; 299:1157-64. [DOI: 10.1002/ar.23387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/22/2016] [Accepted: 04/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Gustavo A. Ramírez
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas De Gran Canaria, Campus Universitario Cardones; Arucas Las Palmas 45413 Spain
| | - Francisco Rodríguez
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas De Gran Canaria, Campus Universitario Cardones; Arucas Las Palmas 45413 Spain
| | - Óscar Quesada
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas De Gran Canaria, Campus Universitario Cardones; Arucas Las Palmas 45413 Spain
| | - Pedro Herráez
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas De Gran Canaria, Campus Universitario Cardones; Arucas Las Palmas 45413 Spain
| | - Antonio Fernández
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas De Gran Canaria, Campus Universitario Cardones; Arucas Las Palmas 45413 Spain
| | - Antonio Espinosa-de-los-Monteros
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas De Gran Canaria, Campus Universitario Cardones; Arucas Las Palmas 45413 Spain
| |
Collapse
|
11
|
Ramírez GA, Rodríguez F, Herráez P, Castro-Alonso A, Andrada M, Espinosa-de-los-Monteros A. Ultrastructural characterization of normal Merkel cells in the dog. Vet Dermatol 2015; 26:328-33, e68-9. [PMID: 26174874 DOI: 10.1111/vde.12230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Involvement of Merkel cells (MKs) in different cutaneous diseases as well as in the growth, differentiation and homeostasis of the skin has been previously documented. HYPOTHESIS/OBJECTIVES The aim was to assess the ultrastructural features of MKs in canine skin, including morphometrics, highlighting their similarities with and differences from those described for other mammals. ANIMALS Hard palate, nasal planum, lower lip and whisker pad samples were taken from two healthy young dogs destined for academic purposes. METHODS Ultrathin sections of samples fixed in osmium tetroxide and embedded in Epon 812 resin were stained with uranyl acetate and lead citrate and examined using a JEOL JEM 2010 transmission electron microscope. RESULTS Ultrastructural characteristics included the following: (i) arrangement in clusters in the basal layer of the epidermis, oral mucosa and external follicular root sheath; (ii) inconstant link with nerve terminal; (iii) oval (10.27 ± 1.64 μm major axis) cell shape with large lobulated nuclei (5.98 ± 1.16 μm major axis); (iv) spine-like and thick cytoplasmic processes interdigitating with surrounding keratinocytes; (v) presence of desmosomes in the cell body or at the base of spine-like processes attaching to neighbouring keratinocytes; and (vi) cytoplasm containing loosely arranged intermediate filaments (10.04 ± 1.17 nm) and numerous dense-core granules (100.1 ± 17.12 nm) arranged in the basal portion of the cytoplasm. CONCLUSIONS AND CLINICAL IMPORTANCE This study provides the first complete description of the ultrastructural characteristics of MKs in the dog, enhancing our knowledge of the skin structure in this species and providing a basis for future physiological and pathological studies of the role of these cells in normal and damaged canine tissues.
Collapse
Affiliation(s)
- Gustavo A Ramírez
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas de Gran Canaria, Campus Universitario Cardones, Arucas, Las Palmas, 45413, Spain
| | - Francisco Rodríguez
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas de Gran Canaria, Campus Universitario Cardones, Arucas, Las Palmas, 45413, Spain
| | - Pedro Herráez
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas de Gran Canaria, Campus Universitario Cardones, Arucas, Las Palmas, 45413, Spain
| | - Ayoze Castro-Alonso
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas de Gran Canaria, Campus Universitario Cardones, Arucas, Las Palmas, 45413, Spain
| | - Marisa Andrada
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas de Gran Canaria, Campus Universitario Cardones, Arucas, Las Palmas, 45413, Spain
| | - Antonio Espinosa-de-los-Monteros
- Unit of Histology and Veterinary Pathology, Institute for Animal Health, Veterinary College, University of Las Palmas de Gran Canaria, Campus Universitario Cardones, Arucas, Las Palmas, 45413, Spain
| |
Collapse
|
12
|
Abstract
The skin is our largest sensory organ, transmitting pain, temperature, itch, and touch information to the central nervous system. Touch sensations are conveyed by distinct combinations of mechanosensory end organs and the low-threshold mechanoreceptors (LTMRs) that innervate them. Here we explore the various structures underlying the diverse functions of cutaneous LTMR end organs. Beyond anchoring of LTMRs to the surrounding dermis and epidermis, recent evidence suggests that the non-neuronal components of end organs play an active role in signaling to LTMRs and may physically gate force-sensitive channels in these receptors. Combined with LTMR intrinsic properties, the balance of these factors comprises the response properties of mechanosensory neurons and, thus, the neural encoding of touch.
Collapse
Affiliation(s)
- Amanda Zimmerman
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Woo SH, Lumpkin EA, Patapoutian A. Merkel cells and neurons keep in touch. Trends Cell Biol 2014; 25:74-81. [PMID: 25480024 DOI: 10.1016/j.tcb.2014.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 11/18/2022]
Abstract
The Merkel cell-neurite complex is a unique vertebrate touch receptor comprising two distinct cell types in the skin. Its presence in touch-sensitive skin areas was recognized more than a century ago, but the functions of each cell type in sensory transduction have been unclear. Three recent studies demonstrate that Merkel cells are mechanosensitive cells that function in touch transduction via Piezo2. One study concludes that Merkel cells, rather than sensory neurons, are principal sites of mechanotransduction, whereas two other studies report that both Merkel cells and neurons encode mechanical inputs. Together, these studies settle a long-standing debate on whether or not Merkel cells are mechanosensory cells, and enable future investigations of how these skin cells communicate with neurons.
Collapse
Affiliation(s)
- Seung-Hyun Woo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ellen A Lumpkin
- Departments of Dermatology & Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA, Firozi P, Woo SH, Ranade S, Patapoutian A, Lumpkin EA. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 2014; 509:617-21. [PMID: 24717432 PMCID: PMC4097312 DOI: 10.1038/nature13250] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/13/2014] [Indexed: 11/18/2022]
Abstract
Touch submodalities, such as flutter and pressure, are mediated by somatosensory afferents whose terminal specializations extract tactile features and encode them as action potential trains with unique activity patterns. Whether non-neuronal cells tune touch receptors through active or passive mechanisms is debated. Terminal specializations are thought to function as passive mechanical filters analogous to the cochlea's basilar membrane, which deconstructs complex sounds into tones that are transduced by mechanosensory hair cells. The model that cutaneous specializations are merely passive has been recently challenged because epidermal cells express sensory ion channels and neurotransmitters; however, direct evidence that epidermal cells excite tactile afferents is lacking. Epidermal Merkel cells display features of sensory receptor cells and make 'synapse-like' contacts with slowly adapting type I (SAI) afferents. These complexes, which encode spatial features such as edges and texture, localize to skin regions with high tactile acuity, including whisker follicles, fingertips and touch domes. Here we show that Merkel cells actively participate in touch reception in mice. Merkel cells display fast, touch-evoked mechanotransduction currents. Optogenetic approaches in intact skin show that Merkel cells are both necessary and sufficient for sustained action-potential firing in tactile afferents. Recordings from touch-dome afferents lacking Merkel cells demonstrate that Merkel cells confer high-frequency responses to dynamic stimuli and enable sustained firing. These data are the first, to our knowledge, to directly demonstrate a functional, excitatory connection between epidermal cells and sensory neurons. Together, these findings indicate that Merkel cells actively tune mechanosensory responses to facilitate high spatio-temporal acuity. Moreover, our results indicate a division of labour in the Merkel cell-neurite complex: Merkel cells signal static stimuli, such as pressure, whereas sensory afferents transduce dynamic stimuli, such as moving gratings. Thus, the Merkel cell-neurite complex is an unique sensory structure composed of two different receptor cell types specialized for distinct elements of discriminative touch.
Collapse
Affiliation(s)
| | - Masashi Nakatani
- Department of Dermatology, Columbia University, New York, NY 10032
- Graduate School of System Design and Management, Keio University, Yokohama, JP
| | - Yoshichika Baba
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Aislyn M. Nelson
- Department of Dermatology, Columbia University, New York, NY 10032
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77006
| | - Kara L. Marshall
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Scott A. Wellnitz
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77006
| | - Pervez Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77006
| | - Seung-Hyun Woo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla CA 92037 USA
| | - Sanjeev Ranade
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla CA 92037 USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla CA 92037 USA
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121 USA
| | - Ellen A. Lumpkin
- Department of Dermatology, Columbia University, New York, NY 10032
- Program in Neurobiology & Behavior, Columbia University, New York, NY 10032
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10032 USA
| |
Collapse
|
15
|
Piezo2 is required for Merkel-cell mechanotransduction. Nature 2014; 509:622-6. [PMID: 24717433 PMCID: PMC4039622 DOI: 10.1038/nature13251] [Citation(s) in RCA: 519] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/14/2014] [Indexed: 01/29/2023]
Abstract
How we sense touch remains fundamentally unknown1,2. The Merkel cell-neurite complex is a gentle touch receptor in the skin that mediates slowly-adapting (SA) responses of Aβ sensory fibers to encode fine details of objects3-6. This mechanoreceptor complex was recognized to play an essential role in sensing gentle touch nearly 50 years ago3,4. However, whether Merkel cells or afferent fibers themselves sense mechanical force is still debated, and the molecular mechanism of mechanotransduction is unknown1,2,7-12. Interestingly, synapse-like junctions are observed between Merkel cells and associated afferents6,13-15, and yet it is unclear if Merkel cells are inherently mechanosensitive or whether they can rapidly transmit such information to the neighboring nerve1,2,16,17. Here we show for the first time that Merkel cells produce touch-sensitive currents in vitro. Piezo2, a mechanically-activated (MA) cation channel, is expressed in Merkel cells. We engineered mice deficient in Piezo2 in the skin, but not in sensory neurons, and show that Merkel cell mechanosensitivity completely depends on Piezo2. In these mice, Merkel cell-neurite complex-mediated SA responses in vivo show reduced static firing rates, and moreover, they display moderately decreased behavioral responses to gentle touch. Our results indicate that Piezo2 is the Merkel cell mechanotransduction channel and provide the first line of evidence that Piezos play a physiological role in mechanosensation in mammals. Furthermore, our data present evidence for a two-receptor site model, where both Merkel cells and innervating afferents act in concert as mechanosensors. The two-receptor system could provide this mechanoreceptor complex with a tuning mechanism to achieve highly sophisticated responses to a given mechanical stimulus15,18,19.
Collapse
|
16
|
Abstract
The somatosensory system decodes a wide range of tactile stimuli and thus endows us with a remarkable capacity for object recognition, texture discrimination, sensory-motor feedback and social exchange. The first step leading to perception of innocuous touch is activation of cutaneous sensory neurons called low-threshold mechanoreceptors (LTMRs). Here, we review the properties and functions of LTMRs, emphasizing the unique tuning properties of LTMR subtypes and the organizational logic of their peripheral and central axonal projections. We discuss the spinal cord neurophysiological representation of complex mechanical forces acting upon the skin and current views of how tactile information is processed and conveyed from the spinal cord to the brain. An integrative model in which ensembles of impulses arising from physiologically distinct LTMRs are integrated and processed in somatotopically aligned mechanosensory columns of the spinal cord dorsal horn underlies the nervous system's enormous capacity for perceiving the richness of the tactile world.
Collapse
Affiliation(s)
- Victoria E Abraira
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
17
|
Abstract
The objective of this review is to introduce Merkel cells (MCs), to provide a basic overview on the theoretical background of function, development and clinical importance of MCs. The origin of human MCs have been controversial. Some investigators believe that it is a neural crest derivate, whereas others have proposed that it is a differentiation product of the fetal epidermal keratinocytes. MCs are cells primarily localized in the epidermal basal layer of vertebrates and concentrated in touch-sensitive areas in glabrous, hairy skin and in some mucosa. In routine light microscopy, human MCs can hardly be identified. Cytokeratin 20 (CK20) is a reliable marker with highest degree of specificity. MCs can be also distinguished by electron microscopy. MC carcinoma (MCC) is an uncommon and often aggressive malignancy and found mainly in elderly patients. It occurs most frequently in the head and neck region. Diagnosis is based on typical histological presentation on hematoxylin and eosin (H and E) stained slides together with the results of immunohistochemistry. Histologically, MCC has been classified into three distinct subtypes: Trabecular, intermediate and small cell type.
Collapse
Affiliation(s)
- Prashant Balasaheb Munde
- Departments of Oral and Maxillofacial Pathology, Vidya Shikshan Prasarak Mandal's Dental college and Research Centre, Nagpur, Maharashtra, India
| | - Shubhangi P Khandekar
- Departments of Oral and Maxillofacial Pathology, Vidya Shikshan Prasarak Mandal's Dental college and Research Centre, Nagpur, Maharashtra, India
| | - Alka M Dive
- Departments of Oral and Maxillofacial Pathology, Vidya Shikshan Prasarak Mandal's Dental college and Research Centre, Nagpur, Maharashtra, India
| | - Aparna Sharma
- Departments of Oral and Maxillofacial Pathology, Vidya Shikshan Prasarak Mandal's Dental college and Research Centre, Nagpur, Maharashtra, India
| |
Collapse
|
18
|
Maksimovic S, Baba Y, Lumpkin EA. Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle-touch receptor. Ann N Y Acad Sci 2013; 1279:13-21. [PMID: 23530998 DOI: 10.1111/nyas.12057] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Merkel cells are an enigmatic group of rare cells found in the skin of vertebrates. Most make contacts with somatosensory afferents to form Merkel cell-neurite complexes, which are gentle-touch receptors that initiate slowly adapting type I responses. The function of Merkel cells within the complex remains debated despite decades of research. Numerous anatomical studies demonstrate that Merkel cells form synaptic-like contacts with sensory afferent terminals. Moreover, recent molecular analysis reveals that Merkel cells express dozens of presynaptic molecules that are essential for synaptic vesicle release in neurons. Merkel cells also produce a host of neuroactive substances that can act as fast excitatory neurotransmitters or neuromodulators. Here, we review the major neurotransmitters found in Merkel cells and discuss these findings in relation to the potential function of Merkel cells in touch reception.
Collapse
Affiliation(s)
- Srdjan Maksimovic
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
19
|
Tazaki Y, Tazaki M, Inoue T, Shimono M. Scanning and Transmission Electron Microscopic Observation of Changes in Cylindrical Cytoplasmic Processes of Isolated Single Merkel Cell. THE BULLETIN OF TOKYO DENTAL COLLEGE 2011; 52:69-76. [DOI: 10.2209/tdcpublication.52.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
GüÇlü B, Mahoney GK, Pawson LJ, Pack AK, Smith RL, Bolanowski SJ. Localization of Merkel cells in the monkey skin: An anatomical model. Somatosens Mot Res 2009; 25:123-38. [DOI: 10.1080/08990220802131234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Burak GüÇlü
- Institute for Sensory Research, Syracuse, NY, USA
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, Turkey
| | - Greer K. Mahoney
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Lorraine J. Pawson
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Adam K. Pack
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biology, Utica College, Utica, NY, USA
| | - Robert L. Smith
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Stanley J. Bolanowski
- Institute for Sensory Research, Syracuse, NY, USA
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
21
|
Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ, Lumpkin EA, Zoghbi HY. Merkel cells are essential for light-touch responses. Science 2009; 324:1580-2. [PMID: 19541997 PMCID: PMC2743005 DOI: 10.1126/science.1172890] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The peripheral nervous system detects different somatosensory stimuli, including pain, temperature, and touch. Merkel cell-neurite complexes are touch receptors composed of sensory afferents and Merkel cells. The role that Merkel cells play in light-touch responses has been the center of controversy for over 100 years. We used Cre-loxP technology to conditionally delete the transcription factor Atoh1 from the body skin and foot pads of mice. Merkel cells are absent from these areas in Atoh1(CKO) animals. Ex vivo skin/nerve preparations from Atoh1(CKO) animals demonstrate complete loss of the characteristic neurophysiologic responses normally mediated by Merkel cell-neurite complexes. Merkel cells are, therefore, required for the proper encoding of Merkel receptor responses, suggesting that these cells form an indispensible part of the somatosensory system.
Collapse
Affiliation(s)
- Stephen M Maricich
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
Merkel cells are rare epidermal cells whose function in the skin is still debated. These cells localize to highly touch-sensitive areas of vertebrate epithelia, including palatine ridges, touch domes and finger tips. In most cases, Merkel cells complex with somatosensory afferents to form slowly adapting touch receptors; it is unclear, however, whether mechanosensory transduction occurs in the Merkel cell, the somatosensory afferent or both. Classic anatomical results suggests that Merkel cells are sensory cells that transduce mechanical stimuli and then communicate with sensory afferents via neurotransmission. This model is supported by recent molecular, immunohistochemical and physiological studies of Merkel cells in vitro and in intact tissues. For example, Merkel cells express essential components of presynaptic machinery, including molecules required for release of the excitatory neurotransmitter glutamate. Moreover, Merkel cells in vitro and in vivo are activated by mechanical stimuli, including hypotonic-induced cell swelling. Although these findings support the hypothesis that Merkel cells are sensory receptor cells, a definitive demonstration that Merkel cells are necessary and sufficient to transduce touch awaits future studies.
Collapse
Affiliation(s)
- Henry Haeberle
- Neuroscience Graduate Program, UCSF, Baylor College of Medicine, Houston TX 77030
| | | |
Collapse
|
24
|
Lucarz A, Brand G. Current considerations about Merkel cells. Eur J Cell Biol 2007; 86:243-51. [PMID: 17337089 DOI: 10.1016/j.ejcb.2007.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/01/2007] [Accepted: 02/01/2007] [Indexed: 12/23/2022] Open
Abstract
Since the discovery of Merkel cells by Friedrich S. Merkel in 1875, knowledge of their structure has increased with the progression of new technologies such as electron and laser microscopy, and immunohistochemical techniques. For most vertebrates, Merkel cells are located in the basal layer of the epidermis and characterized by dense-core granules that contain a variety of neuropeptides, plasma membrane spines and cytoskeletal filaments consisting of cytokeratins and desmosomes. The presence of the two latter structures would suggest that Merkel cells originate from the epidermis rather than from the neural crest, even though such a hypothesis is not unanimously accepted. The function of the Merkel cell is also very controversial. For a long time, it has been accepted that Merkel cells with associated nerve terminals act as mechanoreceptors although the transduction mechanism has not yet been elucidated. Merkel cells that do not make contact with nerve terminals have an endocrine function. The present review aims to shed new and comparative light on this field with an attempt to investigate the stimuli that Merkel cells are able to perceive.
Collapse
Affiliation(s)
- Annie Lucarz
- Laboratoire Neurosciences, Université de Franche-Comté, Place Leclerc, 25000 Besançon, France.
| | | |
Collapse
|
25
|
He L, Tuckett RP, English KB. 5-HT2 and 3 receptor antagonists suppress the response of rat type I slowly adapting mechanoreceptor: an in vitro study. Brain Res 2003; 969:230-6. [PMID: 12676383 DOI: 10.1016/s0006-8993(03)02335-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous experiments have shown an increase in rat type I mechanoreceptor responsiveness during arterial serotonin (5-hydroxytryptamine) infusion and the presence of serotonin immunostaining in Merkel cells. The current findings demonstrate that the 5-HT(2) antagonists ritanserin and ketanserin, as well as the 5-HT(3) antagonist MDL 72222, reduce type I response to a standardized mechanical stimulus in an in vitro skin preparation. In addition, ritanserin blocked the enhancement of type I response produced by 5-HT. These experiments suggest that serotonin is released during mechanical distortion of the Merkel cell membrane and alters action potential generation by the type I ending. In addition, it is possible that serotonin, released from outside the type I complex, influences mechanoreceptor responsiveness. For example, serotonin generated during inflammatory events could enhance type I response to mechanical stimulation and thereby increase symptoms of mechanical allodynia.
Collapse
Affiliation(s)
- Liang He
- Department of Physiology, University of Utah School of Medicine, 410 Chipeta Way, Rm 156, Salt Lake City, UT 84108-1297, USA
| | | | | |
Collapse
|
26
|
Guinard D, Usson Y, Guillermet C, Saxod R. Merkel complexes of human digital skin: Three-dimensional imaging with confocal laser microscopy and double immunofluorescence. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980817)398:1<98::aid-cne6>3.0.co;2-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
|
28
|
Van Lommel A, Lauweryns JM. Postnatal development of the pulmonary neuroepithelial bodies in various animal species. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1997; 65:17-24. [PMID: 9258868 DOI: 10.1016/s0165-1838(97)00030-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Various aspects of the postnatal development of intrapulmonary neuroepithelial bodies (NEB) were quantified in guinea-pigs, rabbits, cats, rats and hamsters. The highest densities of NEB were found at birth, especially in species with very immature neonates. Postnatally this density decreased, most probably by lung expansion and growth. The number of corpuscular cells per NEB generally did not change during postnatal development. Likewise, the volume density of their secretory dense cored vesicles remained unchanged. On the other hand, in most species and especially in those with very immature neonates, the number of intracorpuscular NEB nerve endings increased during postnatal development. At the same time, the number of afferent nerve endings increased at the expense of the efferent ones. We argue that NEB serve a dual function: endocrine and chemoreceptor. The endocrine function, dependent on the number of cells and their content of secretory vesicles, is already well developed at birth and does not mature further. The chemoreceptor function, dependent on the innervation, shows considerable maturation in the postnatal period.
Collapse
Affiliation(s)
- A Van Lommel
- Laboratory of Histopathology, Faculty of Medicine, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
29
|
Abstract
Merkel cells (MCs) are abundant at the basal layer of various skin in vertebrates, and make synaptic contacts with nerve endings to form the Merkel cell-neurite complex (MCN-complex). It has been established that the MCN-complex is involved in slowly adapting mechanoreception, cutaneous afferents of which are called SAI units in mammals or Ft-I units in frogs. However, the MC function has been the focus of attention, and some hypotheses propose that the site of mechanoreception is at the nerve terminals but not at the MC. In the present review, the possibility that MCs are the mechanoreceptors was focused on recent findings. Irradiation of quinacrine-loaded MCs in the rat hairy skin using excitation light degenerates the MCs selectively with the nerve terminals left intact. Correspondingly, SAI units decrease tonic discharges rapidly, but phasic responses remain intact. Blocking synaptic transmission in the MCN-complexes by divalent or alkyl Ca antagonists in mammals or frogs heavily decreases the tonic mechanical responses of the afferent units, but the phasic responses are rather resistant. Application of anodal current on the Ft-I receptive spots produces tonic discharges as in hair cells or taste cells, while the threshold to elicit the first spike is lower with cathodal than anodal stimulation, in contrast with other secondary sensory cells. These findings indicate that MCs are mechanoreceptors to yield tonic responses, while the nerve terminals may transduce the transient phase. Further studies, particularly on mechanically-gated ionic channels in the MC membrane and on transmitters between the MCs and nerve terminal, are necessary to establish the MC as mechanoreceptors.
Collapse
Affiliation(s)
- H Ogawa
- Department of Physiology, Kumamoto University School of Medicine, Japan
| |
Collapse
|
30
|
Fantini F, Johansson O. Neurochemical markers in human cutaneous Merkel cells. An immunohistochemical investigation. Exp Dermatol 1995; 4:365-71. [PMID: 8608344 DOI: 10.1111/j.1600-0625.1995.tb00061.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Merkel cells (MCs) are specialized sensory cells widely distributed in the epithelia of vertebrates. A variable immunohistochemical pattern of neuronal and neurotransmitter markers has been demonstrated in MCs of several species including man. In the present study, we investigated the expression of neurochemical markers in a selected population of human cutaneous MCs by immunofluorescence. The structural neural proteins protein gene product 9.5 and neuron-specific enolase were found to be the most reliable markers for MC identification. Moreover, neurofilament immunoreactivity was shown in a small subset of epidermal MCs. Among the neurotransmitter markers, evidence for expression of calcitonin gene-related peptide, vasoactive intestinal polypeptide, peptide histidine isoleucine amide, neuropeptide Y, neurokinin A, galanin, substance P, somatostatin and phenylethanolamine N-methyltransferase was found. These immunoreactivities were highly variable as far as number of positive cells and staining intensity were concerned. The results indicate that a complex and heterogeneous immunophenotype can be expressed even within a homogeneous population of human MCs.
Collapse
Affiliation(s)
- F Fantini
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
31
|
Narisawa Y, Kohda H. Merkel cells do not require trophic maintenance from the nerves in adult human skin. Br J Dermatol 1995; 133:553-6. [PMID: 7577582 DOI: 10.1111/j.1365-2133.1995.tb02703.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 34-year-old Japanese man with hereditary sensory neuropathy was examined to evaluate the distribution, density and inter-relationship between Merkel cells and peripheral nerves in the skin. An epidermal sheet of affected plantar skin showed numerous CAM 5.2-reactive Merkel cells, whereas PGP 9.5-reactive peripheral nerves were completely absent in the epidermis and dermis. These findings strongly suggest that Merkel cells do not require trophic maintenance from nerves in adult human skin.
Collapse
Affiliation(s)
- Y Narisawa
- Department of Internal Medicine, Saga Medical School, Japan
| | | |
Collapse
|
32
|
Immunohistochemistry of Grandry corpuscles in the oral mucosa of the duck bill: a light- and electron-microscopic study. Cell Tissue Res 1995. [DOI: 10.1007/bf00307796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Mills LR, Diamond J. Merkel cells are not the mechanosensory transducers in the touch dome of the rat. JOURNAL OF NEUROCYTOLOGY 1995; 24:117-34. [PMID: 7745442 DOI: 10.1007/bf01181555] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The identity of the mechanosensory transducing elements in the vertebrate touch receptors that contain Merkel cell-neurite complexes is unknown. The Merkel cells, however, have long been the favoured candidates. We have now selectively eliminated the Merkel cells from rat touch domes by first loading them with quinacrine, and then irradiating the domes with near-UV light. Mechanical stimulation of these domes revealed a range of mechanosensory function, evaluated qualitatively, that varied from non-responsive to normal. Since irradiation eliminated the quinacrine fluorescence, the status of the Merkel cells was evaluated by EM. In both responsive and unresponsive domes fixed for EM immediately following irradiation, the Merkel cells and associated nerve endings appeared to be normal. After 2 or more days, even in domes that continued to be normally responsive, there was a striking reduction in the normal complement of about 90 Merkel cells, and most of the remaining Merkel cells appeared to be degenerating. However, numerous 'isolated' (Merkel cell-free) nerve endings remained in the basal epidermis. A few of these nerve endings showed signs of damage, but in the non-responsive domes abnormal nerve endings were routinely observed. The EM studies did not exclude the possibility that a few surviving innervated Merkel cells, or even one such, had escaped detection and were responsible for a persisting mechanosensitivity. To resolve this issue a mechanical stimulating technique with a spatial resolution of 55 microns was used to map the mechanosensory profile of a single responsive dome irradiated 2.75 days earlier. This dome was then serially sectioned for EM study. Only seven Merkel cells had survived which appeared to be both viable and innervated, but almost all of the tested sites were normally responsive. When the correlation was made, seven of these sites were located 55-100 microns away from the nearest surviving Merkel cell, four were 110-165 microns away, and three were more than 165 microns away. Even when allowance is made for errors in the positioning of the stimulus, the responses at the last seven sites cannot be attributed to the presence of underlying Merkel cells. We conclude that mechanosensory transduction within touch domes is not a function of the Merkel cells, but must reside in the associated nerve endings.
Collapse
Affiliation(s)
- L R Mills
- Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
34
|
Van Lommel A, Lauweryns JM, De Leyn P, Wouters P, Schreinemakers H, Lerut T. Pulmonary neuroepithelial bodies in neonatal and adult dogs: histochemistry, ultrastructure, and effects of unilateral hilar lung denervation. Lung 1995; 173:13-23. [PMID: 7776703 DOI: 10.1007/bf00167597] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In neonatal dogs, neuroepithelial bodies (NEB) are located in the distal lung. They consist of closely packed and granulated epithelial cells showing a positive immune reaction to serotonin and carrying well-developed apical microvilli. They make close contact with capillaries and form morphologically afferent synaptic junctions with intracorpuscular nerve endings. Since most nerve endings degenerate after hilar lung denervation, they are carried by extrinsic, most likely vagal, sensory nerve fibers. We conclude that pulmonary NEB probably are receptor organs, sampling the inspired air and secreting bioactive substances. These might have a local vaso- or bronchoactive regulatory effect, or could be carried to other body parts via the blood vessels. In addition, NEB might induce integrative reflexes via the central nervous system. The NEB intracorpuscular nerve endings also show spontaneous degeneration. This, in addition to the scarcity of NEB in the distal lungs of adult dogs, strongly suggests that the pulmonary NEB are particularly important during the perinatal period of life.
Collapse
Affiliation(s)
- A Van Lommel
- Katholieke Universiteit te Leuven, School of Medicine, Belgium
| | | | | | | | | | | |
Collapse
|
35
|
Hamann W. Mammalian cutaneous mechanoreceptors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1995; 64:81-104. [PMID: 8868524 DOI: 10.1016/0079-6107(95)00011-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- W Hamann
- Anaesthetics Department, UMDS Guy's Hospital, London, U.K
| |
Collapse
|
36
|
Abstract
The presence of human Merkel cells in the eccrine ridges and eccrine germs was studied, using antibodies to simple epithelial keratins, in separated epidermal sheets with attached eccrine ducts. The localization of Merkel cells could be analysed three-dimensionally in the wet, whole-mount of the stained sheets. In the plantar skin of a 12-week-old human fetus, immunoreactive (ir-) Merkel cells were randomly located in the flattened epidermis. In the plantar skin of a 15-week-old human fetus, there was early development of eccrine germs, and Merkel cells were concentrated in eccrine gland ridges. In the plantar skin of a 20-week-old human fetus, eccrine germs were well formed and ir-Merkel cells were located within the developing eccrine ridges and ducts. In the plantar skin of adults, the eccrine concentration of Merkel cells was markedly reduced. Concentration of Merkel cells on the eccrine structures was also observed in the scalp skin of human fetuses. This tendency continued into adult life, although there was a marked reduction in the total number of Merkel cells. These findings suggest that epidermal Merkel cells move down into the eccrine ducts as eccrine germs extend into the mesenchyme. Alternatively, they may develop de novo from the keratinocytes of the eccrine duct. In view of the expression of nerve growth factor receptor in fetal Merkel cells, it is postulated that these eccrine gland Merkel cells play a role in the formation of the periglandular nerve plexus.
Collapse
Affiliation(s)
- Y Narisawa
- Department of Internal Medicine, Saga Medical School, Japan
| | | | | |
Collapse
|
37
|
Hörsch D, Fink T, Büchler M, Weihe E. Regional specificities in the distribution, chemical phenotypes, and coexistence patterns of neuropeptide containing nerve fibres in the human anal canal. J Comp Neurol 1993; 335:381-401. [PMID: 8227526 DOI: 10.1002/cne.903350308] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the pivotal clinical significance of the human anal canal, little is known about its total and specific innervation. This study assessed the comparative distribution and histotopology of nerve fibres immunoreactive for neural markers and a variety of regulatory active neuropeptides in the human anal canal by light microscopic immunohistochemistry. Depending on the epithelial zone and region of the anal canal, the neural elements were differentially immunoreactive for the pan-neural marker protein gene product 9.5, the catecholamine marker tyrosine hydroxylase, the neuroendocrine marker chromogranin A, and various neuropeptides. Protein gene product 9.5-immunoreactive nerve fibres were ubiquitously abundant in the anal canal. In the anal transitional zone, ectopic epithelial types were supplied by the same pattern of peptidergic nerves as the respective type of epithelium in normotopic location. In the dermis of the squamous zone and in the perianal epidermis, unusual distribution patterns of nerve fibres, referred to as areas of high nerve fibre density, were encountered. Double immunohistochemistry revealed region-specific coexistence patterns of neuropeptidergic nerve fibres, and novel peptide coexistence patterns were detected in anal nerve fibres. Subsets of nerve fibres formed close spatial relationships with chromogranin A-positive neuroendocrine cells, most frequently in the anal transitional zone. Chromogranin-A positive cells were shown to be present in the epithelium of perianal eccrine sweat glands. The differential distribution, peptide phenotypes and coexistence patterns of different nerve fibre populations in the human anal canal may reflect topospecific regulatory functions of neurally released neuropeptides in health and disease.
Collapse
Affiliation(s)
- D Hörsch
- Department of Anatomy, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
Merkel cell carcinoma is a malignant neuroendocrine tumor with features of epithelial differentiation. Biologically aggressive, it may be difficult to diagnose and, particularly in its late stages, even more difficult to treat effectively. This article addresses what is known and what is still controversial about the histogenesis, diagnosis, and management of Merkel cell carcinoma and the structure and function of the Merkel cell from which it is believed to be derived. The incidence, clinical presentation and diagnosis, ultrastructure, immunocytochemistry, treatment, and prognosis of this tumor will be discussed.
Collapse
Affiliation(s)
- D Ratner
- Department of Dermatology, University of Michigan Medical Center, Ann Arbor
| | | | | | | |
Collapse
|
39
|
van Lommel AT, Lauweryns JM. Ultrastructure and innervation of neuroepithelial bodies in the lungs of newborn cats. Anat Rec (Hoboken) 1993; 236:181-90. [PMID: 8507005 DOI: 10.1002/ar.1092360122] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuroepithelial bodies (NEB) occur throughout the airway mucosa and alveolar parenchyma of kitten lungs. In the bronchi, they are often situated on top of a cartilage plate. They form compact corpuscles containing 10-20 corpuscular cells and appear covered with a layer of flattened Clara cells. Kitten NEB are occasionally observed to display mitosis of the corpuscular epithelial cells. A prominent blood capillary lies at their basal pole. The corpuscular cells contain numerous dense core vesicles (DCV), whose number and diameter remain unchanged with age. Kitten NEB are innervated by nerve fibres that "loop" through the corpuscle and form morphologically afferent as well as efferent nerve endings. The nerve endings display afferent synaptic junctions with the corpuscular cells and sometimes run in clusters, so that they contact each other. Many nerve endings undergo spontaneous degeneration. We conclude that kitten NEB are well adapted to function as chemoreceptors and as endocrine or paracrine organs. Their chemoreceptor activity could be modulated by axon reflexes since their afferent nerve endings are often continuous with the efferent ones, as well as by interneural modulation since nerve endings often form clusters. In addition, kitten NEB innervation appears to involute rapidly soon after birth. This may indicate that their chemoreceptor function is only of primary importance during gestation and at birth. However, the secretory function of kitten NEB, as evidenced by the unchanged numbers and dimensions of their DCV, seems to remain steady throughout life.
Collapse
Affiliation(s)
- A T van Lommel
- Faculty of Medicine, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
40
|
Pincelli C, Fantini F, Romualdi P, Sevignani C, Lesa G, Benassi L, Giannetti A. Substance P Is Diminished and Vasoactive Intestinal Peptide Is Augmented in Psoriatic Lesions and These Peptides Exert Disparate Effects on the Proliferation of Cultured Human Keratinocytes. J Invest Dermatol 1992; 98:421-7. [PMID: 1372339 DOI: 10.1111/1523-1747.ep12499846] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An involvement of neurogenic components in the pathogenesis of psoriatic lesions has been suggested and neuropeptides are thought to play a modulatory role in cutaneous inflammation. In this study, we evaluated the immunoreactivity of the neuropeptides vasoactive intestinal polypeptide (VIP) and substance P (SP) in the skin of patients with chronic plaque psoriasis, by immunohistochemistry and radioimmunoassay. No differences were observed, by immunohistochemistry, in the expression and localization of VIP and SP between psoriatic and normal skin. Using the radioimmunologic technique on whole skin homogenates, VIP levels were significantly increased in psoriatic lesions as compared to normal skin. By contrast, SP levels were significantly lower in lesional and non-lesional psoriatic skin than in normal skin. In addition, we examined the effect of VIP and SP on the proliferation of cultured normal human keratinocytes. VIP (1-28) (1 nM-1 microM) as well as VIP fragments (10-28) (1 nM-1 microM) and (22-28) (1 nM-1 microM) stimulated the proliferation of keratinocytes in a dose-dependent manner, whereas the VIP fragment (1-12) (1 nM-1 microM) was ineffective. The VIP antagonist (N-Ac-Tyr1, D-Phe2)-GRF (1-29)-NH2 (0.1 microM) significantly inhibited the VIP effect on keratinocytes. On the other hand, SP (0.1 microM) not only failed to stimulate keratinocyte growth, but also blocked the VIP-induced stimulation of these cells. The imbalance of cutaneous VIP and SP and their disparate effects on the proliferation of normal human keratinocytes in culture would suggest that these peptides are involved in the pathogenesis of psoriasis and may exert different modulatory activities in the mechanisms underlying the psoriatic lesion.
Collapse
Affiliation(s)
- C Pincelli
- Institute of Dermatology, University of Modena, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Morohunfola KA, Jones TE, Munger BL. The differentiation of the skin and its appendages. II. Altered development of papillary ridges following neuralectomy. Anat Rec (Hoboken) 1992; 232:599-611. [PMID: 1554109 DOI: 10.1002/ar.1092320415] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In order to test the hypothesis that the nervous system is an important determinant of skin differentiation, deletions of the left lumbosacral dorsal root ganglia (DRGs), the sources of cutaneous afferents to the left hindpaw, were performed on opossum pups at day 1 when hindpaws have just begun to be innervated. At birth, each lumbosacral DRG measures about 200 microns rostrocaudally and a deletion measuring 1 mm would span 4-5 DRGs. Following survival periods of 5-24 days, serial sections through the trunk documented partial left lumbosacral DRG deletion and a variable degree of spinal cord destruction. The blood supply to the trunk and hindpaws was preserved. Bilateral enlargement of residual DRGs was observed and regenerating skin at the site of the deletion was hyperplastic and hyperinnervated. The skin of the plantar pads of the hindpaws was studied following the neuralectomies. Statistically significant differences were observed between the left (experimental) and right (control) hindpaws. The density of innervation of the left hindpaw was reduced compared to the right hindpaw, development of papillary ridges was retarded by 3-4 days, and non-innervated Merkel cells were hypogranulated. This period of delay in ridge development is probably a reflection of the expansion of residual DRGs into the peripheral domains of deleted DRGs. The present study confirms a role for afferent nerves in the timing of cutaneous differentiation and a mutual trophic dependence between cutaneous nerves and Merkel cells in the epidermis.
Collapse
Affiliation(s)
- K A Morohunfola
- Department of Anatomy, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | |
Collapse
|
42
|
Kivelä T, Tarkkanen A. The Merkel cell and associated neoplasms in the eyelids and periocular region. Surv Ophthalmol 1990; 35:171-87. [PMID: 2274847 DOI: 10.1016/0039-6257(90)90087-c] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Merkel cells are clear oval cells in the epidermis and outer root sheaths of hair follicles, which are probably of epithelial origin, share ultrastructural features with neuroendocrine cells, and are found in association with touch receptors. In the eyelid, they occur singly in the epidermis and external root sheaths of hairs and eyelashes, and in specialized touch spots alternating with eyelashes. Their typical electron microscopical and antigenic features include dense-core granules, intranuclear rodlets, spinous processes, and a positive reaction for specific cytokeratins, epithelial membrane antigen, neuron-specific enolase, chromogranin and synaptophysin. Merkel cell carcinoma probably develops from precursor cells which give rise to keratinocytes and Merkel cells, and nearly one out of ten Merkel cell carcinomas occur in the eyelid and periocular region. They tend to be bulging lesions near the lid margin of elderly patients, reddish in color, and erythematous with telangiectatic vessels. The diagnosis is based on the frequent presence of neurofilaments and paranuclear aggregates of intermediate filaments in addition to features typical of normal Merkel cells. The tumor often mimics lymphoma or undifferentiated carcinoma and frequently invades lymphatic vessels. One third of Merkel cell carcinomas recur, almost two thirds give rise to regional node metastases, and up to one half metastasize widely and result in death. Initial treatment should be prompt and aggressive, with wide resection and routine postoperative irradiation. Although metastatic lesions often respond to radiation therapy and cytostatic drugs, these treatments are mainly of palliative value.
Collapse
Affiliation(s)
- T Kivelä
- Department of Ophthalmology, Helsinki University Central Hospital, Finland
| | | |
Collapse
|
43
|
Pasche F, Mérot Y, Carraux P, Saurat JH. Relationship between Merkel cells and nerve endings during embryogenesis in the mouse epidermis. J Invest Dermatol 1990; 95:247-51. [PMID: 2200829 DOI: 10.1111/1523-1747.ep12484847] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Close relationships between Merkel cells (MC) and nerve endings (NE) exist in the adult mouse. Because MC may serve as targets for the ingrowth of NE during embryogenesis, the purpose of the present study was to analyze the relationship between MC and NE during embryogenesis. Frozen tissue from whisker pads and backs of NMRI mouse embryos (12-17 d gestational age) were studied by double-labeling indirect immunofluorescence (IIF) with a cytokeratin monoclonal antibody that recognizes MC and with a neurofilament anti-serum. Such an approach allowed the analysis of a large number of MC (up to 5000), thus yielding quantitative data. At day 12 of gestational age, no MC were observed by IIF. From day 13 to 17, the number of MC, as well as their association with NE, progressively increased. On day 13, only 57% of whisker pad MC were NE associated, whereas by day 17, 95% were NE associated. These results were confirmed by electron microscopic (EM) observations. On the back, the same chronologic relationship between MC and NE was observed, but was later in the course of embryogenesis. There was also a time- and zone-dependent increase in MC association with NE in the epidermal zones studied (isthmic, parafollicular, interfollicular). These observations 1) establish the time course of MC and NE contacts during embryogenesis in the mouse epidermis, 2) show that MC are present in the epidermis and appendages before NE reach the epithelium, and 3) support the hypothesis that MC could act as targets for the growing NE.
Collapse
Affiliation(s)
- F Pasche
- Department of Dermatology, University Hospital, Geneva, Switzerland
| | | | | | | |
Collapse
|
44
|
Hartschuh W, Weihe E, Egner U. Electron microscopic immunogold cytochemistry reveals chromogranin A confined to secretory granules of porcine Merkel cells. Neurosci Lett 1990; 116:245-9. [PMID: 2243601 DOI: 10.1016/0304-3940(90)90081-j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By ultrastructural immunohistochemistry using the immunogold technique, immunoreactive (ir) Chromogranin A (CGA) was found to be confined to the secretory vesicles of porcine Merkel cells. CGA was present predominantly in the periphery of the electron-dense core and on the clear halo. These findings indicate that CGA is a regular constituent of Merkel cell secretory granules but probably not exclusively responsible for their electron opacity.
Collapse
|
45
|
García-Caballero T, Gallego R, Rosón E, Basanta D, Morel G, Beiras A. Localization of serotonin-like immunoreactivity in the Merkel cells of pig snout skin. Anat Rec (Hoboken) 1989; 225:267-71. [PMID: 2589641 DOI: 10.1002/ar.1092250402] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The presence of serotonin in the Merkel cells of pig snout epidermis was investigated by the peroxidase-antiperoxidase immunohistochemical technique. Serotonin-like immunoreactive Merkel cells were found in groups located at the base of epidermal rete pegs and in the external root sheath of sinus hair follicles (vibrissae). Immunoreactivity was stronger on the basal side of the Merkel cells, where dense-cored granules are most numerous. Neither the nerve terminal associated with the Merkel cell nor the neighbouring epidermal cells were immunostained. These results are the first evidence of serotonin-like immunoreactivity in mammalian Merkel cells. The fact that immunoreactivity is strongest in those parts of the Merkel cells with the highest granule density suggests that in these cells serotonin is probably localized in the dense-cored granules.
Collapse
Affiliation(s)
- T García-Caballero
- Departamento de Ciencias Morfológicas (Cátedra de Histología Humana), Facultad de Medicina, Hospital General de Galicia, Universidad de Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Hartschuh W, Weihe E, Egner U. Chromogranin A in the mammalian Merkel cell: cellular and subcellular distribution. J Invest Dermatol 1989; 93:641-8. [PMID: 2677156 DOI: 10.1111/1523-1747.ep12319788] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chromogranin-A (CGA), which accounts for more than half the soluble matrix protein in secretory granules of various neuroendocrine cells, has a wide spectrum of potential biological roles and is considered an important marker of the diffuse neuroendocrine system (DNES). Light and electron microscopic immunohistochemistry of mammalian skin revealed that Merkel cells are exclusively CGA-immunoreactive (ir) and that the immunoreaction is localized in the secretory granules. This finding supports the classification of the Merkel cell as a member of the DNES. The CGA immunoreactivity was restricted to Merkel cells of pigs and humans. In human embryonic skin, CGA was expressed in Merkel cells as early as week 11 of gestation. The antisera differed in their ability to stain Merkel cells in different species and developmental stages, reflecting a variable chemical coding for CGA. CGA probably represents a precursor for smaller regulatory peptides or acts as a messenger on its own on various target tissues, suggesting a neurosecretory function of the Merkel cell.
Collapse
Affiliation(s)
- W Hartschuh
- Universitäts-Hautklinik, Universität Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
47
|
Scheuermann DW, Adriaensen D, Timmermans JP, de Groodt-Lasseel MH. Neuroepithelial endocrine cells in the lung of Ambystoma mexicanum. Anat Rec (Hoboken) 1989; 225:139-49. [PMID: 2817428 DOI: 10.1002/ar.1092250209] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuroepithelial endocrine (NEE) cells were for the first time identified in the lung of the entirely aquatic urodele, Ambystoma mexicanum, by using light and electron microscopy, histochemistry, and immunocytochemistry. In the basal part of the ciliated epithelium and, less often, in the respiratory portion of the lung, NEE cells were found to occur both solitarily and in small clusters. No typical neuroepithelial bodies could be found. Using the method of Fernandez Pascual, some NEE cells were found to be argyrophilic. Microspectrofluorimetric analysis of formaldehyde-induced fluorescence and immunocytochemistry revealed the presence of 5-hydroxytryptamine. With antibodies to neuron-specific enolase only a few NEE cells exhibited a faint immunostaining. Electron-microscopically, the NEE cells are provided with distinctive cytoplasmic membrane-bound dense granules of variable size, which gave a positive argentaffin reaction. The images of emiocytotic granule release are indicative of a secretory function. In the tracheal epithelium. NEE cells seem to occur only solitarily. They bear the same ultrastructural characteristics as the intrapulmonary NEE cells but here, the dense granules are larger and associated with numerous bundles of microfilaments. Intraepithelial nerve endings were observed near the airway lumen. Between nerve terminals and NEE cells, synaptic complexes with aggregations of clear-centered vesicles close to the presynaptic membrane thickenings were observed. In addition, some nerve endings from "reciprocal synapses" with NEE cells. A receptosecretory function for NEE cells in the lung of A. mexicanum is supposed.
Collapse
Affiliation(s)
- D W Scheuermann
- Institute of Histology and Microscopic Anatomy, University of Antwerp, Belgium
| | | | | | | |
Collapse
|
48
|
García-Caballero T, Gallego R, Rosón E, Fraga M, Beiras A. Calcitonin gene-related peptide (CGRP) immunoreactivity in the neuroendocrine Merkel cells and nerve fibres of pig and human skin. HISTOCHEMISTRY 1989; 92:127-32. [PMID: 2788635 DOI: 10.1007/bf00490231] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The presence of calcitonin gene-related peptide (CGRP) in the skin of pig snout and human fingertip was investigated using immunohistochemical techniques. CGRP immunoreactivity was found in Merkel cells and nerve fibres of both species. In pig snout skin, Merkel cells containing CGRP were seen forming clusters at the tips of rete ridge epidermis and in the external root sheath of sinus hair follicles (vibrissae). Human Merkel cells immunostained for CGRP were found isolated or forming small groups in the basal layer of glandular epidermal ridges. In all cases, immunoreactivity was more intense on the side of the Merkel cell facing the associated nerve terminal (which was never positive for CGRP). This part of the Merkel cell has the greatest density of dense-cored granules, suggesting that CGRP must be stored in these granules. Nerve bundles containing CGRP-immunoreactive fibres were found at dermal and hypodermal level, and blood vessels were often surrounded by CGRP nerve fibres. In pig snout skin some nerve fibres containing CGRP penetrated the epidermis and terminated as free endings, and in the human fingertip a small number of CGRP-immunoreactive nerve fibres were seen in Meissner's corpuscles.
Collapse
Affiliation(s)
- T García-Caballero
- Departamento de Ciencias Morfológicas, Facultad de Medicina, Hospital General de Galicia, Universidad de Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
49
|
Mearow KM, Diamond J. Merkel cells and the mechanosensitivity of normal and regenerating nerves in Xenopus skin. Neuroscience 1988; 26:695-708. [PMID: 3173695 DOI: 10.1016/0306-4522(88)90175-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have investigated some of the physiological, morphological and trophic characteristics of the Merkel cell-neurite complexes in the skin of Xenopus laevis. The Merkel cells, which are specialized sensory cells, occur in groups of 2-4 around the openings of the cutaneous gland ducts. A voltage-controlled mechanical stimulator was used to determine the distribution of mechanosensory thresholds across the skin; an analysis of the results revealed the presence of a single population of rapidly adapting, low threshold mechanoreceptors, whose locations coincided with those of the epidermal Merkel cell-neurite complexes. The possible role of the Merkel cell in the mechanosensory process, and its trophic interactions with the sensory nerve, were examined (i) by following the development of mechanosensitivity when sensory nerves regenerated into denervated, or newly regenerated, skin; (ii) by looking for possible correlations between the expression of physiological function and the appearance of morphological features characteristic of the Merkel cell-neurite complex; and (iii) by investigating the mechanosensitivity that remained after elimination of the Merkel cells. Not only did Merkel cells survive denervation without obvious changes in their fine structure, but they developed with normal morphology in new skin that had regenerated in nerve free limbs. Ingrowing sensory nerves contacted these Merkel cells, and eventually normal mechanosensory function was established; thus the Merkel cells act as targets for these nerves. The full recovery of the normal pattern of mechanosensitivity in the skin following nerve regeneration was correlated with the redevelopment of the specialized contacts between the nerve endings and Merkel cells, that eventually included reciprocal synapses. However, following the mechanical removal of the epidermis by enzymatic treatment, or the selective elimination of the Merkel cells by irradiation after they had taken up the fluorescent dye quinacrine, essentially normal mechanosensory responses could be initiated, though with somewhat increased thresholds. The results indicate that the Merkel cells are not involved in mechanosensory transduction; they do, however, act as targets for the growing nerves, thereby ensuring the appropriate distribution of low threshold mechanosensitivity, and they may have a role in enhancing and even inducing the excitability of the mechanosensitive nerve endings.
Collapse
Affiliation(s)
- K M Mearow
- Department of Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
50
|
Salomon D, Carraux P, Mérot Y, Saurat JH. Pathway of granule formation in Merkel cells: an ultrastructural study. J Invest Dermatol 1987; 89:362-5. [PMID: 3668278 DOI: 10.1111/1523-1747.ep12471755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Merkel cells (MC) are characterized by dense core granules morphologically similar to secretory granules of endocrine cells, as well as the presence in their cytoplasm of organelles involved in polypeptide synthesis. The aim of this study was to follow the pathway of granule formation in MC. Four compartments, the cis and trans Golgi cisternae, the condensing granules in the Golgi stacks, the bristle-coated granules, and the noncoated granules, are observed by transmission electron microscopy in MC. This suggests that: (1) the organelles usually involved in the formation of secretory polypeptides are present in the cytoplasm of MC; (2) the pathway of Merkel cell granule (MCG) formation appears to be similar to that of secretory endocrine or exocrine cells; and (3) MC might be involved in a secretory process.
Collapse
Affiliation(s)
- D Salomon
- Clinique de Dermatologie, Hôpital Cantonal Universitaire, Geneva, Switzerland
| | | | | | | |
Collapse
|