1
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Holthaus KB, Eckhart L. Development-Associated Genes of the Epidermal Differentiation Complex (EDC). J Dev Biol 2024; 12:4. [PMID: 38248869 PMCID: PMC10801484 DOI: 10.3390/jdb12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode protein components of the outermost layers of the epidermis in mammals, reptiles and birds. The development of the stratified epidermis from a single-layered ectoderm involves an embryo-specific superficial cell layer, the periderm. An additional layer, the subperiderm, develops in crocodilians and over scutate scales of birds. Here, we review the expression of EDC genes during embryonic development. Several EDC genes are expressed predominantly or exclusively in embryo-specific cell layers, whereas others are confined to the epidermal layers that are maintained in postnatal skin. The S100 fused-type proteins scaffoldin and trichohyalin are expressed in the avian and mammalian periderm, respectively. Scaffoldin forms the so-called periderm granules, which are histological markers of the periderm in birds. Epidermal differentiation cysteine-rich protein (EDCRP) and epidermal differentiation protein containing DPCC motifs (EDDM) are expressed in the avian subperiderm where they are supposed to undergo cross-linking via disulfide bonds. Furthermore, a histidine-rich epidermal differentiation protein and feather-type corneous beta-proteins, also known as beta-keratins, are expressed in the subperiderm. The accumulating evidence for roles of EDC genes in the development of the epidermis has implications on the evolutionary diversification of the skin in amniotes.
Collapse
Affiliation(s)
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Trompette A, Ubags ND. Skin barrier immunology from early life to adulthood. Mucosal Immunol 2023; 16:194-207. [PMID: 36868478 DOI: 10.1016/j.mucimm.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Our skin has a unique barrier function, which is imperative for the body's protection against external pathogens and environmental insults. Although interacting closely and sharing many similarities with key mucosal barrier sites, such as the gut and the lung, the skin also provides protection for internal tissues and organs and has a distinct lipid and chemical composition. Skin immunity develops over time and is influenced by a multiplicity of different factors, including lifestyle, genetics, and environmental exposures. Alterations in early life skin immune and structural development may have long-term consequences for skin health. In this review, we summarize the current knowledge on cutaneous barrier and immune development from early life to adulthood, with an overview of skin physiology and immune responses. We specifically highlight the influence of the skin microenvironment and other host intrinsic, host extrinsic (e.g. skin microbiome), and environmental factors on early life cutaneous immunity.
Collapse
Affiliation(s)
- Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
4
|
Visscher MO, Carr AN, Narendran V. Epidermal Immunity and Function: Origin in Neonatal Skin. Front Mol Biosci 2022; 9:894496. [PMID: 35755808 PMCID: PMC9215705 DOI: 10.3389/fmolb.2022.894496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
The fascinating story of epidermal immunity begins in utero where the epidermal barrier derives from the ectoderm and evolves through carefully orchestrated biological processes, including periderm formation, keratinocyte differentiation, proliferation, cornification, and maturation, to generate a functional epidermis. Vernix caseosa derives from epidermal cells that mix with sebaceous lipids and coat the fetus during late gestation, likely to provide conditions for cornification. At birth, infants dramatically transition from aqueous conditions to a dry gaseous environment. The epidermal barrier begins to change within hours, exhibiting decreased hydration and low stratum corneum (SC) cohesion. The SC varied by gestational age (GA), transformed over the next 2–3 months, and differed considerably versus stable adult skin, as indicated by analysis of specific protein biomarkers. Regardless of gestational age, the increased infant SC proteins at 2–3 months after birth were involved in late differentiation, cornification, and filaggrin processing compared to adult skin. Additionally, the natural moisturizing factor (NMF), the product of filaggrin processing, was higher for infants than adults. This suggests that neonatal skin provides innate immunity and protection from environmental effects and promotes rapid, continued barrier development after birth. Functional genomic analysis showed abundant differences across biological processes for infant skin compared to adult skin. Gene expression for extracellular matrix, development, and fatty acid metabolism was higher for infant skin, while adult skin had increased expression of genes for the maintenance of epidermal homeostasis, antigen processing/presentation of immune function, and others. These findings provide descriptive information about infant epidermal immunity and its ability to support the newborn’s survival and growth, despite an environment laden with microbes, high oxygen tension, and irritants.
Collapse
Affiliation(s)
- Marty O Visscher
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Andrew N Carr
- The Procter and Gamble Company, Cincinnati, OH, United States
| | - Vivek Narendran
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
5
|
Reitermaier R, Ayub T, Staller J, Kienzl P, Fortelny N, Vieyra-Garcia PA, Worda C, Fiala C, Staud C, Eppel W, Scharrer A, Krausgruber T, Elbe-Bürger A. The molecular and phenotypic makeup of fetal human skin T lymphocytes. Development 2022; 149:dev199781. [PMID: 34604909 PMCID: PMC8601710 DOI: 10.1242/dev.199781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
The adult human skin contains a vast number of T cells that are essential for skin homeostasis and pathogen defense. T cells are first observed in the skin at the early stages of gestation; however, our understanding of their contribution to early immunity has been limited by their low abundance and lack of comprehensive methodologies for their assessment. Here, we describe a new workflow for isolating and expanding significant amounts of T cells from fetal human skin. Using multiparametric flow cytometry and in situ immunofluorescence, we found a large population with a naive phenotype and small populations with a memory and regulatory phenotype. Their molecular state was characterized using single-cell transcriptomics and TCR repertoire profiling. Importantly, culture of total fetal skin biopsies facilitated T cell expansion without a substantial impact on their phenotype, a major prerequisite for subsequent functional assays. Collectively, our experimental approaches and data advance the understanding of fetal skin immunity and potential use in future therapeutic interventions.
Collapse
Affiliation(s)
- René Reitermaier
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Tanya Ayub
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Julia Staller
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Philip Kienzl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Nikolaus Fortelny
- Department of Biosciences, University of Salzburg, Salzburg 5020, Austria
| | | | - Christof Worda
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Christian Fiala
- Gynmed Clinic, Vienna 1150, Austria
- Department of Women's and Children's Health, Division of Obstetrics and Gynaecology, Karolinska Institute and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Clement Staud
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna 1090, Austria
| | - Wolfgang Eppel
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Anke Scharrer
- Department of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
6
|
Polcerová L, Chovancová M, Králík M, Beňuš R, Klíma O, Meinerová T, Čuta M, Petrová ME. Radioulnar contrasts in fingerprint ridge counts: Searching for dermatoglyphic markers of early sex development. Am J Hum Biol 2021; 34:e23695. [PMID: 34757677 DOI: 10.1002/ajhb.23695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Using prenatally fixed dermatoglyphics features as markers of prenatal sex development is limited due to insufficient knowledge on their sex differences. This study aims to examine more thoroughly sex differences in radioulnar contrasts. METHODS Fingerprints of 360 females and 331 males from four samples of different ethnic backgrounds (Czechs, Slovaks, Vietnamese and Lusatian Sorbs) were studied. On both hands, finger ridge counts were recorded, and all possible radioulnar contrasts were computed as a difference between ridge count at a radial position minus ridge count at a respective ulnar position on the hand. Radioulnar contrasts with population-congruent and numerically large dimorphism were selected and the dimorphism of the selected radioulnar contrasts was then tested using nonparametric analysis of variance. RESULTS Greater dimorphism of radioulnar contrasts occurred on the right hand than on the left hand. Population congruent direction and relatively strong dimorphism (Cohen's d greater than 0.3) was found in six radioulnar contrasts on the right hand, all of which involved the radial ridge count of the 2nd finger. Of these, the highest average dimorphism was observed for the difference between the radial ridge count of the 2nd finger and the ulnar ridge count of the 4th finger (2r4u contrast), where the average effect size from all four population samples was comparable to a published average effect size of the 2D:4D finger length ratio. CONCLUSION We propose that 2r4u contrast of ridge counts could serve as a marker of prenatal sexual development targeting a temporally narrow developmental window.
Collapse
Affiliation(s)
- Lenka Polcerová
- Faculty of Science, Department of Anthropology, Laboratory of Morphology and Forensic Anthropology, Masaryk University, Brno, Czech Republic
| | - Mária Chovancová
- Faculty of Natural Sciences, Department of Anthropology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Miroslav Králík
- Faculty of Science, Department of Anthropology, Laboratory of Morphology and Forensic Anthropology, Masaryk University, Brno, Czech Republic
| | - Radoslav Beňuš
- Faculty of Natural Sciences, Department of Anthropology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ondřej Klíma
- Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno University of Technology, Brno, Czech Republic
| | - Tereza Meinerová
- Faculty of Science, Department of Anthropology, Laboratory of Morphology and Forensic Anthropology, Masaryk University, Brno, Czech Republic
| | - Martin Čuta
- Faculty of Science, Department of Anthropology, Laboratory of Morphology and Forensic Anthropology, Masaryk University, Brno, Czech Republic
| | - Mária Elisabeth Petrová
- Faculty of Science, Department of Anthropology, Laboratory of Morphology and Forensic Anthropology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Botting RA, Haniffa M. The developing immune network in human prenatal skin. Immunology 2020; 160:149-156. [PMID: 32173857 PMCID: PMC7218404 DOI: 10.1111/imm.13192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Establishment of a well‐functioning immune network in skin is crucial for its barrier function. This begins in utero alongside the structural differentiation and maturation of skin, and continues to expand and diversify across the human lifespan. The microenvironment of the developing human skin supports immune cell differentiation and has an overall anti‐inflammatory profile. Immunologically inert and skewed immune populations found in developing human skin promote wound healing, and as such may play a crucial role in the structural changes occurring during skin development.
Collapse
Affiliation(s)
- Rachel Anne Botting
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Wellcome Sanger Institute, Hinxton, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Müller WEG, Schepler H, Tolba E, Wang S, Ackermann M, Muñoz-Espí R, Xiao S, Tan R, She Z, Neufurth M, Schröder HC, Wang X. A physiologically active interpenetrating collagen network that supports growth and migration of epidermal keratinocytes: zinc-polyP nanoparticles integrated into compressed collagen. J Mater Chem B 2020; 8:5892-5902. [DOI: 10.1039/d0tb01240h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is demonstrated that polyphosphate, as a component in wound healing mats together with Zn2+, is essential for growth and migration of skin keratinocytes.
Collapse
|
9
|
Cokus SJ, De La Torre M, Medina EF, Rasmussen JP, Ramirez-Gutierrez J, Sagasti A, Wang F. Tissue-Specific Transcriptomes Reveal Gene Expression Trajectories in Two Maturing Skin Epithelial Layers in Zebrafish Embryos. G3 (BETHESDA, MD.) 2019; 9:3439-3452. [PMID: 31431477 PMCID: PMC6778804 DOI: 10.1534/g3.119.400402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
Epithelial cells are the building blocks of many organs, including skin. The vertebrate skin initially consists of two epithelial layers, the outer periderm and inner basal cell layers, which have distinct properties, functions, and fates. The embryonic periderm ultimately disappears during development, whereas basal cells proliferate to form the mature, stratified epidermis. Although much is known about mechanisms of homeostasis in mature skin, relatively little is known about the two cell types in pre-stratification skin. To define the similarities and distinctions between periderm and basal skin epithelial cells, we purified them from zebrafish at early development stages and deeply profiled their gene expression. These analyses identified groups of genes whose tissue enrichment changed at each stage, defining gene flow dynamics of maturing vertebrate epithelia. At each of 52 and 72 hr post-fertilization (hpf), more than 60% of genes enriched in skin cells were similarly expressed in both layers, indicating that they were common epithelial genes, but many others were enriched in one layer or the other. Both expected and novel genes were enriched in periderm and basal cell layers. Genes encoding extracellular matrix, junctional, cytoskeletal, and signaling proteins were prominent among those distinguishing the two epithelial cell types. In situ hybridization and BAC transgenes confirmed our expression data and provided new tools to study zebrafish skin. Collectively, these data provide a resource for studying common and distinguishing features of maturing epithelia.
Collapse
Affiliation(s)
- Shawn J Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles and
| | | | - Eric F Medina
- Department of Biology, California State University, Dominguez Hills
| | - Jeffrey P Rasmussen
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles and
| | | | - Alvaro Sagasti
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles and
| | - Fang Wang
- Department of Biology, California State University, Dominguez Hills
| |
Collapse
|
10
|
Bharathan NK, Dickinson AJG. Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev Biol 2019; 450:115-131. [PMID: 30935896 PMCID: PMC6659752 DOI: 10.1016/j.ydbio.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Desmoplakin (Dsp) is a unique and critical desmosomal protein, that is integral to epidermal development. However, it is unclear whether this protein is required specifically for epidermal morphogenesis. Using morpholinos or Crispr/Cas9 mutagenesis we decreased the function of Dsp in frog embryos to better understand its role during epidermal development. Dsp morphant and mutant embryos had developmental defects such as epidermal fragility that mimicked what has been reported in mammals. Most importantly, we also uncovered a novel function for Dsp in the morphogenesis of the epidermis in X. laevis. In particular, Dsp is required during the process of radial intercalation where basally located cells move into the outer epidermal layer. Once inserted these newly intercalated cells expand their apical surface and then they differentiate into specific epidermal cell types. Decreased levels of Dsp resulted in the failure of the radially intercalating cells to expand their apical surface, thereby reducing the number of differentiated multiciliated and secretory cells. Such defects correlate with changes in E-cadherin levels and actin and microtubule localization which could explain the defects in apical expansion. A mutated form of Dsp that maintains cell-cell adhesion but eliminates the connections to the cytoskeleton results in the same epidermal morphogenesis defect. These results suggest a specific role for Dsp in the apical expansion of cells during radial intercalation. We have developed a novel system, in the frog, to demonstrate for the first time that desmosomes not only protect against mechanical stress but are also critical for epidermal morphogenesis.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall St., Richmond, VA 23219, United States; Department of Cell Biology, Emory University School of Medicine, 615 Michael Street Atlanta, GA 30322, United States
| | - Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, 1000 West Cary St., Richmond, VA 23284, United States.
| |
Collapse
|
11
|
Degen M, Wiederkehr A, La Scala GC, Carmann C, Schnyder I, Katsaros C. Keratinocytes Isolated From Individual Cleft Lip/Palate Patients Display Variations in Their Differentiation Potential in vitro. Front Physiol 2018; 9:1703. [PMID: 30555344 PMCID: PMC6281767 DOI: 10.3389/fphys.2018.01703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
To gain more understanding of the complex molecular processes underlying cleft lip/palate (CLP), we established a unique human cell bank, consisting of keratinocytes and corresponding fibroblasts from individual CLP patients as a new study tool. After their careful characterization, we used such patient-derived cell cultures as well as control keratinocytes for in vitro differentiation and proliferation assays. Foreskin-derived control cells as a group showed significant higher induction of the late differentiation markers Loricrin and Filaggrin than the group of CLP patients-derived keratinocytes. Additionally, we detected great variations between individual CLP keratinocyte cell cultures in regard to their potential to terminally differentiate as assessed by the induction of Loricrin and Filaggrin. Primary patient cell cultures that did not properly differentiate, exhibited high proliferation rates. Moreover, we could correlate the expression levels of transcription factor IRF6 to the ability of individual cell cultures to terminally differentiate. Using clinically relevant, patient-derived cells, our results suggest that some of the genetic predispositions causing CLP might also lead to deficiencies in keratinocyte differentiation manifested in in vitro assays.
Collapse
Affiliation(s)
- Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Astrid Wiederkehr
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Christina Carmann
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Depasquale JA. Actin Microridges. Anat Rec (Hoboken) 2018; 301:2037-2050. [DOI: 10.1002/ar.23965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/03/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
|
13
|
Yaoita Y, Nakajima K. Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax. Genes Cells 2018; 23:998-1008. [PMID: 30294949 DOI: 10.1111/gtc.12647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 11/29/2022]
Abstract
Thyroid hormones (THs) induce metamorphosis in amphibians, causing dynamic changes, whereas mammalian newborns undergo environmental transition from placenta to open air at birth. The similarity between amphibian metamorphosis and the mammalian perinatal periods has been repeatedly discussed. However, a corresponding developmental gene expression analysis has not yet been reported. In this study, we examined the developmental gene expression profiles in the brain and liver of Xenopus tropicalis during metamorphosis climax and compared them to the respective gene expression profiles of newborn rodents. Many upregulated genes identified in the tadpole brain during metamorphosis are also upregulated in the rodent brain during the first three postnatal weeks when the TH surge occurs. The upregulation of some genes in the brain was inhibited in thyroid hormone receptor α (TRα) knockout tadpoles but not in TRβ-knockout tadpoles, implying that brain metamorphosis is mainly mediated by TRα. The expression of some genes was also increased in the liver during metamorphosis climax. Our data suggest that the rodent brain undergoes TH-dependent remodeling during the first three postnatal weeks as observed in X. tropicalis during the larva-to-adult metamorphosis.
Collapse
Affiliation(s)
- Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
14
|
Functional characterisation of romeharsha and clint1 reaffirms the link between plasma membrane homeostasis, cell size maintenance and tissue homeostasis in developing zebrafish epidermis. J Biosci 2018. [DOI: 10.1007/s12038-018-9777-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Ukkonen H, Pirhonen P, Herrala M, Mikkonen JJ, Singh SP, Sormunen R, Kullaa AM. Oral mucosal epithelial cells express the membrane anchored mucin MUC1. Arch Oral Biol 2017; 73:269-273. [DOI: 10.1016/j.archoralbio.2016.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/26/2016] [Accepted: 10/15/2016] [Indexed: 12/25/2022]
|
16
|
Langbein L, Eckhart L, Fischer H, Rogers MA, Praetzel-Wunder S, Parry DAD, Kittstein W, Schweizer J. Localisation of keratin K78 in the basal layer and first suprabasal layers of stratified epithelia completes expression catalogue of type II keratins and provides new insights into sequential keratin expression. Cell Tissue Res 2016; 363:735-50. [PMID: 26340985 DOI: 10.1007/s00441-015-2278-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 01/21/2023]
Abstract
Among the 26 human type II keratins, K78 is the only one that has not yet been explored with regard to its expression characteristics. Here, we show that, at both the transcriptional and translational levels, K78 is strongly expressed in the basal and parabasal cell layers with decreasing intensity in the lower suprabasal cells of keratinising and non-keratinising squamous epithelia and keratinocyte cultures. The same pattern has been detected at the transcriptional level in the corresponding mouse epithelia. Murine K78 protein, which contains an extraordinary large extension of its tail domain, which is unique among all known keratins, is not detectable by the antibody used. Concomitant studies in human epithelia have confirmed K78 co-expression with the classical basal keratins K5 and K14. Similarly, K78 co-expression with the differentiation-related type I keratins K10 (epidermis) and K13 (non-keratinising epithelia) occurs in the parabasal cell layer, whereas that of the corresponding type II keratins K1 (epidermis) and K4 (non-keratinising epithelia) unequivocally starts subsequent to the respective type I keratins. Our data concerning K78 expression modify the classical concept of keratin pair K5/K14 representing the basal compartment and keratin pairs K1/K10 or K4/K13 defining the differentiating compartment of stratified epithelia. Moreover, the K78 expression pattern and the decoupled K1/K10 and K4/K13 expression define the existence of a hitherto unperceived early differentiation stage in the parabasal layer characterized by K78/K10 or K78/K13 expression.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Animals
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Embryonic Development
- Epidermis/metabolism
- Epithelium/metabolism
- Evolution, Molecular
- Fluorescent Antibody Technique
- Gene Expression Regulation
- Genetic Loci
- Humans
- In Situ Hybridization
- Keratinocytes/metabolism
- Keratins, Type II/chemistry
- Keratins, Type II/genetics
- Keratins, Type II/metabolism
- Mice, Inbred C57BL
- Molecular Sequence Data
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, Protein
Collapse
Affiliation(s)
- Lutz Langbein
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, A110, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Leopold Eckhart
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Heinz Fischer
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Michael A Rogers
- Department of Molecular Genetics of the German Cancer Research Center, Heidelberg, Germany
| | - Silke Praetzel-Wunder
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, A110, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - David A D Parry
- Institute of Fundamental Sciences and Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
17
|
Abstract
Palatogenesis involves the initiation, growth, morphogenesis, and fusion of the primary and secondary palatal shelves from initially separate facial prominences during embryogenesis to form the intact palate separating the oral cavity from the nostrils. The palatal shelves consist mainly of cranial neural crest-derived mesenchymal cells covered by a simple embryonic epithelium. The growth and patterning of the palatal shelves are controlled by reciprocal epithelial-mesenchymal interactions regulated by multiple signaling pathways and transcription factors. During palatal shelf outgrowth, the embryonic epithelium develops a "teflon" coat consisting of a single, continuous layer of periderm cells that prevents the facial prominences and palatal shelves from forming aberrant interepithelial adhesions. Palatal fusion involves not only spatiotemporally regulated disruption of the periderm but also dynamic cellular and molecular processes that result in adhesion and intercalation of the palatal medial edge epithelia to form an intershelf epithelial seam, and subsequent dissolution of the epithelial seam to form the intact roof of the oral cavity. The complexity of regulation of these morphogenetic processes is reflected by the common occurrence of cleft palate in humans. This review will summarize major recent advances and discuss major remaining gaps in the understanding of cellular and molecular mechanisms controlling palatogenesis.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | - Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
18
|
Scott CL, Henri S, Guilliams M. Mononuclear phagocytes of the intestine, the skin, and the lung. Immunol Rev 2015; 262:9-24. [PMID: 25319324 DOI: 10.1111/imr.12220] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissues that are in direct contact with the outside world face particular immunological challenges. The intestine, the skin, and the lung possess important mononuclear phagocyte populations to deal with these challenges, but the cellular origin of these phagocytes is strikingly different from one subset to another, with some cells derived from embryonic precursors and some from bone marrow-derived circulating monocytes. Here, we review the current knowledge regarding the developmental pathways that control the differentiation of mononuclear phagocytes in these barrier tissues. We have also attempted to build a theoretical model that could explain the distinct cellular origin of mononuclear phagocytes in these tissues.
Collapse
Affiliation(s)
- Charlotte L Scott
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
19
|
|
20
|
A novel RIPK4-IRF6 connection is required to prevent epithelial fusions characteristic for popliteal pterygium syndromes. Cell Death Differ 2014; 22:1012-24. [PMID: 25430793 DOI: 10.1038/cdd.2014.191] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 01/04/2023] Open
Abstract
Receptor-interacting protein kinase 4 (RIPK4)-deficient mice have epidermal defects and fusion of all external orifices. These are similar to Bartsocas-Papas syndrome and popliteal pterygium syndrome (PPS) in humans, for which causative mutations have been documented in the RIPK4 and IRF6 (interferon regulatory factor 6) gene, respectively. Although genetically distinct, these syndromes share the anomalies of marked pterygia, syndactyly, clefting and hypoplastic genitalia. Despite the strong resemblance of these two syndromes, no molecular connection between the transcription factor IRF6 and the kinase RIPK4 was known and the mechanism underlying the phenotype was unclear. Here we describe that RIPK4 deficiency in mice causes epithelial fusions associated with abnormal periderm development and aberrant ectopic localization of E-cadherin on the apical membrane of the outer peridermal cell layers. In Xenopus, RIPK4 depletion causes the absence of ectodermal epiboly and concomitant gastrulation defects that phenocopy ectopic expression of dominant-negative IRF6. We found that IRF6 controls RIPK4 expression and that wild-type, but not kinase-dead, RIPK4 can complement the gastrulation defect in Xenopus caused by IRF6 malfunctioning. In contrast to the mouse, we observed only minor effects on cadherin membrane expression in Xenopus RIPK4 morphants. However, gastrulation defects were associated with a virtual absence of cortical actin in the ectodermal cells that face the blastocoel cavity and this was phenocopied in embryos expressing dominant-negative IRF6. A role for RIPK4 in actin cytoskeleton organization was also revealed in mouse epidermis and in human epithelial HaCaT cells. In conclusion, we showed that in mice RIPK4 is implicated in cortical actin organization and in E-cadherin localization or function, which can explain the characteristic epithelial fusions observed in PPSs. In addition, we provide a novel molecular link between IRF6 and RIPK4 that unifies the different PPSs to a common molecular pathway.
Collapse
|
21
|
Myosin Vb mediated plasma membrane homeostasis regulates peridermal cell size and maintains tissue homeostasis in the zebrafish epidermis. PLoS Genet 2014; 10:e1004614. [PMID: 25233349 PMCID: PMC4169241 DOI: 10.1371/journal.pgen.1004614] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 07/18/2014] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a stratified epithelium, which forms a barrier to maintain the internal milieu in metazoans. Being the outermost tissue, growth of the epidermis has to be strictly coordinated with the growth of the embryo. The key parameters that determine tissue growth are cell number and cell size. So far, it has remained unclear how the size of epidermal cells is maintained and whether it contributes towards epidermal homeostasis. We have used genetic analysis in combination with cellular imaging to show that zebrafish goosepimples/myosin Vb regulates plasma membrane homeostasis and is involved in maintenance of cell size in the periderm, the outermost epidermal layer. The decrease in peridermal cell size in Myosin Vb deficient embryos is compensated by an increase in cell number whereas decrease in cell number results in the expansion of peridermal cells, which requires myosin Vb (myoVb) function. Inhibition of cell proliferation as well as cell size expansion results in increased lethality in larval stages suggesting that this two-way compensatory mechanism is essential for growing larvae. Our analyses unravel the importance of Myosin Vb dependent cell size regulation in epidermal homeostasis and demonstrate that the epidermis has the ability to maintain a dynamic balance between cell size and cell number.
Collapse
|
22
|
Maternal intravenous administration of azithromycin results in significant fetal uptake in a sheep model of second trimester pregnancy. Antimicrob Agents Chemother 2014; 58:6581-91. [PMID: 25155606 DOI: 10.1128/aac.03721-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of intrauterine infection is likely key to preventing a significant proportion of preterm deliveries before 32 weeks of gestation. Azithromycin (AZ) may be an effective antimicrobial in pregnancy; however, few gestation age-approriate data are available to inform the design of AZ-based treatment regimens in early pregnancy. We aimed to determine whether a single intra-amniotic AZ dose or repeated maternal intravenous (i.v.) AZ doses would safely yield therapeutic levels of AZ in an 80-day-gestation (term is 150 days) ovine fetus. Fifty sheep carrying single pregnancies at 80 days gestation were randomized to receive either: (i) a single intra-amniotic AZ administration or (ii) maternal intravenous AZ administration every 12 h. Amniotic fluid, maternal plasma, and fetal AZ concentrations were determined over a 5-day treatment regimen. Markers of liver injury and amniotic fluid inflammation were measured to assess fetal injury in response to drug exposure. A single intra-amniotic administration yielded significant AZ accumulation in the amniotic fluid and fetal lung. In contrast, repeated maternal intravenous administrations achieved high levels of AZ accumulation in the fetal lung and liver and a statistically significant increase in the fetal plasma drug concentration at 120 h. There was no evidence of fetal injury in response to drug exposure. These data suggest that (i) repeated maternal i.v. AZ dosing yields substantial fetal tissue uptake, although fetal plasma drug levels remain low; (ii) transfer of AZ from the amniotic fluid is less than transplacental transfer; and (iii) exposure to high concentrations of AZ did not elicit overt changes in fetal white blood cell counts, amniotic fluid monocyte chemoattractant protein 1 concentrations, or hepatotoxicity, all consistent with an absence of fetal injury.
Collapse
|
23
|
Richardson RJ, Hammond NL, Coulombe PA, Saloranta C, Nousiainen HO, Salonen R, Berry A, Hanley N, Headon D, Karikoski R, Dixon MJ. Periderm prevents pathological epithelial adhesions during embryogenesis. J Clin Invest 2014; 124:3891-900. [PMID: 25133425 DOI: 10.1172/jci71946] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/03/2014] [Indexed: 12/13/2022] Open
Abstract
Appropriate development of stratified, squamous, keratinizing epithelia, such as the epidermis and oral epithelia, generates an outer protective permeability barrier that prevents water loss, entry of toxins, and microbial invasion. During embryogenesis, the immature ectoderm initially consists of a single layer of undifferentiated, cuboidal epithelial cells that stratifies to produce an outer layer of flattened periderm cells of unknown function. Here, we determined that periderm cells form in a distinct pattern early in embryogenesis, exhibit highly polarized expression of adhesion complexes, and are shed from the outer surface of the embryo late in development. Mice carrying loss-of-function mutations in the genes encoding IFN regulatory factor 6 (IRF6), IκB kinase-α (IKKα), and stratifin (SFN) exhibit abnormal epidermal development, and we determined that mutant animals exhibit dysfunctional periderm formation, resulting in abnormal intracellular adhesions. Furthermore, tissue from a fetus with cocoon syndrome, a lethal disorder that results from a nonsense mutation in IKKA, revealed an absence of periderm. Together, these data indicate that periderm plays a transient but fundamental role during embryogenesis by acting as a protective barrier that prevents pathological adhesion between immature, adhesion-competent epithelia. Furthermore, this study suggests that failure of periderm formation underlies a series of devastating birth defects, including popliteal pterygium syndrome, cocoon syndrome, and Bartsocas-Papas syndrome.
Collapse
|
24
|
Visscher M, Narendran V. The Ontogeny of Skin. Adv Wound Care (New Rochelle) 2014; 3:291-303. [PMID: 24761361 DOI: 10.1089/wound.2013.0467] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/21/2013] [Indexed: 12/25/2022] Open
Abstract
Significance: During gestation, fetal skin progresses from a single layer derived from ectoderm to a complex, multi-layer tissue with the stratum corneum (SC) as the outermost layer. Innate immunity is a conferred complex process involving a balance of pro- and anti-inflammatory cytokines, structural proteins, and specific antigen-presenting cells. The SC is a part of the innate immune system as an impermeable physical barrier containing anti-microbial lipids and host defense proteins. Postnatally, the epidermis continually replenishes itself, provides a protective barrier, and repairs injuries. Recent Advances: Vernix caseosa protects the fetus during gestation and facilitates development of the SC in the aqueous uterine environment. The anti-infective, hydrating, acidification, and wound-healing properties post birth provide insights for the development of strategies that facilitate SC maturation and repair in the premature infant. Critical Issues: Reduction of infant mortality is a global health priority. Premature infants have an incompetent skin barrier putting them at risk for irritant exposure, skin compromise and life-threatening infections. Effective interventions to accelerate skin barrier maturation are compelling. Future Directions: Investigations to determine the ontogeny of barrier maturation, that is, SC structure, composition, cohesiveness, permeability, susceptibility to injury, and microflora, as a function of gestational age are essential. Clinicians need to know when the premature skin barrier becomes fully competent and comparable to healthy newborn skin. This will guide the development of innovative strategies for optimizing skin barrier development.
Collapse
Affiliation(s)
- Marty Visscher
- Skin Sciences Program, Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Vivek Narendran
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
25
|
Fischer B, Metzger M, Richardson R, Knyphausen P, Ramezani T, Franzen R, Schmelzer E, Bloch W, Carney TJ, Hammerschmidt M. p53 and TAp63 promote keratinocyte proliferation and differentiation in breeding tubercles of the zebrafish. PLoS Genet 2014; 10:e1004048. [PMID: 24415949 PMCID: PMC3886889 DOI: 10.1371/journal.pgen.1004048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
p63 is a multi-isoform member of the p53 family of transcription factors. There is compelling genetic evidence that ΔNp63 isoforms are needed for keratinocyte proliferation and stemness in the developing vertebrate epidermis. However, the role of TAp63 isoforms is not fully understood, and TAp63 knockout mice display normal epidermal development. Here, we show that zebrafish mutants specifically lacking TAp63 isoforms, or p53, display compromised development of breeding tubercles, epidermal appendages which according to our analyses display more advanced stratification and keratinization than regular epidermis, including continuous desquamation and renewal of superficial cells by derivatives of basal keratinocytes. Defects are further enhanced in TAp63/p53 double mutants, pointing to partially redundant roles of the two related factors. Molecular analyses, treatments with chemical inhibitors and epistasis studies further reveal the existence of a linear TAp63/p53->Notch->caspase 3 pathway required both for enhanced proliferation of keratinocytes at the base of the tubercles and their subsequent differentiation in upper layers. Together, these studies identify the zebrafish breeding tubercles as specific epidermal structures sharing crucial features with the cornified mammalian epidermis. In addition, they unravel essential roles of TAp63 and p53 to promote both keratinocyte proliferation and their terminal differentiation by promoting Notch signalling and caspase 3 activity, ensuring formation and proper homeostasis of this self-renewing stratified epithelium. The mammalian epidermis is a stratified self-renewing epithelium, in which cell loss at the surface is properly balanced by cell proliferation in basal layers to ensure tissue homeostasis. But how is this balance genetically controlled? Here, we address this question in zebrafish breeding tubercles, epidermal appendages in which keratinocytes undergo more advanced differentiation processes than in regular fish epidermis, sharing crucial features with the cornified mammalian skin. We identify a linear pathway consisting of the transcription factor p53 and its close relative TAp63, which activate Notch signalling and thereby caspase 3 to promote terminal differentiation and eventual shedding of keratinocytes in upper tubercle layers, while at the same time employing non-cell autonomous mechanisms to promote keratinocyte proliferation at the tubercle base, thereby ensuring proper development and homeostasis of this self-renewing tissue. Such a two-fold function of the pathway is consistent with the formerly reported dual role of a caspase during wing regeneration in the fruitfly. Our findings will help to better understand the seemingly contrary effects described for TAp63 in different mammalian systems, while demonstrating partial functional redundancy between p53 and TAp63 during epidermal development in fish.
Collapse
Affiliation(s)
- Boris Fischer
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Manuel Metzger
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Rebecca Richardson
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Philipp Knyphausen
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Thomas Ramezani
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Rainer Franzen
- Cell Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Elmon Schmelzer
- Cell Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
26
|
Langbein L, Reichelt J, Eckhart L, Praetzel-Wunder S, Kittstein W, Gassler N, Schweizer J. New facets of keratin K77: interspecies variations of expression and different intracellular location in embryonic and adult skin of humans and mice. Cell Tissue Res 2013; 354:793-812. [PMID: 24057875 DOI: 10.1007/s00441-013-1716-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/19/2013] [Indexed: 01/08/2023]
Abstract
The differential expression of keratins is central to the formation of various epithelia and their appendages. Structurally, the type II keratin K77 is closely related to K1, the prototypical type II keratin of the suprabasal epidermis. Here, we perform a developmental study on K77 expression in human and murine skin. In both species, K77 is expressed in the suprabasal fetal epidermis. While K77 appears after K1 in the human epidermis, the opposite is true for the murine tissue. This species-specific pattern of expression is also found in conventional and organotypic cultures of human and murine keratinocytes. Ultrastructure investigation shows that, in contrast to K77 intermediate filaments of mice, those of the human ortholog are not attached to desmosomes. After birth, K77 disappears without deleterious consequences from human epidermis while it is maintained in the adult mouse epidermis, where its presence has so far gone unnoticed. After targeted Krt1 gene deletion in mice, K77 is normally expressed but fails to functionally replace K1. Besides the epidermis, both human and mouse K77 are present in luminal duct cells of eccrine sweat glands. The demonstration of a K77 ortholog in platypus but not in non-mammalian vertebrates identifies K77 as an evolutionarily ancient component of the mammalian integument that has evolved different patterns of intracellular distribution and adult tissue expression in primates.
Collapse
Affiliation(s)
- Lutz Langbein
- Genetics of Skin Carcinogenesis, A110, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | |
Collapse
|
27
|
Regenerative Therapies for the Ocular Surface. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
28
|
The defence architecture of the superficial cells of the oral mucosa. Med Hypotheses 2012; 78:790-2. [DOI: 10.1016/j.mehy.2012.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/07/2012] [Indexed: 12/18/2022]
|
29
|
Yoshida M, Shimono Y, Togashi H, Matsuzaki K, Miyoshi J, Mizoguchi A, Komori T, Takai Y. Periderm cells covering palatal shelves have tight junctions and their desquamation reduces the polarity of palatal shelf epithelial cells in palatogenesis. Genes Cells 2012; 17:455-72. [PMID: 22571182 DOI: 10.1111/j.1365-2443.2012.01601.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In palatogenesis, bilateral palatal shelves grow and fuse with each other to establish mesenchyme continuity across the horizontal palate. The palatal shelves are covered with the medial edge epithelium (MEE) in which most apical cells are periderm cells. We investigated localization and roles of tight junction (TJ) and adherens junction (AJ) components and an apical membrane marker in the MEE in palatogenesis. Immunofluorescence and immunoelectron microscopy analyses revealed that TJs were located at the boundary between neighboring periderm cells, whereas AJ components were localized at the boundary between all epithelial cells in the MEE. Specifically, typical AJs were observed at the boundaries between neighboring periderm cells and between periderm cells and underlying epithelial cells where the signal for nectin-1 was observed. The TGF-β-induced desquamation of periderm cells reduced the polarity of remaining epithelial cells as estimated by changes of epithelial cell morphology and the staining of the polarity marker and the AJ components. These less polarized epithelial cells then intermingled and finally disappeared at least partly by apoptosis. These results indicate that periderm cells covering growing palatal shelves have bona fide TJs and their desquamation reduces the polarity of palatal shelf epithelial cells in palatogenesis.
Collapse
Affiliation(s)
- Midori Yoshida
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SHY, Grisotto M, Renia L, Conway SJ, Stanley ER, Chan JKY, Ng LG, Samokhvalov IM, Merad M, Ginhoux F. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. ACTA ACUST UNITED AC 2012; 209:1167-81. [PMID: 22565823 PMCID: PMC3371735 DOI: 10.1084/jem.20120340] [Citation(s) in RCA: 546] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Langerhans cells (LCs) are the dendritic cells (DCs) of the epidermis, forming one of the first hematopoietic lines of defense against skin pathogens. In contrast to other DCs, LCs arise from hematopoietic precursors that seed the skin before birth. However, the origin of these embryonic precursors remains unclear. Using in vivo lineage tracing, we identify a first wave of yolk sac (YS)-derived primitive myeloid progenitors that seed the skin before the onset of fetal liver hematopoiesis. YS progenitors migrate to the embryo proper, including the prospective skin, where they give rise to LC precursors, and the brain rudiment, where they give rise to microglial cells. However, in contrast to microglia, which remain of YS origin throughout life, YS-derived LC precursors are largely replaced by fetal liver monocytes during late embryogenesis. Consequently, adult LCs derive predominantly from fetal liver monocyte-derived cells with a minor contribution of YS-derived cells. Altogether, we establish that adult LCs have a dual origin, bridging early embryonic and late fetal myeloid development.
Collapse
Affiliation(s)
- Guillaume Hoeffel
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos Building #3-4, BIOPOLIS, 138648, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Harada K, Enosawa S, Zhang B, Yuan W, Chiba T, Fujie MG. Evaluation of fetal tissue viscoelastic characteristics for robotic fetal surgery. Int J Comput Assist Radiol Surg 2011; 6:797-802. [PMID: 21503724 DOI: 10.1007/s11548-011-0563-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/01/2011] [Indexed: 11/27/2022]
Abstract
PURPOSE Minimally invasive fetal surgery is expected to improve therapeutic outcomes, and surgical robots are expected to aid the dexterous manipulation of fragile fetal tissues. Although robots are currently used for surgery on soft tissues, practical information concerning the viscoelastic characteristics of fetal tissues is lacking. Hence, the mechanical properties of fetal tissues should be quantified to design robotic devices that facilitate computer-assisted fetal surgery. METHODS Shear creep tests were performed on abdominal wall tissues of rat fetuses, aged 16-20 days, and on the brain, lung, and liver tissues of adult rats. Viscoelastic properties of these tissues were evaluated using a rheometer. Histological sections of fetal rat tissues were stained with hematoxylin and eosin. RESULTS The viscoelastic properties of fetal tissues were quantified using models. Fetal tissues displayed 2 distinct phases of fragility, i.e., gelatinous characteristics with a markedly lower viscoelasticity before day 18 than after day 19. Concomitantly, skin morphology matured remarkably after day 19. As judged by the morphology, the gestation age of 19 days in rats corresponds to that of 23 weeks in human fetuses. From our data, we prepared artificial phantoms; phantoms made from 1.0% gelatin showed mechanical properties very similar to those of the fetuses before day 18. CONCLUSION We observed unique mechanical characteristics in fetal tissue, a previously unknown target for surgical robots. From the data obtained, we produced phantoms that have similar viscoelastic properties, aiming at designing surgical robots capable of handling early fetuses.
Collapse
Affiliation(s)
- Kanako Harada
- Clinical Research Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Vemuganti GK, Sangwan VS, Mariappan I, Balasubramanian D. Regenerative Therapies for the Ocular Surface. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Naim M, Kumar A, Gaur K, John VT. Pattern of oestrogen, progesterone and Her2neu receptors expression in a heterogeneous carcinoma of the breast in a lactating woman. BMJ Case Rep 2010; 2010:2010/nov22_1/bcr0520103008. [PMID: 22797202 DOI: 10.1136/bcr.05.2010.3008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Oestrogen-progestrone-Her2neu receptor status was studied in various loci/foci of heterogeneous carcinoma of the breast and its metastatic secretory component in the lymph node in a lactating woman. All the carcinoma variants were negative for the trio markers except tumour components evolved to secretory or lactating carcinoma, which showed focal positivity. Findings showed that oestrogenic receptors, progesterone receptors and Her2neu negative primitive carcinoma in a heterogenous breast cancer may evolve into oestrogen receptor, progesterone receptor and Her2neu positive secretory/lactating carcinoma alongside other receptor negative carcinoma variants. Focal marker positivity/negativity underlined the fact that a diagnostic/prognostic marker status report may account for the tumour area included in the section/sample only. Study of the immune marker expression/status in various loci may help identification of the components, morphogenesis and dynamics of heterogeneous carcinoma of the breast.
Collapse
Affiliation(s)
- Mohammed Naim
- Pathology Department, JNMC AMU Aligarh, Aligarh, Uttar Pradesh, India.
| | | | | | | |
Collapse
|
34
|
Kemp MW, Saito M, Nitsos I, Jobe AH, Kallapur SG, Newnham JP. Exposure to in utero lipopolysaccharide induces inflammation in the fetal ovine skin. Reprod Sci 2010; 18:88-98. [PMID: 20923949 DOI: 10.1177/1933719110380470] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inflammation is a defensive process by which the body responds to both localized and systemic tissue damage by the induction of innate and adaptive immunity. Literature from human and animal studies links inappropriate in utero inflammation to preterm parturition and fetal injury. The pathways by which such inflammation may cause labor, however, are not fully understood. Any proinflammatory agonist in the amniotic fluid will contact the fetal skin, in its entirety, but a potential role of the fetal skin in the pathways to labor have not previously been explored. We hypothesized that the fetal skin would respond robustly to the presence of intra-amniotic lipopolysaccharide (LPS) in our ovine model of in utero inflammation. In vitro and in utero exposure of fetal ovine keratinocytes or fetal skin to Escherichia coli LPS reliably induced significant increases in interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), and IL-8 expression. We demonstrate that, in utero, this expression requires direct exposure with LPS suggesting that the inflammation is triggered directly in the skin itself, rather than as a secondary response to a systemic stimuli and that inflammation involves Toll-like receptor (TLR) regulation and neutrophil chemotaxis in concordance with an acute inflammatory reaction. We show that this response involves multiple inflammatory mediators, TLR regulation, and localized inflammatory cell influx characteristic of an acute inflammatory reaction. These novel data strongly suggests that the fetal skin acts as an important mediator of the fetal inflammatory response and as such may contribute to preterm birth.
Collapse
Affiliation(s)
- Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Jezierski A, Gruslin A, Tremblay R, Ly D, Smith C, Turksen K, Sikorska M, Bani-Yaghoub M. Probing stemness and neural commitment in human amniotic fluid cells. Stem Cell Rev Rep 2010; 6:199-214. [PMID: 20221716 DOI: 10.1007/s12015-010-9116-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, human amniotic fluid (AF) cells have attracted a great deal of attention as an alternative cell source for transplantation and tissue engineering. AF contains a variety of cell types derived from fetal tissues, of which a small percentage is believed to represent stem cell sub-population(s). In contrast to human embryonic stem (ES) cells, AF cells are not subject to extensive legal or ethical considerations; nor are they limited by lineage commitment characteristic of adult stem cells. However, to become therapeutically valuable, better protocols for the isolation of AF stem cell sub-populations need to be developed. This study was designed to examine the molecular components involved in self-renewal, neural commitment and differentiation of AF cells obtained at different gestational ages. Our results showed that, although morphologically heterogeneous, AF cells derived from early gestational periods ubiquitously expressed KERATIN 8 (K8), suggesting that the majority of these cells may have an epithelial origin. In addition, AF cells expressed various components of NOTCH signaling (ligands, receptors and target genes), a pathway involved in stem cell maintenance, determination and differentiation. A sub-population of K8 positive cells (<10%) co-expressed NESTIN, a marker detected in the neuroepithelium, neural stem cells and neural progenitors. Throughout the gestational periods, a much smaller AF cell sub-population (<1%) expressed pluripotency markers, OCT4a, NANOG and SOX2, from which SOX2 positive AF cells could be isolated through single cell cloning. The SOX2 expressing AF clones showed the capacity to give rise to a neuron-like phenotype in culture, expressing neuronal markers such as MAP2, NFL and NSE. Taken together, our findings demonstrated the presence of fetal cells with stem cell characteristics in the amniotic fluid, highlighting the need for further research on their biology and clinical applications.
Collapse
Affiliation(s)
- Anna Jezierski
- Neurogenesis and Brain Repair, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Thakoersing VS, Ponec M, Bouwstra JA. Generation of human skin equivalents under submerged conditions-mimicking the in utero environment. Tissue Eng Part A 2010; 16:1433-41. [PMID: 19929321 DOI: 10.1089/ten.tea.2009.0358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study we generated human skin equivalents (HSEs) under submerged conditions mimicking the aqueous in utero environment and investigated the morphology and differentiation process of the formed epidermis. Further, the skin barrier, which resides in the stratum corneum (SC), was characterized by its lipid content, hydration level, and natural moisturizing factor level. The submerged HSEs showed comparable tissue morphology and similar expression of several differentiation markers and SC lipid composition compared with HSEs grown at the air-liquid interface and native human skin. The SC of the submerged HSEs, however, contained more free water and less natural moisturizing factors compared with the air-exposed counterparts. These results show that the presented cell culture method can be utilized to generate HSEs under submerged conditions to study epidermal formation under aqueous conditions.
Collapse
Affiliation(s)
- Varsha S Thakoersing
- Department of Drug Delivery Technology, Leiden University , Leiden, The Netherlands
| | | | | |
Collapse
|
37
|
Desmosomes in developing human epidermis. Dermatol Res Pract 2010; 2010:698761. [PMID: 20592759 PMCID: PMC2879547 DOI: 10.1155/2010/698761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 04/02/2010] [Indexed: 11/17/2022] Open
Abstract
Desmosomes play important roles in the cell differentiation and morphogenesis of tissues. Studies on animal models have greatly increased our knowledge on epidermal development while reports on human developing skin are rare due to the difficult accessibility to the samples. Although the morphology of periderm cells and the process how the epidermis develops very much resemble each other, the timetable and the final outcome of a mature human epidermis markedly differ from those of murine skin. Even the genetic basis of the junctional components may have profound differences between the species, which might affect the implementation of the data from animal models in human studies. The aim of this review is to focus on the development of human skin with special emphasis on desmosomes. Desmosomal development is mirrored in perspective with other simultaneous events, such as maturation of adherens, tight and gap junctions, and the basement membrane zone.
Collapse
|
38
|
Ploeger A, Raijmakers MEJ, van der Maas HLJ, Galis F. The association between autism and errors in early embryogenesis: what is the causal mechanism? Biol Psychiatry 2010; 67:602-7. [PMID: 19932467 DOI: 10.1016/j.biopsych.2009.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/23/2009] [Accepted: 10/01/2009] [Indexed: 01/22/2023]
Abstract
The association between embryonic errors and the development of autism has been recognized in the literature, but the mechanism underlying this association remains unknown. We propose that pleiotropic effects during a very early and specific stage of embryonic development-early organogenesis-can explain this association. In humans early organogenesis is an embryonic stage, spanning Day 20 to Day 40 after fertilization, which is characterized by intense interactivity among body parts of the embryo. This implies that a single mutation or environmental disturbance affecting development at this stage can have several phenotypic effects (i.e., pleiotropic effects). Disturbances during early organogenesis can lead to many different anomalies, including limb deformities, craniofacial malformations, brain pathology, and anomalies in other organs. We reviewed the literature and found ample evidence for the association between autism and different kinds of physical anomalies, which agrees with the hypothesis that pleiotropic effects are involved in the development of autism. The proposed mechanism integrates findings from a variety of studies on autism, including neurobiological studies and studies on physical anomalies and prenatal influences on neurodevelopmental outcomes. The implication is that the origin of autism can be much earlier in embryologic development than has been frequently reported.
Collapse
Affiliation(s)
- Annemie Ploeger
- Department of Psychology, University of Amsterdam, 1018 WB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Abstract
Langerhans cells (LCs) refer to the dendritic cells (DCs) that populate the epidermis. Strategically located at one of the body's largest interfaces with the external environment, they form the first line of defense against pathogens that breach the skin. Although LCs share several phenotypical and functional features with lymphoid and non-lymphoid organ DCs, they also have unique properties that distinguish them from most DC populations. In this review, we will discuss the key mechanisms that regulate LC homeostasis in quiescent and inflamed skin. We will also discuss recent evidence that suggests that LCs arise from dedicated precursors during early embryonic development.
Collapse
|
40
|
Richardson RJ, Dixon J, Jiang R, Dixon MJ. Integration of IRF6 and Jagged2 signalling is essential for controlling palatal adhesion and fusion competence. Hum Mol Genet 2009; 18:2632-42. [PMID: 19439425 PMCID: PMC2701335 DOI: 10.1093/hmg/ddp201] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In mammals, adhesion and fusion of the palatal shelves are essential mechanisms during the development of the secondary palate; failure of these processes leads to the congenital anomaly, cleft palate. The mechanisms that prevent pathological adhesion between the oral and palatal epithelia while permitting adhesion and subsequent fusion of the palatal shelves via their medial edge epithelia remain obscure. In humans, mutations in the transcription factor interferon regulatory factor 6 (IRF6) underlie Van der Woude syndrome and popliteal pterygium syndrome. Recently, we have demonstrated that mice homozygous for a mutation in Irf6 exhibit abnormalities of epithelial differentiation that results in cleft palate as a consequence of adhesion between the palatal shelves and the tongue. In the current paper, we demonstrate that Irf6 is essential for oral epithelial differentiation and that IRF6 and the Notch ligand Jagged2 function in convergent molecular pathways during this process. We further demonstrate that IRF6 plays a key role in the formation and maintenance of the oral periderm, spatio-temporal regulation of which is essential for ensuring appropriate palatal adhesion.
Collapse
Affiliation(s)
- Rebecca J Richardson
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
41
|
Vemuganti GK, Fatima A, Madhira SL, Basti S, Sangwan VS. Chapter 5 Limbal Stem Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 275:133-81. [DOI: 10.1016/s1937-6448(09)75005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Tansirikongkol A, Hoath SB, Pickens WL, Visscher MO, Wickett RR. Equilibrium Water Content in Native Vernix and Its Cellular Component. J Pharm Sci 2008; 97:985-94. [PMID: 17721948 DOI: 10.1002/jps.21027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vernix caseosa is a naturally occurring substance coating the skin of newborn humans. Structurally, vernix contains fetal corneocytes embedded in a hydrophobic lipid matrix. Despite a relatively high water content approximating 80.7%, vernix exhibits slow water release. In this study, we quantified and contrasted the water release and uptake properties of native vernix and its isolated cellular component over the full range of water activity. Theoretical water sorption models (D'Arcy-Watt, and Frenkel-Halsey-Hill (FHH), and Guggenheim-Anderson-de Boer (GAB)) were fit to the vernix water sorption data. Each of the theoretical models provided a satisfactory description of the equilibrium water content of vernix over the water activity range 0.15-1.0. Vernix corneocytes without the surrounding lipid matrix exhibited markedly increased equilibrium water binding at water activities greater than 0.62 compared to native vernix. Resorption experiments showed full recovery of water content in both native vernix and isolated corneocytes supporting a structured internal domain. These results provide the first quantitative characterization of the water handling properties of native vernix and its cellular component. Such information may prove useful in the design of alternative skin care moisturizing formulations.
Collapse
|
43
|
van Echten-Deckert G, Saathoff M, Kirfel G, Herzog V. Specific distribution of barrier-relevant ceramides in the emerging epidermis and the periderm/subperiderm during chicken embryogenesis. Eur J Cell Biol 2007; 86:675-82. [PMID: 17397966 DOI: 10.1016/j.ejcb.2007.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022] Open
Abstract
During mammalian embryogenesis the emerging epidermis is temporarily covered by an epithelial monolayer, the periderm. In chicken, a second epithelial layer, the subperiderm, located underneath the periderm develops in later embryogenesis. Together the periderm and the subperiderm are referred to as the PSP unit. The cells of the PSP unit are tightly connected by tight junctions (TJ), thereby providing the embryo with an impermeable bilayered diffusion barrier. The emerging epidermis assumes its barrier function by cornification beginning at embryonic day 17 (E17) before at E18 the PSP unit undergoes desquamation. Lipid analysis of both epithelia after their mechanical separation revealed a dramatic increase to about 100-fold values of barrier-relevant ceramides, i.e. those known to essentially contribute to the diffusion barrier of the cornified envelope, in the emerging epidermis between E17 and E19. In contrast, the content of barrier-relevant ceramides in the PSP unit remained at constantly low levels throughout embryogenesis. These data strongly argue in favour of different mechanisms for the barrier function of the two epithelia. TJ in the PSP unit provide the main diffusion barrier protecting the embryo until beginning of desquamation at E18. At this developmental stage the content of cornified envelope-specific ceramides is substantially elevated, thus enabling the epidermis to fulfil its function as the major diffusion barrier after desquamation of the PSP unit. The observation that barrier-relevant ceramides are formed prior to desquamation of the PSP unit points to a precisely regulated sequence in that desquamation does not occur until the lipid-based barrier of the cornified envelope is completed and suggests in addition that these lipids might be essential regulators of the interaction between the PSP unit and the emerging epidermis.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | | | | | | |
Collapse
|
44
|
|
45
|
Casey LM, Lan Y, Cho ES, Maltby KM, Gridley T, Jiang R. Jag2-Notch1 signaling regulates oral epithelial differentiation and palate development. Dev Dyn 2006; 235:1830-44. [PMID: 16607638 PMCID: PMC3869087 DOI: 10.1002/dvdy.20821] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During mammalian palatogenesis, palatal shelves initially grow vertically from the medial sides of the paired maxillary processes flanking the developing tongue and subsequently elevate and fuse with each other above the tongue to form the intact secondary palate. Pathological palate-mandible or palate-tongue fusions have been reported in humans and other mammals, but the molecular and cellular mechanisms that prevent such aberrant adhesions during normal palate development are unknown. We previously reported that mice deficient in Jag2, which encodes a cell surface ligand for the Notch family receptors, have cleft palate associated with palate-tongue fusions. In this report, we show that Jag2 is expressed throughout the oral epithelium and is required for Notch1 activation during oral epithelial differentiation. We show that Notch1 is normally highly activated in the differentiating oral periderm cells covering the developing tongue and the lateral oral surfaces of the mandibular and maxillary processes during palate development. Oral periderm activation of Notch1 is significantly attenuated during palate development in the Jag2 mutants. Further molecular and ultrastructural analyses indicate that oral epithelial organization and periderm differentiation are disrupted in the Jag2 mutants. Moreover, we show that the Jag2 mutant tongue fused to wild-type palatal shelves in recombinant explant cultures. These data indicate that Jag2-Notch1 signaling is spatiotemporally regulated in the oral epithelia during palate development to prevent premature palatal shelf adhesion to other oral tissues and to facilitate normal adhesion between the elevated palatal shelves.
Collapse
Affiliation(s)
- Liam M. Casey
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Yu Lan
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Eui-Sic Cho
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Kathleen M. Maltby
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | | | - Rulang Jiang
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Author for correspondence: Rulang Jiang, Ph.D, Center for Oral Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 611, Rochester, NY 14642, Tel: (585)273-1426, Fax: (585)276-0190,
| |
Collapse
|
46
|
Iwasaki SI, Aoyagi H, Asami T. Expression of keratin 18 in the periderm cells of the lingual epithelium of fetal rats: visualization by fluorescence immunohistochemistry and differential interference contrast microscopy. Odontology 2006; 94:64-8. [PMID: 16998620 DOI: 10.1007/s10266-005-0059-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 12/15/2005] [Indexed: 11/26/2022]
Abstract
We examined the expression of keratin 18 (K18), by immunofluorescence staining, while monitoring morphological changes in the periderm on the lingual epithelium of rats by laser-scanning microscopy of epoxy resin-embedded, semi-ultrathin sections. We also examined differential interference contrast (DIC) images of the same sections to define the histology and morphology of the cells. It is difficult to visualize histological details of the fetal lingual epithelium of the rat on semi-ultrathin sections by light microscopy after immunohistochemical staining, because the histological structures in such sections cannot be distinguished by standard counterstaining. To solve this problem and to visualize keratin 18 (K18), we used a combination of immunofluorescence staining of semi-ultrathin sections and corresponding differential contrast (DIC) images, obtained by laser-scanning microscopy.
Collapse
Affiliation(s)
- Shin-ichi Iwasaki
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | | | |
Collapse
|
47
|
Matic M. A subpopulation of human basal keratinocytes has a low/negative MHC class I expression. Hum Immunol 2005; 66:962-8. [PMID: 16360835 DOI: 10.1016/j.humimm.2005.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Indexed: 10/25/2022]
Abstract
By means of flow cytometry, we demonstrate that a subpopulation of cells in the basal layer of the human epidermis has undetectable levels of major histocompatibility complex (MHC) class I molecule. The percentage of MHC class I-negative cells in the basal layer ranged 0.5%-2%. MHC class I-negative cells were characterized by small size (low forward scatter) and low granularity (low side scatter). Upon culturing of MHC class I-negative cells, increase of MHC class I expression was observed. This expression was lower than the expression of MHC class I molecule both in cultured MHC class I-positive cells and in ex vivo keratinocytes. Furthermore, stimulation of MHC class I-negative keratinocytes with interferon gamma (IFN-gamma) did not bring about further increase in MHC class I expression. MHC class I-negative cells were identified as keratinocytes as they expressed keratin 14 and formed keratinocyte colonies in vitro.
Collapse
Affiliation(s)
- Maja Matic
- Department of Biochemistry, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|
48
|
Zhang J, Zhi HY, Ding F, Luo AP, Liu ZH. Transglutaminase 3 expression in C57BL/6J mouse embryo epidermis and the correlation with its differentiation. Cell Res 2005; 15:105-10. [PMID: 15740639 DOI: 10.1038/sj.cr.7290274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epidermal-type transglutaminase 3 (TGM3) is involved in the cross-linking of structural proteins to form the cornified envelope in the epidermis. In the present study, we detected the expression of TGM3 in the mouse embryo using RT-PCR. TGM3 mRNA is weakly presented from E11.5 to E14.5 and increases significantly from E15.5 to birth. Then we determined the spatial and temporal expression pattern of TGM3 in the skin and other organs by in situ hybridization. We found a deprivation of TGM3 in skin at E11.5, while a rich supply in periderm cells and a weak expression in basal cells from E12.5 to E14.5. From the period of E15.5 to E16.5, after keratinization in the epidermis, TGM3 was expressed in the granular and cornified layers. The electron microscopic observation of the C57BL/6J mouse limb bud skin development provided several morphological evidences for the epidermal differentiation. The above findings suggest that the expression of TGM3 plays a important role in the epidermis differentiation in embryogenesis.
Collapse
Affiliation(s)
- Jian Zhang
- National Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | | | | | | |
Collapse
|
49
|
Abstract
Surface epithelial cells, such as the epidermal keratinocyte, undergo a process of terminal cell differentiation that results in the construction of a multilayered epithelium. This epithelium functions to protect the organism from the environment. Transglutaminases, enzymes that catalyze the formation of isopeptide protein-protein cross-links, are key enzymes involved in the construction of this structure. This brief review will focus on the role of these enzymes in constructing the epidermal surface.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Physiology and Biophysics, Case School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
50
|
Saathoff M, Blum B, Quast T, Kirfel G, Herzog V. Simultaneous cell death and desquamation of the embryonic diffusion barrier during epidermal development. Exp Cell Res 2004; 299:415-26. [PMID: 15350540 DOI: 10.1016/j.yexcr.2004.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier.
Collapse
Affiliation(s)
- Manuela Saathoff
- Institute of Cell Biology and Bonner Forum Biomedizin, University of Bonn, D-53121 Bonn, Germany
| | | | | | | | | |
Collapse
|