1
|
Yang T, Zhang X, Yan Y, Liu Y, Lin X, Li W. Artificial intelligence-driven quantification of antibiotic-resistant Bacteria in food by color-encoded multiplex hydrogel digital LAMP. Food Chem 2025; 468:142304. [PMID: 39667227 DOI: 10.1016/j.foodchem.2024.142304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Antibiotic-resistant bacteria pose considerable risks to global health, particularly through transmission in the food chain. Herein, we developed the artificial intelligence-driven quantification of antibiotic-resistant bacteria in food using a color-encoded multiplex hydrogel digital loop-mediated isothermal amplification (LAMP) system. The quenching of unincorporated amplification signal reporters (QUASR) was first introduced in multiplex digital LAMP. During amplification, primers labeled with different fluorophores were integrated into amplicons, generating color-specific fluorescent spots. While excess primers were quenched by complementary quenching probes. After amplification, fluorescent spots in red, green, and blue emerged in hydrogels, which were automatically identified and quantified using a deep learning model. Methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli in real fruit and vegetable samples were also successfully detected. This artificial intelligence-driven color-encoded multiplex hydrogel LAMP offers promising potential for the digital quantification of antibiotic-resistant bacteria in the food industry.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyang Zhang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yuhua Yan
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou 325006, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Wang M, Cai X, Lv Q, Han J, Liu Q, Hu S, Miao M, Jiang Y, Wang Z. One-Step Synthesis of Carboxylated Polyethylene Glycol-Modified Polystyrene Microspheres and Their Application in the Luminescent Oxygen Channel Immunoassay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39866004 DOI: 10.1021/acs.langmuir.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As one of the key diagnostic methods for detecting biomarkers and antigen-antibody interactions, the luminescent oxygen channel immunoassay (LOCI) has been widely applied in bioanalysis and other fields. In the context of LOCI, the performance of the prepared donor polystyrene (PS) microspheres significantly impacts the detection signal values. In this study, an attempt was made to synthesize PS microspheres via one-step polymerization of styrene with an amphiphilic monomer (PEOOH), followed by swelling the silicon phthalocyanine photosensitizer into the PS microspheres, resulting in the functionalization of the PS microspheres with polyethylene glycol segments. The chemical stability and water solubility of polyethylene glycol (PEG) make it a versatile surface modification material while also inhibiting nonspecific protein adsorption. Results indicated that with increasing PEOOH content, the nonspecific protein adsorption of the resulting PS microspheres reduced, with the adsorption ability for BSA decreasing from 26.8 to 1.3 mg/g, approximately decreasing by 95.2%. Furthermore, the results demonstrated that PS microspheres prepared with 6% PEOOH exhibited a maximum signal-to-noise ratio (S/N) (approximately 28.7), nearly 14 times higher than PS microspheres without PEOOH (approximately 2.1). The analytical performance of the system for detecting staphylococcal enterotoxin B (SEB) revealed a detection limit of 0.1 ng/mL and a linear concentration range of 0.1 to 50 ng/mL for the donor PS microspheres (6% PEOOH). The synthesized donor PS microspheres exhibit a uniform particle size and stable signals, making them effective LOCI microcarriers. These properties facilitate a deeper understanding of molecular interactions and signal transduction mechanisms within biological systems.
Collapse
Affiliation(s)
- Meng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiangyu Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qingyu Lv
- Academy of Military Medical Sciences, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Jiaxing Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qi Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaojun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Miao Miao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yongqiang Jiang
- Academy of Military Medical Sciences, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Zhang H, Zhang Q, Li N, Yang G, Cheng Z, Du X, Sun L, Wang W, Li B. Advances in the application of carbon dots-based fluorescent probes in disease biomarker detection. Colloids Surf B Biointerfaces 2025; 245:114360. [PMID: 39520938 DOI: 10.1016/j.colsurfb.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Carbon dots (CDs), as an emerging nanomaterial, have shown tremendous potential in disease biomarker detection. CDs can selectively interact with different target molecules, enabling highly sensitive and specific detection of these biomolecules. Compared to traditional detection methods, CDs sensors offer advantages such as rapid response, high detection sensitivity, and low cost. In this review, we summarize the latest advances in the application of CDs fluorescence probes for the detection of disease biomarkers, including sensing mechanisms, and their applications in the selective detection of metal ions, amino acids, enzymes, proteins, other biomolecules, as well as bacteria and viruses. We discuss the current challenges and issues associated with the practical application of CDs-based fluorescent probes. Furthermore, we propose future directions for the development of CDs. We hope that this review will provide new insights for researchers in the field of disease biomarker detection.
Collapse
Affiliation(s)
- Haoqi Zhang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Qingmei Zhang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Naihui Li
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guoqing Yang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zewei Cheng
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiujuan Du
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Lingxiang Sun
- Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Wei Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Bing Li
- Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
4
|
Li Q, Yang Y, Tan M, Xia H, Peng Y, Fu X, Huang Y, Ma X. Rapid Detection of Single Bacteria Using Filter-Array-Based Hyperspectral Imaging Technology. Anal Chem 2024; 96:17244-17252. [PMID: 39420628 DOI: 10.1021/acs.analchem.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Rapid and accurate detection of bacterial pathogens is crucial for preventing widespread public health crises, particularly in the food industry. Traditional methods are often slow and require extensive labeling, which hampers timely responses to potential threats. In response, we introduce a groundbreaking approach using filter-array-based hyperspectral imaging technology, enhanced by a super-resolution demosaicking technique. This innovative technology streamlines the detection process and significantly enhances the resolution of mosaic hyperspectral imaging. By utilizing a snapshot hyperspectral camera with a 15 ms integration time, it facilitates the identification of bacteria at the single-cell level without requiring chemical labels. The integration of a 3D convolutional neural network optimizes the recognition of pathogenic bacteria, achieving an impressive accuracy of 91.7%. Our approach dramatically improves the efficiency and effectiveness of bacterial detection, providing a promising solution for critical applications in public health and the food industry.
Collapse
Affiliation(s)
- Qifeng Li
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yunpeng Yang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Mei Tan
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Hua Xia
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yingxiao Peng
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoran Fu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yinguo Huang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangyun Ma
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Jiang H, Chang W, Zhu X, Liu G, Liu K, Chen W, Wang H, Qin P. Development of a Colorimetric and SERS Dual-Signal Platform via dCas9-Mediated Chain Assembly of Bifunctional Au@Pt Nanozymes for Ultrasensitive and Robust Salmonella Assay. Anal Chem 2024; 96:12684-12691. [PMID: 39037392 DOI: 10.1021/acs.analchem.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Timely screening for harmful pathogens is a great challenge in emergencies where traditional culture methods suffer from long assay time and alternative methods are limited by poor accuracy and low robustness. Herein, we present a dCas9-mediated colorimetric and surface-enhanced Raman scattering (SERS) dual-signal platform (dCas9-CSD) to address this challenge. Strategically, the platform used dCas9 to accurately recognize the repetitive sequences in amplicons produced by loop-mediated isothermal amplification (LAMP), forming nucleic acid frameworks that assemble numerous bifunctional gold-platinum (Au@Pt) nanozymes into chains on the surface of streptavidin-magnetic beads (SA-MB). The collected Au@Pt converted colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) via its Pt shell and then enhanced the Raman signal of oxTMB by its Au core. Therefore, the presence of Salmonella could be dexterously converted into cross-validated colorimetric and SERS signals, providing more reliable conclusions. Notably, dCas9-mediated secondary recognition of amplicons reduced background signal caused by nontarget amplification, and two-round signal amplification consisting of LAMP reaction and Au@Pt catalysis greatly improved the sensitivity. With this design, Salmonella as low as 1 CFU/mL could be detected within 50 min by colorimetric and SERS modes. The robustness of dCas9-CSD was further confirmed by various real samples such as lake water, cabbage, milk, orange juice, beer, and eggs. This work provides a promising point-of-need tool for pathogen detection.
Collapse
Affiliation(s)
- Han Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wei Chang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, PR China
| | - Xiaofan Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Gang Liu
- Environmental Protection Monitoring Station, Anhui Provincial Lake Chaohu Administration, Chaohu 238000, PR China
| | - Kaiyong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Wei Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Hua Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, PR China
| | - Panzhu Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| |
Collapse
|
6
|
Sutarlie L, Chee HL, Ow SY, Su X. A Rapid Total Bacterial Count Method for Food Samples using Syringe Filters and Lectin-Conjugated Semiconductor Nanorods. Chem Asian J 2024; 19:e202400332. [PMID: 38785228 DOI: 10.1002/asia.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Total bacterial count in food is one of important food safety criteria. The current plate count method (Heterotrophic Plate Count) for food analysis requires microbiology lab facilities and at least 2 days turnover time. We developed a rapid fluorescence-based total bacterial count method that utilises semiconductor nanorods (SNRs) conjugated with a lectin Griffonia simplicifolia II (GSII-SNRs) to stain bacterial cells captured on syringe filters, via the common N-acetylglucosamine molecules on bacterial cell wall. This "Filter-and-Stain" detection method has a rapid turnover time of 20 min. The fluorescence emission can be seen under UV light with minimum interference from food sample background. The fluorescence intensity quantified through image analysis is proportional to the bacterial concentration with a limit of detection of 1000 CFU/mL, for total bacterial count assessment in food safety. Moreover, the GSII-SNRs do not bind to heat inactivated bacterial cells, and thus can differentiate live and dead bacteria. Our method has been validated with representative food (coffee powder, raw spinach leaves, and ready-to-eat tomato salsa) to demonstrate its high potential for on-site food safety assessment, especially in places with no immediate access to microbiology labs.
Collapse
Affiliation(s)
- Laura Sutarlie
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Heng Li Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Sian Yang Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Chemistry, National University of Singapore, Block S8, level 3, 3 Science Drive 3, Singapore, Singapore, 117543
| |
Collapse
|
7
|
Zhang W, Li W, Song Y, Xu Q, Xu H. Bacterial detection based on Förster resonance energy transfer. Biosens Bioelectron 2024; 255:116244. [PMID: 38547644 DOI: 10.1016/j.bios.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The huge economic loss and threat to human health caused by bacterial infection have attracted the public's concern, and there is an urgent need to relieve and improve the tough problem. Therefore, it is significant to establish a facile, rapid, and sensitive method for bacterial detection considering the shortcomings of existing methods. Förster resonance energy transfer (FRET)-based sensors have exhibited immense potential and applicability for bacterial detection given their high signal-to-noise ratio and high sensitivity. This review focuses on the development of FRET-based fluorescence assays for bacterial detection. We summarize the principle of FRET-based assays, discuss the commonly used recognition molecules and further introduce three frequent construction strategies. Based on the strategies and materials, relevant applications are presented. Moreover, some restrictions of FRET fluorescence sensors and development prospects are discussed. Suitable donor-acceptor pairs and stable recognition molecules are the essential conditions for sensors to play their roles, and there is still some room for development. Besides, applying FRET fluorescence sensors to point-of-care detection is still difficult. Future developments could focus on near-infrared fluorescent dyes and simultaneous detection of multiple analytes.
Collapse
Affiliation(s)
- Wanqing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
8
|
Zhang X, Wang X, Shi B, Li J, Fan Y, Li Y, Shi C, Ma C. A biphasic accelerated strand exchange amplification strategy for culture-independent and rapid detection of Salmonella enterica in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4083-4092. [PMID: 38855899 DOI: 10.1039/d4ay00613e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Salmonella enterica is a common foodborne pathogen that can cause food poisoning in humans. The organism also infects and causes disease in animals. Rapid and sensitive detection of S. enterica is essential to prevent the spread of this pathogen. Traditional technologies for the extraction and detection of this pathogen from complex food matrices are cumbersome and time-consuming. In this study, we introduced a novel strategy of biphasic assay integrated with an accelerated strand exchange amplification (ASEA) method for efficient detection of S. enterica without culture or other extraction procedures. Food samples are rapidly dried, resulting in a physical fluidic network inside the dried food matrix, which allows polymerases and primers to access the target DNA and initiate ASEA. The dried food matrix is defined as the solid phase, while amplification products are enriched in the supernatant (liquid phase) and generate fluorescence signals. The analytical performances demonstrated that this strategy was able to specifically identify S. enterica and did not show any cross-reaction with other common foodborne pathogens. For artificially spiked food samples, the strategy can detect 5.0 × 101 CFU mL-1S. enterica in milk, 1.0 × 102 CFU g-1 in duck, scallop or lettuce, and 1.0 × 103 CFU g-1 in either oyster or cucumber samples without pre-enrichment of the target pathogen. We further validated the strategy using 82 real food samples, and this strategy showed 92% sensitivity. The entire detection process can be finished, sample-to-answer, within 50 min, dramatically decreasing the detection time. Therefore, we believe that the proposed method enables rapid and sensitive detection of S. enterica and holds great promise for the food safety industry.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiujuan Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Binghui Shi
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Junfeng Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
9
|
Eser E, Ekiz OÖ, Ekiz Hİ. Utilizing fab fragment-conjugated surface plasmon resonance-based biosensor for detection of Salmonella Enteritidis. J Mol Recognit 2024; 37:e3078. [PMID: 38400609 DOI: 10.1002/jmr.3078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/05/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Although antibodies, a key element of biorecognition, are frequently used as biosensor probes, the use of these large molecules can lead to adverse effects. Fab fragments can be reduced to allow proper antigen-binding orientation via thiol groups containing Fab sites that can directly penetrate Au sites chemically. In this study, the ability of the surface plasmon resonance (SPR) sensor to detect Salmonella was studied. Tris(2-carboxyethyl)phosphine was used as a reducing agent to obtain half antibody fragments. Sensor surface was immobilized with antibody, and bacteria suspensions were injected from low to high concentrations. Response units were changed by binding first reduced antibody fragments, then bacteria. The biosensor was able to determine the bacterial concentrations between 103 and 108 CFU/mL. Based on these results, the half antibody fragmentation method can be generalized for faster, label-free, sensitive, and selective detection of other bacteria species.
Collapse
Affiliation(s)
- Esma Eser
- Department of Food Engineering, Canakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Okan Öner Ekiz
- Department of Material Science and Engineering, OSTİM Teknical University, Ankara, Turkey
- Nanodev Scientific, Bilkent Cyberpark, Ankara, Turkey
| | - H İbrahim Ekiz
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
10
|
Zuponcic J, Cunha F, Springer G, Ximenes E, Ladisch MR. Effect of flux and shear rate on E. coli recovery in tangential flow filtration through a single hollow fiber. Biotechnol Prog 2024; 40:e3432. [PMID: 38329370 DOI: 10.1002/btpr.3432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Pathogenic bacteria which enter a viable but non-culturable (VBNC) state impede efforts to reach detectable concentrations required for PCR methods. This motivated a strategy for tangential flow filtration to concentrate bacteria in aqueous samples while maintaining the bacteria in a viable state, maximizing their recovery and achieving high fluxes through a single hollow fiber membrane. Filtrations were carried out for green fluorescent protein (GFP) E. coli at high shear rates (up to 27,000 sec-1) through 0.2 μm cut-off polyethersulfone (PES) microfilter membranes or 50 kDa polysulfone (PS) ultrafilter membranes. High shear minimized bacterial attachment on membrane surfaces, which would otherwise occur due to forced convection of the particles to the membrane surface at high flux conditions. Single fiber filter modules were constructed to facilitate concentration of Escherichia coli at fluxes ranging from 55 to 4500 L m-2 h-1. The effect of high shear rates on bacterial viability was found to be minimal with bacterial losses during filtration caused principally by their accumulation on the membrane surface. Recoveries of 90% were achievable at high shear rates when the average flux was ≤300 L m-2 h-1. This corresponded to a 3-h filtration time for a 225 mL sample through a single hollow fiber. Detectable bacteria concentrations of 1800 colony-forming unit (CFU)/mL were achieved for starting concentrations of 140 CFU/mL.
Collapse
Affiliation(s)
- Jessica Zuponcic
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Fernanda Cunha
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Grant Springer
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Eduardo Ximenes
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Environmental and Occupational Health, Indiana University, Bloomington, Indiana, USA
| | - Michael R Ladisch
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Delgado E, Katchman B, Stice S, Calle A. Independent evaluation of a DNA microarray system for Salmonella detection in ground beef. Food Microbiol 2024; 118:104406. [PMID: 38049268 DOI: 10.1016/j.fm.2023.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 12/06/2023]
Abstract
A new DNA microarray test kit has been developed to detect foodborne pathogens in various food matrices. This study focuses on evaluating the PathogenDx microarray-based system to detect Salmonella in ground beef and verify critical parameters that could interfere with the method's effectiveness, such as enrichment incubation time, ground beef fat content, inclusivity, exclusivity, and analytical sensitivity. Sample preparation protocols were evaluated at 6, 8, 12, 18, and 24 h enrichment times at varying bacterial levels to identify optimal conditions to detect the invA gene using the PathogenDx microarray. An 8 h enrichment step was selected based on 100% detection when initial inoculum levels were ≥5 CFU/g, and fractional detection was achieved when the concentration was as low as 1 CFU/g. Thus, the detection of Salmonella using the PathogenDx microarray system can be conducted in 12.5 h, including sample preparation, labeling PCR, hybridization, and analysis. Regarding fat content, there was no significant difference in detection rates of PathogenDx protocol among the highest and lowest commercially sold lean-to-fat ratios of ground beef. Inclusivity and exclusivity experiments showed that Salmonella was correctly identified 100% of the time. Using the ground beef matrix, PathogenDx method is comparable to the United States Department of Agriculture's Microbiology Laboratory Guidebook methodology for detection, which correctly identified Salmonella in 100% of the samples. Salmonella was detected between 93.33 and 100% when ground beef was inoculated with 1 and 5 CFU/g, respectively.
Collapse
Affiliation(s)
- Emily Delgado
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | | | | | - Alexandra Calle
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA.
| |
Collapse
|
12
|
Ma Y, Wei H, Wang Y, Cheng X, Chen H, Yang X, Zhang H, Rong Z, Wang S. Efficient magnetic enrichment cascade single-step RPA-CRISPR/Cas12a assay for rapid and ultrasensitive detection of Staphylococcus aureus in food samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133494. [PMID: 38228008 DOI: 10.1016/j.jhazmat.2024.133494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Staphylococcus aureus (S. aureus) is a prevalent foodborne pathogen that could cause severe food poisoning. Thus, rapid, efficient, and ultrasensitive detection of S. aureus in food samples is urgently needed. Here, we report an efficient magnetic enrichment cascade single-step recombinase polymerase amplification (RPA)-CRISPR/Cas12a assay for the ultrasensitive detection of S. aureus. Magnetic beads (MBs) functionalized with S. aureus-specific antibodies were initially used for S. aureus enrichment from the complex matrix, with 98% capture efficiency in 5 min and 100-fold sensitivity improvement compared with unenriched S. aureus. Next, a single-step RPA-CRISPR/Cas12a-based diagnostic system with optimized extraction-free bacteria lysis was constructed. This assay could detect as low as 1 copy/μL (five copies/reaction) of extracted DNA template and 10 CFU/mL of S. aureus within 40 min. Furthermore, the assay could effectively detect S. aureus in real food samples such as lake water, orange juice, pork, and lettuce, with concordant results to qPCR assays. The proposed cascade signal-amplification assay eliminates the need for lengthy bacterial culture and complex sample preparation steps. Hence, the proposed assay shows great application potential for rapid, efficient, and ultrasensitive detection of pathogens in real food samples.
Collapse
Affiliation(s)
- Yujie Ma
- College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, PR China; Bioinformatics Center of AMMS, Beijing 100850, PR China
| | - Hongjuan Wei
- Bioinformatics Center of AMMS, Beijing 100850, PR China
| | - Yunxiang Wang
- Bioinformatics Center of AMMS, Beijing 100850, PR China
| | - Xiaodan Cheng
- Bioinformatics Center of AMMS, Beijing 100850, PR China
| | - Hong Chen
- Bioinformatics Center of AMMS, Beijing 100850, PR China
| | | | - Hongsheng Zhang
- College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing 100850, PR China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, PR China.
| |
Collapse
|
13
|
Di Maro O, Proroga YT, Castellano S, Balestrieri A, Capuano F, Arletti E, Vietina M, Bizzarri M, Murru N, Peruzy MF, Cristiano D. Detection of pathogenic Vibrio spp. in foods: polymerase chain reaction-based screening strategy to rapidly detect pathogenic Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus in bivalve mollusks and preliminary results. Ital J Food Saf 2024; 13:11635. [PMID: 38623280 PMCID: PMC11017957 DOI: 10.4081/ijfs.2024.11635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2023] [Indexed: 04/17/2024] Open
Abstract
The majority of human diseases attributed to seafood are caused by Vibrio spp., and the most commonly reported species are Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae. The conventional methods for the detection of Vibrio species involve the use of selective media, which are inexpensive and simple but time-consuming. The present work aimed to develop a rapid method based on the use of multiplex real-time polymerase chain reaction (PCR) to detect V. parahaemolyticus, V. vulnificus, and V. cholerae in bivalve mollusks. 30 aliquots of bivalve mollusks (Mytilus galloprovincialis) were experimentally inoculated with two levels of V. parahaemolyticus, V. vulnificus, and V. cholerae. ISO 21872-1:2017 was used in parallel for qualitative analysis. The limit of detection of 50% was 7.67 CFU/g for V. cholerae, 0.024 CFU/g for V. vulnificus, and 1.36 CFU/g for V. parahaemolyticus. For V. vulnificus and V. cholerae, the real-time PCR protocol was demonstrated to amplify the pathogens in samples seeded with the lowest and highest levels. The molecular method evaluated showed a concordance rate of 100% with the reference microbiological method. V. parahaemolyticus was never detected in samples contaminated with the lowest level, and it was detected in 14 samples (93.33%) seeded with the highest concentration. In conclusion, the developed multiplex real-time PCR proved to be reliable for V. vulnificus and V. cholerae. Results for V. parahaemolyticus are promising, but further analysis is needed. The proposed method could represent a quick monitoring tool and, if used, would allow the implementation of food safety.
Collapse
Affiliation(s)
- Orlandina Di Maro
- Department of Food Inspection, Experimental Zooprophylactic Institute of Southern Italy, Portici
| | - Yolande T.R. Proroga
- Department of Food Inspection, Experimental Zooprophylactic Institute of Southern Italy, Portici
| | - Silvia Castellano
- Department of Food Inspection, Experimental Zooprophylactic Institute of Southern Italy, Portici
| | - Anna Balestrieri
- Department of Food Inspection, Experimental Zooprophylactic Institute of Southern Italy, Portici
| | - Federico Capuano
- Department of Food Inspection, Experimental Zooprophylactic Institute of Southern Italy, Portici
| | | | | | | | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Maria Francesca Peruzy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Daniela Cristiano
- Department of Food Inspection, Experimental Zooprophylactic Institute of Southern Italy, Portici
| |
Collapse
|
14
|
Mishra KK, Dhamu VN, Poudyal DC, Muthukumar S, Prasad S. PathoSense: a rapid electroanalytical device platform for screening Salmonella in water samples. Mikrochim Acta 2024; 191:146. [PMID: 38372811 DOI: 10.1007/s00604-024-06232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Salmonella contamination is a major global health challenge, causing significant foodborne illness. However, current detection methods face limitations in sensitivity and time, which mostly rely on the culture-based detection techniques. Hence, there is an immediate and critical need to enhance early detection, reduce the incidence and impact of Salmonella contamination resulting in outbreaks. In this work, we demonstrate a portable non-faradaic, electrochemical sensing platform capable of detecting Salmonella in potable water with an assay turnaround time of ~ 9 min. We evaluated the effectiveness of this sensing platform by studying two sensor configurations: one utilizing pure gold (Au) and the other incorporating a semiconductor namely a zinc oxide thin film coated on the surface of the gold (Au/ZnO). The inclusion of zinc oxide was intended to enhance the sensing capabilities of the system. Through comprehensive experimentation and analysis, the LoD (limit of detection) values for the Au sensor and Au/ZnO sensor were 0.9 and 0.6 CFU/mL, respectively. In addition to sensitivity, we examined the sensing platform's precision and reproducibility. Both the Au sensor and Au/ZnO sensor exhibited remarkable consistency, with inter-study percentage coefficient of variation (%CV) and intra-study %CV consistently below 10%. The proposed sensing platform exhibits high sensitivity in detecting low concentrations of Salmonella in potable water. Its successful development demonstrates its potential as a rapid and on-site detection tool, offering portability and ease of use. This research opens new avenues for electrochemical-based sensors in food safety and public health, mitigating Salmonella outbreaks and improving water quality monitoring.
Collapse
Affiliation(s)
- Kundan Kumar Mishra
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | - Durgasha C Poudyal
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.
- EnLiSense LLC, 1813 Audubon Pondway, Allen, TX, 75013, USA.
| |
Collapse
|
15
|
Shen H, Xie J, Gao W, Wang L, Chen L, Qian H, Yu S, Feng B, Yang F. Detection limit of FT-IR-based bacterial typing based on optimized sample preparation and typing model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123633. [PMID: 37952427 DOI: 10.1016/j.saa.2023.123633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Accurate and efficient bacterial typing methods are crucial to microbiology. Fourier transform infrared (FT-IR) spectroscopy enables highly distinguishable fingerprint identification of closely related bacterial strains by producing highly specific fingerprints of bacteria, which is increasingly being considered as an alternative to genotypic methods, such as pulsed field gel electrophoresis (PFGE) and whole genome sequencing (WGS), for bacterial typing. Compared with genotypic methods, FT-IR has significant advantages of convenient operation, fast speed, and low cost. Fundamental research into the detection limit based on optimized analytical conditions for FT-IR bacterial typing, which can avoid excessive bacterial culture time or sampling volume, is particularly important, especially in clinical practice. However, the corresponding parameters have not been fully investigated. In this study, we developed a simplified and reliable procedure for sample preparation, optimized the data analysis procedure, and evaluated the FT-IR detection limit based on the above conditions. In particular, we combined the film mold and calcium fluoride plate for sample preparation. We evaluated the detection limit (about 108 CFU/mL) after parameter optimization using hierarchical cluster analysis (HCA) and artificial neural network (ANN). The optimization and evaluation of these key fundamentals will better promote future application of FT-IR-based bacterial typing.
Collapse
Affiliation(s)
- Hao Shen
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinghang Xie
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenjing Gao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | | | - Heng Qian
- Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Feng
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| |
Collapse
|
16
|
Chu Z, Chen J, Zhang J, Xie Q, Zhang F, Wang Q. Cyclic Multiple Primer Generation Rolling Circle Amplification Assisted Capillary Electrophoresis for Simultaneous and Ultrasensitive Detection of Multiple Pathogenic Bacteria. Anal Chem 2024; 96:1781-1788. [PMID: 38214113 DOI: 10.1021/acs.analchem.3c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Efficient, accurate, and economical detection of pathogenic bacteria is crucial in ensuring food safety and preventing foodborne illnesses. How to fulfill the highly sensitive and simultaneous detection of multiple trace pathogenic bacteria is a big challenge. In this work, capillary electrophoresis coupled with a cyclic multiple primer generation rolling circle amplification (cyclic MPG-RCA) was studied for highly sensitive and simultaneous detection of three kinds of pathogenic bacteria. The cyclic MPG-RCA was based on a carefully designed clover-shaped DNA probe, in which three "leaves" corresponded to three types of aimed pathogenic bacteria: Shigella dysenteriae (S. dysenteriae), Salmonella enterica subsp. enterica serovar Typhi (S. Typhi), and Vibrio parahaemolyticus (V. parahaemolyticus). Under the optimal experimental conditions, the limits of detection (S/N = 3) of this method for bacterial target DNA were 11.4 amol·L-1 (S. dysenteriae), 4.88 amol·L-1 (S. Typhi), and 14.9 amol·L-1 (V. parahaemolyticus), and the conversion concentrations for the target bacteria were 10 colony-forming units (CFU)·mL-1 (S. dysenteriae), 3 CFU·mL-1 (S. Typhi), and 12 CFU·mL-1 (V. parahaemolyticus). This method had been applied to the detection of tap water samples with good results, which proved that it could be used as an effective tool for trace pathogenic bacteria monitoring in foods, environments, and medicines.
Collapse
Affiliation(s)
- Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jingyi Chen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jingzi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Qihui Xie
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
17
|
Zhao L, Formslag CR, Zhang Q, Cowan BC, Mayberry TG, Barnhill AR, Wang Y, Fang Y. Determination of Ideal Factors for Early Adoption and Standardization of Metagenomic Next-generation Sequencing for Respiratory System Infections. Curr Pharm Biotechnol 2024; 25:2266-2277. [PMID: 38347797 DOI: 10.2174/0113892010246350231030042340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2024]
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) demonstrates great promise as a diagnostic tool for determining the cause of pathogenic infections. The standard diagnostic procedures (SDP) include smears and cultures and are typically viewed as less sensitive and more time-consuming when compared to mNGS. There are concerns about the logistics and ease of transition from SDP to mNGS. mNGS lacks standardization of collection processes, databases, and sequencing. Additionally, there is the burden of training clinicians on interpreting mNGS results. OBJECTIVE Until now, few studies have explored factors that could be used as early adoption candidates to ease the transition between SDP and mNGS. This study evaluated 123 patients who had received both SDP and mNGS and compared several variables across a diagnostic test evaluation. METHODS The diagnostic test evaluation observed metrics such as sensitivity, specificity, positive and negative likelihood ratios (PLR, NLR), positive and negative predictive values (PPV, NPV), and accuracy. Factors included various sample sources such as bronchoalveolar lavage fluid (BALF), lung tissue, and cerebral spinal fluid (CSF). An additional factor observed was the patient's immune status. RESULTS Pathogen detection was found to be significantly greater for mNGS for total patients, BALF sample source, CSF sample source, and non-immunocompromised patients (p<0.05). Pathogen detection was found to be insignificant for lung tissue sample sources and immunocompromised patients. Sensitivity, PLR, NLR, PPV, NPV, and accuracy appeared to be higher with mNGS for the total patients, BALF sample source, and non-immunocompromised patients when compared with SDP (p<0.05). CONCLUSION With higher metrics in sensitivity, specificity, PLR, NLR, PPV, NPV, and accuracy for overall patients, mNGS may prove a better diagnostic tool than SDP. When addressing sample sources, mNGS for BALF-collected samples appeared to have higher scores than SDP for the same metrics. When patients were in a non-immunocompromised state, mNGS also demonstrated greater diagnostic benefits to BALF and overall patients compared to SDP. This study demonstrates that using BALF as a sample source and selecting non-immunocompromised patients may prove beneficial as early adoption factors for mNGS standard protocol. Such a study may pave the road for mNGS as a routine clinical method for determining the exact pathogenic etiology of lung infections.
Collapse
Affiliation(s)
- Lei Zhao
- The Department of Respiratory Medicine, the Second People's Hospital of Hefei and Hefei Second People's Hospital Affiliated to Bengbu Medical College, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Cole R Formslag
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312, USA
| | - Qing Zhang
- The Department of Respiratory Medicine, the Second People's Hospital of Hefei and Hefei Second People's Hospital Affiliated to Bengbu Medical College, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Braydon C Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Trenton G Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Aaron R Barnhill
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yongsheng Wang
- The Department of Respiratory Medicine, the Second People's Hospital of Hefei and Hefei Second People's Hospital Affiliated to Bengbu Medical College, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| |
Collapse
|
18
|
Shivaram KB, Bhatt P, Verma MS, Clase K, Simsek H. Bacteriophage-based biosensors for detection of pathogenic microbes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165859. [PMID: 37516175 DOI: 10.1016/j.scitotenv.2023.165859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Wastewater is discarded from several sources, including industry, livestock, fertilizer application, and municipal waste. If the disposed of wastewater has not been treated and processed before discharge to the environment, pathogenic microorganisms and toxic chemicals are accumulated in the disposal area and transported into the surface waters. The presence of harmful microbes is responsible for thousands of human deaths related to water-born contamination every year. To be able to take the necessary step and quick action against the possible presence of harmful microorganisms and substances, there is a need to improve the effective speed of identification and treatment of these problems. Biosensors are such devices that can give quantitative information within a short period of time. There have been several biosensors developed to measure certain parameters and microorganisms. The discovered biosensors can be utilized for the detection of axenic and mixed microbial strains from the wastewaters. Biosensors can further be developed for specific conditions and environments with an in-depth understanding of microbial organization and interaction within that community. In this regard, bacteriophage-based biosensors have become a possibility to identify specific live bacteria in an infected environment. This paper has investigated the current scenario of microbial community analysis and biosensor development in identifying the presence of pathogenic microorganisms.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Mohit S Verma
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Kari Clase
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
19
|
Li Y, Zhao Z, Liu Y, Wang N, Man S, Ma L, Wang S. CRISPR/Cas System: The Accelerator for the Development of Non-nucleic Acid Target Detection in Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13577-13594. [PMID: 37656446 DOI: 10.1021/acs.jafc.3c03619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Non-nucleic acid targets have posed a serious challenge to food safety. The detection of non-nucleic acid targets can enable us to monitor food contamination in a timely manner. In recent years, the CRISPR/Cas system has been extensively explored in biosensing. However, there is a lack of a summary of CRISPR/Cas-powered detection tailored to non-nucleic acid targets involved in food safety. This review comprehensively summarizes the recent advances on the construction of CRISPR/Cas-powered detection and the promising applications in the field of food safety related non-nucleic acid targets. The current challenges and futuristic perspectives are also proposed accordingly. The rapidly evolving CRISPR/Cas system has provided a powerful propellant for non-nucleic acid target detection via integration with aptamer and/or DNAzyme. Compared with traditional analytical methods, CRISPR/Cas-powered detection is conceptually novel, essentially eliminates the dependence on large instruments, and also demonstrates the capability for rapid, accurate, sensitive, and on-site testing.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yajie Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Chu Z, Chen J, Zhang J, Xie Q, Zhang F, Wang Q. Detection of Escherichia coli by capillary electrophoresis assisted by large volume sample stacking and nicking endonuclease signal amplification. J Chromatogr A 2023; 1706:464275. [PMID: 37542930 DOI: 10.1016/j.chroma.2023.464275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Efficient, accurate and economical detection of pathogenic bacteria is crucial in ensuring food safety and preventing foodborne illnesses. In this study, a capillary electrophoresis coupled laser-induced fluorescence assay (CE-LIF) was developed for the detection of Escherichia coli (E. coli) by detecting its specific DNA. The CE-LIF was assisted by both online enrichment and offline amplification to improve the detection sensitivity of bacterial DNA. Here the online amplification was performed by large volume sample stacking (LVSS), while the offline amplification was nicking endonuclease signal amplification (NESA). Under the optimal experimental conditions, the detection limit of bacterial target DNA was 2.5 fM, and the conversion concentration of E. coli was 3 CFU · mL-1. The method had been applied to the detection of commercially available skim milk samples with good results, which proved that it could be used as an effective tool for food and environmental bacteria monitoring.
Collapse
Affiliation(s)
- Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Jingyi Chen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Jingzi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qihui Xie
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
21
|
Dos Santos GF, de Sousa FG, Beier SL, Mendes ACR, Leão AMGES. Escherichia coli O157:H7 strains in bovine carcasses and the impact on the animal production chain. Braz J Microbiol 2023; 54:2243-2251. [PMID: 37335430 PMCID: PMC10484834 DOI: 10.1007/s42770-023-01034-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Foodborne diseases are characterized by conditions that can induce symptomatic illnesses in their carriers, and therefore represent a serious problem. They are important conditions from a clinical and epidemiological point of view, and are associated with the occurrence of serious public health problems, with a strong impact on morbidity and mortality. The Escherichia coli (E. coli) is an enterobacterium associated with enteric conditions of variable intensity and which are accompanied by blood. The transmission routes are mainly based on the consumption of contaminated food and water sources. Shiga toxin-producing E. coli (STEC) are considered a serogroup of E. coli, are capable of producing Shiga-type toxins (Stx 1 and Stx 2) and the O157:H7 strain is one of the best-known serotypes. The early detection of this pathogen is very important, especially due to the capacity of contamination of carcasses destined for food consumption and supply of productive markets. Sanitary protocols must be developed and constantly reviewed in order to prevent/control the presence of the pathogen.
Collapse
Affiliation(s)
- Gabrielle Fernanda Dos Santos
- Postgraduate in Quality Management and Hygiene and Technology of Products of Animal Origin, Ifope Educacional, Belo Horizonte, Brazil
| | - Felipe Gaia de Sousa
- Department of Veterinary Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, 6627 Antônio Carlos Av, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Suzane Lilian Beier
- Department of Veterinary Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, 6627 Antônio Carlos Av, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | |
Collapse
|
22
|
Yahav G, Pawar S, Lipovsky A, Gupta A, Gedanken A, Duadi H, Fixler D. Probing Polarity and pH Sensitivity of Carbon Dots in Escherichia coli through Time-Resolved Fluorescence Analyses. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2068. [PMID: 37513079 PMCID: PMC10384995 DOI: 10.3390/nano13142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Intracellular monitoring of pH and polarity is crucial for understanding cellular processes and functions. This study employed pH- and polarity-sensitive nanomaterials such as carbon dots (CDs) for the intracellular sensing of pH, polarity, and viscosity using integrated time-resolved fluorescence anisotropy (FA) imaging (TR-FAIM) and fluorescence lifetime (FLT) imaging microscopy (FLIM), thereby enabling comprehensive characterization. The functional groups on the surface of CDs exhibit sensitivity to changes in the microenvironment, leading to variations in fluorescence intensity (FI) and FLT according to pH and polarity. The FLT of CDs in aqueous solution changed gradually from 6.38 ± 0.05 ns to 8.03 ± 0.21 ns within a pH range of 2-8. Interestingly, a complex relationship of FI and FLT was observed during measurements of CDs with decreasing polarity. However, the FA and rotational correlation time (θ) increased from 0.062 ± 0.019 to 0.112 ± 0.023 and from 0.49 ± 0.03 ns to 2.01 ± 0.27 ns, respectively. This increase in FA and θ was attributed to the higher viscosity accompanying the decrease in polarity. Furthermore, CDs were found to bind to three locations in Escherichia coli: the cell wall, inner membrane, and cytoplasm, enabling intracellular characterization using FI and FA decay imaging. FLT provided insights into cytoplasmic pH (7.67 ± 0.48), which agreed with previous works, as well as the decrease in polarity in the cell wall and inner membrane. The CD aggregation was suspected in certain areas based on FA, and the θ provided information on cytoplasmic heterogeneity due to the aggregation and/or interactions with biomolecules. The combined TR-FAIM/FLIM system allowed for simultaneous monitoring of pH and polarity changes through FLIM and viscosity variations through TR-FAIM.
Collapse
Affiliation(s)
- Gilad Yahav
- Institute of Nanotechnology and Advanced Materials, Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Shweta Pawar
- Institute of Nanotechnology and Advanced Materials, Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Anat Lipovsky
- Institute of Nanotechnology and Advanced Materials, Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Akanksha Gupta
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Aharon Gedanken
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Hamootal Duadi
- Institute of Nanotechnology and Advanced Materials, Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Dror Fixler
- Institute of Nanotechnology and Advanced Materials, Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
23
|
Ong KJ, Tejeda-Saldana Y, Duffy B, Holmes D, Kukk K, Shatkin JA. Cultured Meat Safety Research Priorities: Regulatory and Governmental Perspectives. Foods 2023; 12:2645. [PMID: 37509737 PMCID: PMC10379195 DOI: 10.3390/foods12142645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
As with every new technology, safety demonstration is a critical component of bringing products to market and gaining public acceptance for cultured meat and seafood. This manuscript develops research priorities from the findings of a series of interviews and workshops with governmental scientists and regulators from food safety agencies in fifteen jurisdictions globally. The interviews and workshops aimed to identify the key safety questions and priority areas of research. Participants raised questions about which aspects of cultured meat and seafood production are novel, and the implications of the paucity of public information on the topic. Novel parameters and targets may require the development of new analytical methods or adaptation and validation of existing ones, including for a diversity of product types and processes. Participants emphasized that data sharing of these efforts would be valuable, similar to those already developed and used in the food and pharmaceutical fields. Contributions to such databases from the private and public sectors would speed general understanding as well as efforts to make evaluations more efficient. In turn, these resources, combined with transparent risk assessment, will be critical elements of building consumer trust in cultured meat and seafood products.
Collapse
Affiliation(s)
| | | | | | - Dwayne Holmes
- Stichting New Harvest Netherlands, 1052 Amsterdam, The Netherlands
| | - Kora Kukk
- Vireo Advisors, LLC, Boston, MA 02130, USA
| | | |
Collapse
|
24
|
Fu L, Deng S, Luo Y, Fu Q, Fan Y, Jia L. An ultrasensitive colorimetric biosensor for the detection of Gram-positive bacteria by integrating paper-based enrichment and carbon dot-based selective recognition. Talanta 2023; 265:124920. [PMID: 37451123 DOI: 10.1016/j.talanta.2023.124920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Rapid screening of bacteria by low-cost and eco-friendly material-based approaches is still a major challenge. Herein, a colorimetric biosensor was designed for the ultrasensitive and rapid detection of Gram-positive bacteria. The biosensor exploited polydopamine and polyethyleneimine (PDA-PEI)-modified papers for separating bacteria and carbon dots (CDs) for selective colorimetric detection of Gram-positive bacteria. Noble metal-free CDs can target Gram-positive bacteria by binding with peptidoglycan and possess peroxidase-like activity. Thus, they can avert the step of modifying recognition probes, facilitating biosensor fabrication, and reducing the cost. This biosensor can detect S. aureus as low as 1 cfu mL-1, L. monocytogenes as low as 5 cfu mL-1, and B. subtilis as low as 9 cfu mL-1 within 55 min. In addition, a portable device was constructed to enable convenient and on-site quantitative detection of Gram-positive bacteria. The feasibility of the biosensor was verified by detecting Gram-positive bacteria in eggshell and sausage samples with recoveries ranging from 91.2% to 110%.
Collapse
Affiliation(s)
- Li Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Suqi Deng
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yimin Luo
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qiang Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yi Fan
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
25
|
Rumore J, Walker M, Pagotto F, Forbes JD, Peterson CL, Tyler AD, Graham M, Van Domselaar G, Nadon C, Reimer A, Knox N. Use of a taxon-specific reference database for accurate metagenomics-based pathogen detection of Listeria monocytogenes in turkey deli meat and spinach. BMC Genomics 2023; 24:361. [PMID: 37370007 PMCID: PMC10303765 DOI: 10.1186/s12864-023-09338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The reliability of culture-independent pathogen detection in foods using metagenomics is contingent on the quality and composition of the reference database. The inclusion of microbial sequences from a diverse representation of taxonomies in universal reference databases is recommended to maximize classification precision for pathogen detection. However, these sizable databases have high memory requirements that may be out of reach for some users. In this study, we aimed to assess the performance of a foodborne pathogen (FBP)-specific reference database (taxon-specific) relative to a universal reference database (taxon-agnostic). We tested our FBP-specific reference database's performance for detecting Listeria monocytogenes in two complex food matrices-ready-to-eat (RTE) turkey deli meat and prepackaged spinach-using three popular read-based DNA-to-DNA metagenomic classifiers: Centrifuge, Kraken 2 and KrakenUniq. RESULTS In silico host sequence removal led to substantially fewer false positive (FP) classifications and higher classification precision in RTE turkey deli meat datasets using the FBP-specific reference database. No considerable improvement in classification precision was observed following host filtering for prepackaged spinach datasets and was likely a consequence of a higher microbe-to-host sequence ratio. All datasets classified with Centrifuge using the FBP-specific reference database had the lowest classification precision compared to Kraken 2 or KrakenUniq. When a confidence-scoring threshold was applied, a nearly equivalent precision to the universal reference database was achieved for Kraken 2 and KrakenUniq. Recall was high for both reference databases across all datasets and classifiers. Substantially fewer computational resources were required for metagenomics-based detection of L. monocytogenes using the FBP-specific reference database, especially when combined with Kraken 2. CONCLUSIONS A universal (taxon-agnostic) reference database is not essential for accurate and reliable metagenomics-based pathogen detection of L. monocytogenes in complex food matrices. Equivalent classification performance can be achieved using a taxon-specific reference database when the appropriate quality control measures, classification software, and analysis parameters are applied. This approach is less computationally demanding and more attainable for the broader scientific and food safety communities.
Collapse
Affiliation(s)
- Jillian Rumore
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
- Public Health Agency of Canada, National Microbiology Laboratory, MB, Winnipeg, Canada.
| | - Matthew Walker
- Public Health Agency of Canada, National Microbiology Laboratory, MB, Winnipeg, Canada
| | - Franco Pagotto
- Food Directorate, Health Canada, Bureau of Microbial Hazards, Ottawa, ON, Canada
| | - Jessica D Forbes
- Eastern Ontario Regional Laboratory Association, Ottawa, ON, Canada
| | - Christy-Lynn Peterson
- Public Health Agency of Canada, National Microbiology Laboratory, MB, Winnipeg, Canada
| | - Andrea D Tyler
- Public Health Agency of Canada, National Microbiology Laboratory, MB, Winnipeg, Canada
| | - Morag Graham
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Public Health Agency of Canada, National Microbiology Laboratory, MB, Winnipeg, Canada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Public Health Agency of Canada, National Microbiology Laboratory, MB, Winnipeg, Canada
| | - Celine Nadon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Public Health Agency of Canada, National Microbiology Laboratory, MB, Winnipeg, Canada
| | - Aleisha Reimer
- Public Health Agency of Canada, National Microbiology Laboratory, MB, Winnipeg, Canada
| | - Natalie Knox
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Public Health Agency of Canada, National Microbiology Laboratory, MB, Winnipeg, Canada
| |
Collapse
|
26
|
Alshammari A, Abdulmawla ST, Alsaigh R, Alarjani KM, Aldosari NS, Muthuramamoorthy M, Assaifan AK, Albrithen H, Alzahrani KE, Alodhayb AN. Toward the Real-Time and Rapid Quantification of Bacterial Cells Utilizing a Quartz Tuning Fork Sensor. MICROMACHINES 2023; 14:1114. [PMID: 37374699 DOI: 10.3390/mi14061114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023]
Abstract
The quantitative evaluation of bacterial populations is required in many studies, particularly in the field of microbiology. The current techniques can be time-consuming and require a large volume of samples and trained laboratory personnel. In this regard, on-site, easy-to-use, and direct detection techniques are desirable. In this study, a quartz tuning fork (QTF) was investigated for the real-time detection of E. coli in different media, as well as the ability to determine the bacterial state and correlate the QTF parameters to the bacterial concentration. QTFs that are commercially available can also be used as sensitive sensors of viscosity and density by determining the QTFs' damping and resonance frequency. As a result, the influence of viscous biofilm adhered to its surface should be detectable. First, the response of a QTF to different media without E. coli was investigated, and Luria-Bertani broth (LB) growth medium caused the largest change in frequency. Then, the QTF was tested against different concentrations of E. coli (i.e., 102-105 colony-forming units per milliliter (CFU/mL)). As the E. coli concentration increased, the frequency decreased from 32.836 to 32.242 kHz. Similarly, the quality factor decreased with the increasing E. coli concentration. With a coefficient (R) of 0.955, a linear correlation between the QTF parameters and bacterial concentration was established with a 26 CFU/mL detection limit. Furthermore, a considerable change in frequency was observed against live and dead cells in different media. These observations demonstrate the ability of QTFs to distinguish between different bacterial states. QTFs allow real-time, rapid, low-cost, and non-destructive microbial enumeration testing that requires only a small volume of liquid sample.
Collapse
Affiliation(s)
- Abeer Alshammari
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabaa T Abdulmawla
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem Alsaigh
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah Salim Aldosari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Abdulaziz K Assaifan
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad Albrithen
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Alzahrani
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Jamal RB, Vitasovic T, Gosewinkel U, Ferapontova EE. Detection of E.coli 23S rRNA by electrocatalytic "off-on" DNA beacon assay with femtomolar sensitivity. Biosens Bioelectron 2023; 228:115214. [PMID: 36906990 DOI: 10.1016/j.bios.2023.115214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Prevention of food spoilage, environmental bio-contamination, and pathogenic infections requires rapid and sensitive bacterial detection systems. Among microbial communities, the bacterial strain of Escherichia coli is most widespread, with pathogenic and non-pathogenic strains being biomarkers of bacterial contamination. Here, we have developed a fM-sensitive, simple, and robust electrocatalytically-amplified assay facilitating specific detection of E.coli 23S ribosomal rRNA, in the total RNA sample, after its site-specific cleavage by RNase H enzyme. Gold screen-printed electrodes (SPE) were electrochemically pre-treated to be productively modified with a methylene-blue (MB) - labelled hairpin DNA probes, which hybridization with the E. coli-specific DNA placed MB in the top region of the DNA duplex. The formed duplex acted as an electrical wire, mediating electron transfer from the gold electrode to the DNA-intercalated MB, and further to ferricyanide in solution, enabling its electrocatalytic reduction otherwise impeded on the hairpin-modified SPEs. The assay facilitated 20 min 1 fM detection of both synthetic E. coli DNA and 23S rRNA isolated from E.coli (equivalent to 15 CFU mL-1), and can be extended to fM analysis of nucleic acids isolated from any other bacteria.
Collapse
Affiliation(s)
- Rimsha B Jamal
- Interdisciplinary Nanoscience Center (iNANO) and Aarhus University Center for Water Technology (WATEC), Faculty of Science, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Toni Vitasovic
- Interdisciplinary Nanoscience Center (iNANO) and Aarhus University Center for Water Technology (WATEC), Faculty of Science, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Ulrich Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO) and Aarhus University Center for Water Technology (WATEC), Faculty of Science, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
28
|
Papkovsky DB, Kerry JP. Oxygen Sensor-Based Respirometry and the Landscape of Microbial Testing Methods as Applicable to Food and Beverage Matrices. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094519. [PMID: 37177723 PMCID: PMC10181535 DOI: 10.3390/s23094519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The current status of microbiological testing methods for the determination of viable bacteria in complex sample matrices, such as food samples, is the focus of this review. Established methods for the enumeration of microorganisms, particularly, the 'gold standard' agar plating method for the determination of total aerobic viable counts (TVC), bioluminescent detection of total ATP, selective molecular methods (immunoassays, DNA/RNA amplification, sequencing) and instrumental methods (flow cytometry, Raman spectroscopy, mass spectrometry, calorimetry), are analyzed and compared with emerging oxygen sensor-based respirometry techniques. The basic principles of optical O2 sensing and respirometry and the primary materials, detection modes and assay formats employed are described. The existing platforms for bacterial cell respirometry are then described, and examples of particular assays are provided, including the use of rapid TVC tests of food samples and swabs, the toxicological screening and profiling of cells and antimicrobial sterility testing. Overall, O2 sensor-based respirometry and TVC assays have high application potential in the food industry and related areas. They detect viable bacteria via their growth and respiration; the assay is fast (time to result is 2-8 h and dependent on TVC load), operates with complex samples (crude homogenates of food samples) in a simple mix-and-measure format, has low set-up and instrumentation costs and is inexpensive and portable.
Collapse
Affiliation(s)
- Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 YT20 Cork, Ireland
| | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, Microbiology Building, College Road, T12 YT20 Cork, Ireland
| |
Collapse
|
29
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
30
|
Lee I, So H, Kim J, Auh JH, Wall MM, Li Y, Ho K, Jun S. Selective Detection of Escherichia coli K12 and Staphylococcus aureus in Mixed Bacterial Communities Using a Single-Walled Carbon Nanotube (SWCNT)-Functionalized Electrochemical Immunosensor with Dielectrophoretic Concentration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:985. [PMID: 36985878 PMCID: PMC10051117 DOI: 10.3390/nano13060985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
An electrochemical immunosensor has been developed for the rapid detection and identification of potentially harmful bacteria in food and environmental samples. This study aimed to fabricate a microwire-based electrochemical immunosensor (MEI sensor) for selective detection of Escherichia coli and Staphylococcus aureus in microbial cocktail samples using dielectrophoresis (DEP)-based cell concentration. A gold-coated tungsten microwire was functionalized by coating polyethylenimine, single-walled carbon nanotube (SWCNT) suspension, streptavidin, biotinylated antibodies, and then bovine serum albumin (BSA) solutions. Double-layered SWCNTs and 5% BSA solution were found to be optimized for enhanced signal enhancement and nonspecific binding barrier. The selective capture of E. coli K12 or S. aureus cells was achieved when the electric field in the bacterial sample solution was generated at a frequency of 3 MHz and 20 Vpp. A linear trend of the change in the electron transfer resistance was observed as E. coli concentrations increased from 5.32 × 102 to 1.30 × 108 CFU/mL (R2 = 0.976). The S. aureus MEI sensor fabricated with the anti-S. aureus antibodies also showed an increase in resistance with concentrations of S. aureus (8.90 × 102-3.45 × 107 CFU/mL) with a correlation of R2 = 0.983. Salmonella typhimurium and Listeria monocytogenes were used to evaluate the specificity of the MEI sensors. The functionalization process developed for the MEI sensor is expected to contribute to the sensitive and selective detection of other harmful microorganisms in food and environmental industries.
Collapse
Affiliation(s)
- Inae Lee
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Heejin So
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Jungyoon Kim
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Joong-Hyuck Auh
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Marisa M. Wall
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo Street, Hilo, HI 96720, USA
| | - Yong Li
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Kacie Ho
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| | - Soojin Jun
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA; (I.L.)
| |
Collapse
|
31
|
Dhital R, Mustapha A. DNA concentration by solid phase reversible immobilization improves its yield and purity, and detection time of E. coli O157:H7 in foods by high resolution melt curve qPCR. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Chanthasena P, Hua Y, Rosyidah A, Pathom-Aree W, Limphirat W, Nantapong N. Isolation and Identification of Bioactive Compounds from Streptomyces actinomycinicus PJ85 and Their In Vitro Antimicrobial Activities against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121797. [PMID: 36551454 PMCID: PMC9774200 DOI: 10.3390/antibiotics11121797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Antibiotic-resistant strains are a global health-threatening problem. Drug-resistant microbes have compromised the control of infectious diseases. Therefore, the search for a novel class of antibiotic drugs is necessary. Streptomycetes have been described as the richest source of bioactive compounds, including antibiotics. This study was aimed to characterize the antibacterial compounds of Streptomyces sp. PJ85 isolated from dry dipterocarp forest soil in Northeast Thailand. The 16S rRNA gene sequence and phylogenetic analysis showed that PJ85 possessed a high similarity to Streptomyces actinomycinicus RCU-197T of 98.90%. The PJ85 strain was shown to produce antibacterial compounds that were active against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The active compounds of PJ85 were extracted and purified using silica gel column chromatography. Two active antibacterial compounds, compound 1 and compound PJ85_F39, were purified and characterized with spectroscopy, including liquid chromatography and mass spectrometry (LC-MS). Compound 1 was identified as actinomycin D, and compound PJ85_F39 was identified as dihomo-γ-linolenic acid (DGLA). To the best of our knowledge, this is the first report of the purification and characterization of the antibacterial compounds of S. actinomycinicus.
Collapse
Affiliation(s)
- Panjamaphon Chanthasena
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yanling Hua
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - A’liyatur Rosyidah
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanwisa Limphirat
- Synchrotron Light Research Institute, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Nawarat Nantapong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: ; Tel.: +66-442-242-82
| |
Collapse
|
33
|
Zhang Y, Liu Y, Yang Y, Li L, Tao X, Song E. Rapid detection of pathogenic bacteria based on a universal dual-recognition FRET sensing system constructed with aptamer-quantum dots and lectin-gold nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe3O4 binary hybrid. Sci Rep 2022; 12:12502. [PMID: 35869107 PMCID: PMC9307609 DOI: 10.1038/s41598-022-15637-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Pathogenic bacteria cause disease outbreaks and threaten human health, prompting the research on advanced detection assays. Herein, we developed a selective molecular imprinted aptasensor for sensitive and prompt quantitation of Staphylococcus aureus (S. aureus) bacteria. The aptasensor was constructed by immobilization of aptamer on gold nanoparticles modified magnetic nanoparticles (apt-AuNPs@ Fe3O4). A functional monomer (o-phenylenediamine, o-phen) was electro-polymerized on the surface of the as-synthesized nanocomposite in the presence of a template (S. aureus). After removing S. aureus, the formed imprinted sites were available to extract pathogenic bacteria from complicated matrices. The surface morphology of the as-fabricated nanocomposites was characterized using different spectroscopic and electrochemical methods. Moreover, we thoroughly evaluated factors affecting the synthesis and determination procedures. The molecular imprinted aptasensor exhibited a wide linear range of 101–107 CFU mL−1 with a Limit of Detection, LOD (signal to noise = 3) of 1 CFU mL−1. The aptasensor detected S. aureus in milk, conduit water, and apple juice samples with good recoveries % and satisfactory relative standard deviations (RSDs %) values.
Collapse
|
35
|
Lanzl M, Zwietering M, Abee T, den Besten H. Combining enrichment with multiplex real-time PCR leads to faster detection and identification of Campylobacter spp. in food compared to ISO 10272–1:2017. Food Microbiol 2022; 108:104117. [DOI: 10.1016/j.fm.2022.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
|
36
|
Song X, Wang H, Xu X. Amikacin- and AuNP-mediated colorimetric biosensor for the rapid and sensitive detection of bacteria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Xu Q, Xie G, Shi Q, Liu J, Zhou B, Tong P, Aguilar ZP, Xu H. The dual nucleic acid amplification with dynamic light scattering strategy for ultrasensitive detection of Salmonella in milk. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Farouk F, Essam S, Abdel-Motaleb A, El-Shimy R, Fritzsche W, Azzazy HMES. Fast detection of bacterial contamination in fresh produce using FTIR and spectral classification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121248. [PMID: 35452899 DOI: 10.1016/j.saa.2022.121248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Screening for microbial contaminants in fresh produce is a lengthy process relative to their short shelf-life. The aim of this study is to develop a comprehensive assay which employs FTIR and spectral classification algorithm for detection of bacterial contamination of fresh produce. The procedure starts by soaking a sample of the fresh produce in broth for 5 h. Then, magnetic nanoparticles are added to capture bacteria which are then collected and prepared for FTIR scanning. The generated FTIR spectra are compared against an in-house database of different bacterial species (n = 6). The ability of the database to discriminate contaminated and uncontaminated samples and to identify the bacterial species was assessed. The compatibility of the FTIR procedures with subsequent DNA extraction and PCR was tested. The developed procedure was applied for assessment of bacterial contamination in fresh produce samples from the market (n = 78). Results were compared to the conventional culture methods. The generated FTIR database coupled to spectral classification was able to detect bacterial contamination with overall accuracy exceeding 90%. The sample processing did not alter the integrity of the bacterial DNA which was suitable for PCR. On application to fresh produce samples collected from the market, the developed method was able to detect bacterial contamination with 94% concordance with the culture method. In conclusion, the developed procedure can be applied for fast detection of microbial contamination in fresh produce with comparable accuracy to conventional microbiological assays and is compatible with subsequent molecular assays.
Collapse
Affiliation(s)
- Faten Farouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial Zone, 6th of October City, Giza, Egypt.
| | - Shereen Essam
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, Egypt
| | - Amany Abdel-Motaleb
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, Egypt
| | - Rana El-Shimy
- Microbiology and Immunology Department, Egyptian Drug Authority, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial zone, 6th of October City, Giza, Egypt
| | | | | |
Collapse
|
39
|
Kaushal S, Shrivastava S, Yun YR, Park Y, Thanh-Qui Nguyen T, Meeseepong M, Lee E, Jeon B, Gu MB, Yang S, Lee NE. Culture-Free Quantification of Bacteria Using Digital Fluorescence Imaging in a Tunable Magnetic Capturing Cartridge for Onsite Food Testing. ACS Sens 2022; 7:2188-2197. [PMID: 35930745 DOI: 10.1021/acssensors.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate, onsite detection of pathogenic bacteria from food matrices is required to rapidly respond to pathogen outbreaks. However, accurately detecting whole-cell bacteria in large sample volumes without an enrichment step remains a challenge. Therefore, bacterial samples must be concentrated, identified, and quantified. We developed a tunable magnetic capturing cartridge (TMCC) and combined it with a portable digital fluorescence reader for quick, onsite, quantitative detection of Staphylococcus aureus. The TMCC platform integrates an absorption pad impregnated with water-soluble polyvinyl alcohol (PVA) with an injection-molded polycarbonate (PC) plate that has a hard magnet on its back and an acrylonitrile-butadiene-styrene case. An S. aureus-specific antibody conjugated with magnetic nanoparticles was used to concentrate bacteria from a large-volume sample and capture bacteria within the TMCC. The retention time for capturing bacteria on the TMCC was adjusted by controlling the concentration and volume of the PVA solution. Concentrated bacterial samples bound to target-specific aptamer probes conjugated with quantum dots were loaded into the TMCC for a controlled time, followed by attachment of the bacteria to the PC plate and removal of unbound aptamer probes with wash buffer. The captured bacteria were quantified using a digital fluorescence reader equipped with an embedded program that automatically counts fluorescently tagged bacteria. The bacterial count made using the TMCC was comparable to a standard plate count (R2 = 0.9898), with assay sensitivity and specificity of 94.3 and 100%, respectively.
Collapse
Affiliation(s)
- Sandeep Kaushal
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Sajal Shrivastava
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Young-Ran Yun
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Younghyeon Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Korea
| | - Thi Thanh-Qui Nguyen
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Eunghyuk Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| | - Byeungwoo Jeon
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Gyeonggi-do, Suwon 16419, Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,School of Mechanical Engineering, GIST, Gwangju 610005, Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Gyeonggi-do, Suwon 16419, Korea
| |
Collapse
|
40
|
Behera P, Kumar Singh K, Kumar Saini D, De M. Rapid Discrimination of Bacterial Drug Resistivity by Array‐Based Cross‐Validation Using 2D MoS
2. Chemistry 2022; 28:e202201386. [DOI: 10.1002/chem.202201386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Pradipta Behera
- Department of Organic Chemistry Indian Institute of Science 560012 Bangalore India
| | - Krishna Kumar Singh
- Molecular Reproduction, Development and Genetics Indian Institute of Science 560012 Bangalore India
- Department of Cardiology, School of Medicine Johns Hopkins University 21205 Baltimore MD USA
| | - Deepak Kumar Saini
- Molecular Reproduction, Development and Genetics Indian Institute of Science 560012 Bangalore India
| | - Mrinmoy De
- Department of Organic Chemistry Indian Institute of Science 560012 Bangalore India
| |
Collapse
|
41
|
Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. ENVIRONMENT INTERNATIONAL 2022; 166:107357. [PMID: 35777116 DOI: 10.1016/j.envint.2022.107357] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Collapse
Affiliation(s)
- Raphael Chukwuka Nnachi
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom.
| |
Collapse
|
42
|
Shen X, Teo TW, Kong TF. A Technique for Rapid Bacterial-Density Enumeration through Membrane Filtration and Differential Pressure Measurements. MICROMACHINES 2022; 13:mi13081198. [PMID: 36014121 PMCID: PMC9415702 DOI: 10.3390/mi13081198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
In this article, we present a microfluidic technique for the rapid enumeration of bacterial density with a syringe filter to trap bacteria and the quantification of the bacterial density through pressure difference measurement across the membrane. First, we established the baseline differential pressure and hydraulic resistance for a filtration membrane by fully wetting the filter with DI water. Subsequently, when bacteria were infused and trapped at the pores of the membrane, the differential pressure and hydraulic resistance also increased. We characterized the infusion time required for the bacterial sample to achieve a normalized hydraulic resistance of 1.5. An equivalent electric-circuit model and calibration data sets from parametric studies were used to determine the general form of a calibration curve for the prediction of the bacterial density of a bacterial sample. As a proof of concept, we demonstrated through blind tests with Escherichia coli that the device is capable of determining the bacterial density of a sample ranging from 7.3 × 106 to 2.2 × 108 CFU/mL with mean and median accuracies of 87.21% and 91.33%, respectively. The sample-to-result time is 19 min for a sample with lower detection threshold, while for higher-bacterial-density samples the measurement time is further shortened to merely 8 min.
Collapse
Affiliation(s)
- Xinhui Shen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ting Wei Teo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tian Fook Kong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
43
|
Liang S, Sutham P, Wu K, Mallikarjunan K, Wang JP. Giant Magnetoresistance Biosensors for Food Safety Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155663. [PMID: 35957220 PMCID: PMC9371012 DOI: 10.3390/s22155663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 05/25/2023]
Abstract
Nowadays, the increasing number of foodborne disease outbreaks around the globe has aroused the wide attention of the food industry and regulators. During food production, processing, storage, and transportation, microorganisms may grow and secrete toxins as well as other harmful substances. These kinds of food contamination from microbiological and chemical sources can seriously endanger human health. The traditional detection methods such as cell culture and colony counting cannot meet the requirements of rapid detection due to some intrinsic shortcomings, such as being time-consuming, laborious, and requiring expensive instrumentation or a central laboratory. In the past decade, efforts have been made to develop rapid, sensitive, and easy-to-use detection platforms for on-site food safety regulation. Herein, we review one type of promising biosensing platform that may revolutionize the current food surveillance approaches, the giant magnetoresistance (GMR) biosensors. Benefiting from the advances of nanotechnology, hundreds to thousands of GMR biosensors can be integrated into a fingernail-sized area, allowing the higher throughput screening of food samples at a lower cost. In addition, combined with on-chip microfluidic channels and filtration function, this type of GMR biosensing system can be fully automatic, and less operator training is required. Furthermore, the compact-sized GMR biosensor platforms could be further extended to related food contamination and the field screening of other pathogen targets.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Phanatchakorn Sutham
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| | - Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Kumar Mallikarjunan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
44
|
Wu Z, Huang C, Dong Y, Zhao B, Chen Y. Gold core @ platinum shell nanozyme-mediated magnetic relaxation switching DNA sensor for the detection of Listeria monocytogenes in chicken samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Enzyme-Mimetic nano-immunosensors for amplified detection of food hazards: Recent advances and future trends. Biosens Bioelectron 2022; 217:114577. [DOI: 10.1016/j.bios.2022.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
|
46
|
A Specific and Sensitive Aptamer-Based Digital PCR Chip for Salmonella typhimurium Detection. BIOSENSORS 2022; 12:bios12070458. [PMID: 35884261 PMCID: PMC9313467 DOI: 10.3390/bios12070458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/23/2022]
Abstract
Food poisoning and infectious diseases caused by Salmonella typhimurium (S. typhimurium) are serious public health concerns for human health and food safety. The diversity and complexity of food matrices pose great challenges for rapid and ultra-sensitive detection of S. typhimurium in food samples. A method capable of identification, detection, and quantification of S. typhimurium is essential for addressing these issues. In this study, aptamer-coated magnetic beads (Apt-MBs) are employed as capture bio-probes to specifically and selectively concentrate S. typhimurium in food samples. A self-priming chip-based digital PCR was then presented as another biosensor for on-site detection and quantification of S. typhimurium cells. The chip we developed was robust and did not require any external power for sample loading. The combination of Apt-MBs with an on-chip digital detection realized the integration into lab-on-a-chip-based biosensors for on-site monitoring of foodborne pathogens. It was possible to capture and detect S. typhimurium cells as low as 90 CFU/reaction with a capture efficiency of 94.5%. Additionally, the whole process only took about 2 h. This unique platform could also be used to monitor other target bacteria with high specificity and sensitivity by utilizing different aptamers. Furthermore, the platform has potential applications in point-of-care testing in the future.
Collapse
|
47
|
Vidyadharani G, Vijaya Bhavadharani HK, Sathishnath P, Ramanathan S, Sariga P, Sandhya A, Subikshaa S, Sugumar S. Present and pioneer methods of early detection of food borne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2087-2107. [PMID: 35602455 DOI: 10.1007/s13197-021-05130-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/27/2022]
Abstract
Food-borne pathogens are a severe threat to human illness and death world-wide. Researchers have reported more than 250 food-borne diseases. Most of these are infections caused by a wide variety of bacteria, viruses, and parasites. It has a significant economic impact also. Detection of pathogenic microbes is thus essential for food safety. Such identification techniques could meet the following parameters viz., the accuracy of detection techniques that are quick, efficient, economical, highly sensitive, specific, and non-labor intensive. The various available methods for detecting food pathogens are classified into different groups, each having its advantages and disadvantages. The conventional methods are usually the first choice of detection even though they are laborious. Modern techniques such as biosensors, immunological assays, and macromolecule-based (nucleic acid) methods are being developed and refined to overcome traditional methods' limitations. Early detection of pathogens and secure food safety at each stage of food processing to storage, utilizing improved methodologies are mandatory. This review summarizes the deadly food pathogens leading to significant outbreaks and discusses the importance of early detection methods and advanced detection methods in comparison.
Collapse
Affiliation(s)
- G Vidyadharani
- Department of Microbiology, Valliammal College for Women, Chennai, TamilNadu 600102 India
| | - H K Vijaya Bhavadharani
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - P Sathishnath
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - Shruti Ramanathan
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - P Sariga
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - A Sandhya
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - S Subikshaa
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - Shobana Sugumar
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| |
Collapse
|
48
|
Park S, Cho T, Rhee M. Characterization of the nitrite production of mesophilic spore-forming bacteria during the handling of reconstituted infant formula. Food Res Int 2022; 156:111332. [DOI: 10.1016/j.foodres.2022.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
|
49
|
Zhou Y, Ren M, Zhang P, Jiang D, Yao X, Luo Y, Yang Z, Wang Y. Application of Nanopore Sequencing in the Detection of Foodborne Microorganisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1534. [PMID: 35564242 PMCID: PMC9100974 DOI: 10.3390/nano12091534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/21/2022]
Abstract
Foodborne pathogens have become the subject of intense interest because of their high incidence and mortality worldwide. In the past few decades, people have developed many methods to solve this challenge. At present, methods such as traditional microbial culture methods, nucleic acid or protein-based pathogen detection methods, and whole-genome analysis are widely used in the detection of pathogenic microorganisms in food. However, these methods are limited by time-consuming, cumbersome operations or high costs. The development of nanopore sequencing technology offers the possibility to address these shortcomings. Nanopore sequencing, a third-generation technology, has the advantages of simple operation, high sensitivity, real-time sequencing, and low turnaround time. It can be widely used in the rapid detection and serotyping of foodborne pathogens. This review article discusses foodborne diseases, the principle of nanopore sequencing technology, the application of nanopore sequencing technology in foodborne pathogens detection, as well as its development prospects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.R.); (P.Z.); (D.J.); (X.Y.); (Y.L.); (Z.Y.)
| |
Collapse
|
50
|
Dester E, Kao K, Alocilja EC. Detection of Unamplified E. coli O157 DNA Extracted from Large Food Samples Using a Gold Nanoparticle Colorimetric Biosensor. BIOSENSORS 2022; 12:bios12050274. [PMID: 35624575 PMCID: PMC9138483 DOI: 10.3390/bios12050274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 05/10/2023]
Abstract
Rapid detection of foodborne pathogens such as E. coli O157 is essential in reducing the prevalence of foodborne illness and subsequent complications. Due to their unique colorimetric properties, gold nanoparticles (GNPs) can be applied in biosensor development for affordability and accessibility. In this work, a GNP biosensor was designed for visual differentiation between target (E. coli O157:H7) and non-target DNA samples. Results of DNA extracted from pure cultures indicate high specificity and sensitivity to as little as 2.5 ng/µL E. coli O157 DNA. Further, the biosensor successfully identified DNA extracted from flour contaminated with E. coli O157, with no false positives for flour contaminated with non-target bacteria. After genomic extraction, this assay can be performed in as little as 30 min. In addition, food sample testing was successful at detecting approximately 103 CFU/mL of E. coli O157 magnetically extracted from flour after only a 4 h incubation step. As a proof of concept, these results demonstrate the capabilities of this GNP biosensor for low-cost and rapid foodborne pathogen detection.
Collapse
Affiliation(s)
- Emma Dester
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (E.D.); (K.K.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Kaily Kao
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (E.D.); (K.K.)
| | - Evangelyn C. Alocilja
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA; (E.D.); (K.K.)
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-432-8672
| |
Collapse
|