1
|
Cao B, Li K, Chen C, Shi Y. Effects of functional groups on ESIPT and antioxidant activity of apigenin: A non-existent enol* state fluorescein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125287. [PMID: 39447302 DOI: 10.1016/j.saa.2024.125287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
The development and enhancement of antioxidant drugs, which are aimed at mitigating DNA damage, mutations, and cancer, are of paramount significance in the biomedical sphere. In recent years, antioxidant drug molecules with photoluminescence have sprung up like mushrooms. Apigenin (AP), characterized by its distinctive property of excited state intramolecular proton transfer (ESIPT), plays a pivotal role in mediating antioxidant and anticancer activities. Despite being a representative molecule of the non-existent enol form (E*) state with ESIPT nature, there is a notable lack of theoretical investigations into its antioxidant properties. Herein, density functional theory (DFT) and time-dependent DFT methodologies were utilized to explore the effects of various functional groups on AP molecules in a methanol solvent. Studies have demonstrated that for the non-existent E* state fluorescence molecule AP, the ESIPT process can significantly enhance the antioxidant potency of AP and its derivatives. However, the introduction of electron-withdrawing groups significantly accelerated the ESIPT process while simultaneously suppressing the antioxidant activity of AP-CN. Conversely, the incorporation of electron-donating groups effectively inhibited the ESIPT process, yet markedly enhanced the antioxidant activity of AP-NH2. This investigation furnishes vital perspectives and sources of reference for the conception and advancement of groundbreaking antioxidant medications that aim to tackle non-existent E* state molecules.
Collapse
Affiliation(s)
- Bifa Cao
- Basic Courses Department, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
| | - Ke Li
- Basic Courses Department, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
| | - Chuangui Chen
- Department of Minimally Invasive Esophagus Surgery, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Bottegal DN, Latorre MÁ, Lobón S, Argemí-Armengol I, Álvarez-Rodríguez J. Impacts of carob pulp (Ceratonia siliqua L.) and vitamin E on pork colour, oxidative stability, lipid composition and microbial growth. Meat Sci 2025; 220:109710. [PMID: 39549428 DOI: 10.1016/j.meatsci.2024.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
This study aimed to evaluate the impact of the dietary by-product rich in polyphenols (Carob pulp, Cp) and supra-nutritional level of vitamin (Vit) E on pork quality and shelf-life of meat stored in modified atmosphere packaging for 15 days. A total of 44 pigs (entire males and gilts, 170 ± 4.5 days of age and 127.8 ± 3.6 kg of body weight) were randomly selected from a larger group (one pig per pen). Pigs were fed ad libitum with one of four diets in a 2 × 2 factorial arrangement, with two feed inclusion levels each for Cp (0 vs. 20 %) and Vit E (30 (Low) vs. 300 IU/kg of feed (High)) for 40 days. No interactions between Cp and Vit E were detected for most variables assessed. Meat colour attributes evolved regardless of diet or sex, although metmyoglobin formation was preserved until 13 days. The Cp diets did not affect malondialdehyde nor α-tocopherol content in meat. High Vit E limited the malondialdehyde production up to 13 days and increased 1.8-fold the muscle α-tocopherol content compared to Low Vit E. The 20 %-Cp group tended to reduce total aerobic microbial count compared to 0 %-Cp group after 15 days of storage. Including Cp slightly affected the meat fatty acid (FA) profile, whereas Vit E did not modify it. Entire males presented higher content of polyunsaturated FA than gilts. Including 20 % Cp into pigs' diets does not impair meat quality, while High Vit E reduces lipid oxidation but not meat discolouration.
Collapse
Affiliation(s)
- Diego Nicolas Bottegal
- Departament de Ciència Animal, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Instituto Nacional de Tecnología Agropecuaria (INTA), Rivadavia 1439, Ciudad de Buenos Aires C1033AAE, Argentina.
| | - María Ángeles Latorre
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza-IA2, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain.
| | - Sandra Lobón
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain; Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain.
| | - Immaculada Argemí-Armengol
- Departament de Ciència Animal, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Javier Álvarez-Rodríguez
- Departament de Ciència Animal, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
3
|
Liu X, Zheng Z, Liu Y. Lipophilic antioxidants in edible oils: Mechanisms, applications and interactions. Food Res Int 2025; 200:115423. [PMID: 39779163 DOI: 10.1016/j.foodres.2024.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Essential fatty acids (EFAs) in edible oils are crucial for human nutrition. However, their high unsaturation renders edible oils susceptible to oxidation during storage and processing. The addition of lipophilic antioxidants is an effective strategy to inhibit oxidation and safeguard the nutritional integrity of edible oils. This review focused on the diverse mechanisms and applications of lipophilic antioxidants to inhibit oxidation of edible oils. A range of both synthetic and natural lipophilic antioxidants, including butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butyl hydroquinone (TBHQ), propyl gallate (PG), tocopherols, tocopherols, carotenoids, flavonoids, ascorbyl palmitate, and lipophilic phenolic compounds were discussed. Moreover, lipophilic antioxidant extracts, as the mixture of natural lipophilic antioxidants, can significantly inhibit oil oxidation. The interaction mechanisms of natural lipophilic antioxidants were reviewed. However, compared to synthetic lipophilic antioxidants, the mechanisms and interactions of natural lipophilic antioxidants need to be further studied. Additionally, their stability and solubility, the extraction and purification costs, and the impact on the sensory must be considered when applying natural lipophilic antioxidants to edible oils. This review serves as a timely reference for application of natural lipophilic antioxidants in edible oils, contributing to the development of healthier and more sustainable options.
Collapse
Affiliation(s)
- Xuejing Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
4
|
Sun S, Liu Z, Lin M, Gao N, Wang X. Polyphenols in health and food processing: antibacterial, anti-inflammatory, and antioxidant insights. Front Nutr 2024; 11:1456730. [PMID: 39224187 PMCID: PMC11366707 DOI: 10.3389/fnut.2024.1456730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Polyphenols, as subordinate metabolites of plants, have demonstrated significant antibacterial, anti-inflammatory, and antioxidant action in scientific learn. These compounds exert their effects through various mechanisms, containing interference with microbial cell structures, rule of host immune responses, and neutralization of free radicals. This multifaceted activity positions polyphenols as promising candidates for maintaining human health and treating related diseases. Notably, in the context of escalating antibiotic resistance, the antibacterial properties of polyphenols offer innovative avenues for the development of new therapeutic agents. Additionally, their anti-inflammatory and antioxidant effects hold substantial potential for treating inflammatory diseases and mitigating the aging process. This review aims to summarize the latest findings on the biological activities of polyphenols, highlighting their mechanisms of action and potential applications in health and disease management. Furthermore, optimizing polyphenol extraction methods aligns with the goals of sustainable and green processing, reducing environmental impact while enhancing food safety and extending shelf life. Employing advanced analytical techniques, such as spectroscopy and chromatography, can ensure the accurate evaluation of polyphenol content and efficacy. These efforts collectively contribute to the ongoing improvement of food processing practices and product quality, promoting a healthier and more sustainable future in the food industry.
Collapse
Affiliation(s)
- Shengqian Sun
- Yantai Key Laboratory of Special Medical Food, School of Food and Bioengineering, Yantai Institute of Technology, Yantai, Shandong, China
| | - Zhengyang Liu
- College of Pharmacy, Binzhou Medical College, Yantai, Shandong, China
| | - Mingxia Lin
- Department of Medical Records Management, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Na Gao
- Yantai Key Laboratory of Special Medical Food, School of Food and Bioengineering, Yantai Institute of Technology, Yantai, Shandong, China
| | - Xiaojie Wang
- Yantai Key Laboratory of Special Medical Food, School of Food and Bioengineering, Yantai Institute of Technology, Yantai, Shandong, China
| |
Collapse
|
5
|
Chen C, Espinal-Ruiz M, Francavilla A, Joye IJ, Corradini MG. Morphological changes and color development during cookie baking-Kinetic, heat, and mass transfer considerations. J Food Sci 2024; 89:4331-4344. [PMID: 38783574 DOI: 10.1111/1750-3841.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Color and shape are important quality attributes in baked goods, particularly cookies. Composition and processing conditions determine and influence color development and morphological changes in these baked goods. The objective of this study was to systematically evaluate the evolution of color and shape during baking to determine useful correlations that can be implemented during the assessment and modeling of the baking process. Cookies (AACC-I standard protocol 10-53.01) were baked at 185, 205, and 225°C. Moisture content, water activity, surface temperature, characteristic dimensions (radius and thickness), and color indexes (lightness, redness, blueness, and browning index [BI]) were monitored at different locations on the cookie surface and baking times. Relationships among the tested conditions were explored using correlation analysis. The cookies' dimensions and color indexes were strongly correlated with changes in moisture content over time, and those relationships were characterized using empirical models. The temperature dependence of the kinetic parameters of the changes in lightness and BI was also described and deemed independent of the location on the cookie surface. This study provides insights into the influence of heat and mass transfer on the physical and physicochemical changes of cookies during baking. The kinetic and secondary models developed in this study can serve as important components for establishing a comprehensive approach for coupling heat transfer, mass transfer, and reaction kinetics to estimate and optimize cookie-baking processes. PRACTICAL APPLICATION: The findings from this study provide valuable information for better understanding the morphological changes and color developments during the cookie-baking process. The quantitative data and models generated in this study will allow identifying baking conditions for better quality development.
Collapse
Affiliation(s)
- Chang Chen
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | | | - Alyssa Francavilla
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Iris J Joye
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Maria G Corradini
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- Arrell Food Institute, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Czerwonka M, Białek A, Bobrowska-Korczak B. A Novel Method for the Determination of Squalene, Cholesterol and Their Oxidation Products in Food of Animal Origin by GC-TOF/MS. Int J Mol Sci 2024; 25:2807. [PMID: 38474053 DOI: 10.3390/ijms25052807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Cholesterol present in food of animal origin is a precursor of oxysterols (COPs), whose high intake through diet can be associated with health implications. Evaluation of the content of these contaminants in food is associated with many analytical problems. This work presents a GC-TOF/MS method for the simultaneous determination of squalene, cholesterol and seven COPs (7-ketocholesterol, 7α-hydroxycholesterol, 7β-hydroxycholesterol, 25-hydroxycholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestanetriol). The sample preparation procedure includes such steps as saponification, extraction and silylation. The method is characterized by high sensitivity (limit of quantification, 0.02-0.25 ng mL-1 for instrument, 30-375 μg kg of sample), repeatability (RSD 2.3-6.2%) and a wide linearity range for each tested compound. The method has been tested on eight different animal-origin products. The COP to cholesterol content ratio in most products is about 1%, but the profile of cholesterol derivatives differs widely (α = 0.01). In all the samples, 7-ketocholesterol is the dominant oxysterol, accounting for 31-67% of the total COPs level. The levels of the other COPs range between 0% and 21%. In none of the examined products are cholestanetriol and 25-hydroxycholesterol present. The amount of squalene, which potentially may inhibit the formation of COPs in food, ranges from 2 to 57 mg kg-1.
Collapse
Affiliation(s)
- Małgorzata Czerwonka
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
| | - Agnieszka Białek
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
7
|
Deng C, Li M, Liu Y, Yan C, He Z, Chen ZY, Zhu H. Cholesterol Oxidation Products: Potential Adverse Effect and Prevention of Their Production in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18645-18659. [PMID: 38011512 DOI: 10.1021/acs.jafc.3c05158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cholesterol oxidation products (COPs) are a group of substances formed during food processing. COPs in diet is a health concern because they may affect human health in association with the risk of various diseases including atherosclerosis, Alzheimer's disease, age-related macular degeneration, diabetes, and chronic gastrointestinal inflammatory colitis. Production of COPs in foods can be affected by many factors such as temperature, pH, light, oxygen, water, carbohydrates, fatty acids, proteins, and metal cations. The key issue is preventing its generation in foods. Some COPs can also be produced in vivo by both nonenzymatic and enzymatic-catalyzed oxidation reactions. Currently, a number of natural antioxidants such as catechins, flavonoids, and other polyphenols have been proven to inhibit the generation of COPs. In addition, measures taken during food processing can also minimize the production of COPs, such as the Maillard reaction and marinating food with plant polyphenol-rich seasonings. In conclusion, a comprehensive approach encompassing the suppression on COPs generation and implementation of processing measures is imperative to safeguard human health against the production of COPs in the food chain.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| | - Mingxuan Li
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
- School of Life Sciences, South China Agricultural University, Guangzhou 510000, Guangdong China
| | - Yang Liu
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| | - Chi Yan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong China
| | - Zouyan He
- School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong China
| | - Hanyue Zhu
- School of Food Science and Engineering/Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528000, Guangdong China
| |
Collapse
|
8
|
Gouvêa FDJ, de Oliveira VS, Mariano BJ, Takenaka NAR, Gamallo OD, da Silva Ferreira M, Saldanha T. Natural antioxidants as strategy to minimize the presence of lipid oxidation products in canned fish: Research progress, current trends and future perspectives. Food Res Int 2023; 173:113314. [PMID: 37803625 DOI: 10.1016/j.foodres.2023.113314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 10/08/2023]
Abstract
Canned fish is one of the most popular forms of fish consumption due to its high nutritional value, availability, and practicality. However, canning may induce lipid oxidation. Thus, this study provides in-depth information on the impact of high temperatures applied during canning on fish lipids. The thermo-oxidation is evidenced, for example, by the high levels of both primary and secondary oxidation products determined in fish after canning, as well as the presence of harmful compounds such as cholesterol oxides. Given the role of lipid oxidation in canned fish, this study also presents a comprehensive review on using natural antioxidants to control it. The antioxidant properties of common liquid mediums (vegetable oils and sauces) are highlighted. Moreover, adding algae extracts, spices, and condiments to the liquid medium to enhance its antioxidant potential has been considered, while the exploitation of by-products and wastes from the food industry also emerges as a suitable strategy. Besides the promising results, these practices may promote positive impacts on other quality parameters (e.g. water and oil holding capacities, texture, microbiological growth). However, further studies are needed, including research on aspects related to safety, effective concentrations and application methods, without ignoring consumers' sensory acceptance.
Collapse
Affiliation(s)
- Fernanda de Jorge Gouvêa
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Vanessa Sales de Oliveira
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Barbara Jardim Mariano
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Nayara Ayumi Rocha Takenaka
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Ormindo Domingues Gamallo
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Micheli da Silva Ferreira
- Department of Food Technology, Faculty of Veterinary, Federal Fluminense University, UFF, Niterói, RJ, Brazil
| | - Tatiana Saldanha
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil.
| |
Collapse
|
9
|
Julizan N, Ishmayana S, Zainuddin A, Van Hung P, Kurnia D. Potential of Syzygnium polyanthum as Natural Food Preservative: A Review. Foods 2023; 12:2275. [PMID: 37372486 DOI: 10.3390/foods12122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Food preservation is one of the strategies taken to maintain the level of public health. Oxidation activity and microbial contamination are the primary causes of food spoilage. For health reasons, people prefer natural preservatives over synthetic ones. Syzygnium polyanthum is widely spread throughout Asia and is utilized as a spice by the community. S. polyanthum has been found to be rich in phenols, hydroquinones, tannins, and flavonoids, which are potential antioxidants and antimicrobial agents. Consequently, S. polyanthum presents a tremendous opportunity as a natural preservative. This paper reviews recent articles about S. polyanthum dating back to the year 2000. This review summarizes the findings of natural compounds presented in S. polyanthum and their functional properties as antioxidants, antimicrobial agents, and natural preservatives in various types of food.
Collapse
Affiliation(s)
- Nur Julizan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Pham Van Hung
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 721400, Vietnam
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
10
|
Song W, Xu Z, Gao P, Liu X. Chemical Composition and In Vitro Antioxidant Activity and Anti-Acetylcholinesterase Activity of Essential Oils from Tadehagi triquetrum (L.) Ohashi. Molecules 2023; 28:molecules28062734. [PMID: 36985706 PMCID: PMC10055730 DOI: 10.3390/molecules28062734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aimed to determine the chemical compositions of essential oils (EOs) from Tadehagi triquetrum (L.) Ohashi and evaluate their antioxidant and anti-cholinesterase activity under the comprehensive influence of chemical components. The essential oils were extracted from T. triquetrum (L.) Ohashi by hydrodistillation. A total of 58 organic compounds were identified by GC-FID and GC-MS analysis. The major components of T. triquetrum (L.) Ohashi EOs were identified as palmitic acid (22.46%), 1-Octen-3-ol (14.07%), Caryophyllene (7.20%), (Z)-18-Octadec-9-enolide (6.04%), and 3-Hexen-1-ol (4.55%). The antioxidant activity of the essential oils was determined by using ABTS assay, DPPH assay, and FRAP assay, with IC50 values of 2.12 ± 0.05 mg/mL, 4.73 ± 0.91 mg/mL against the ABTS, DPPH, and FRAP value 117.42 ± 8.10 mM/g. The result showed that it had moderate antioxidant activities in the experiment, which why it is likely that it will be used as an antioxidant. At the same time, the EOs also showed moderate anti-acetylcholinesterase activity. This study expands the chemical and biological knowledge of the EOs of T. triquetrum.
Collapse
Affiliation(s)
- Wenzhi Song
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Ziyue Xu
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Peizhong Gao
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Xu Liu
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
11
|
Phenolic composition and insights into the use of pink pepper (Schinus terebentifolius Raddi) fruit against lipid oxidation in food systems. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
12
|
Effect of Tannins on Cholesterol Content and Its Oxidation in Egg Pasta as Related to Different Pasta Shapes. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
AbstractEgg pasta contains high amount of cholesterol, that upon oxidation, generates oxysterols (COPs), which play a key role in the onset of several human diseases. In this study, the effect of two tannins (esters of ellagic acid, A; esters of gallic acid, B) at three different concentrations (0.25%, 0.50%, 1.00%) was tested in egg pasta considering two different pasta shapes (squared, S; rectangular, F). When tannin B was added, the total phenolic content (TPC) in fresh pasta increased (p < 0.01) and after cooking its content was greater than those obtained with tannin A. The pasta shape affected the presence of cholesterol; its amount in uncooked F shape samples (27.67 ± 0.28 mg/g pasta) was higher than that found in S shape (21.18 ± 0.49 mg/g pasta). In addition, tannin B significantly (p < 0.01) increased the presence of cholesterol in the cooking water (up to 1.04 ± 0.05 μg/mL), in particular in S pasta shape. Tannin B was also greater than tannin A to reduce the content of COPs in fresh egg pasta, while the cooking process did not impact (p > 0.05) the oxidation of cholesterol. The results suggest that tannin B could be applied in the formulation of egg pasta as a strategy for reducing the content of cholesterol and its oxidation products.
Collapse
|
13
|
Musa WJA, Bialangi N, Kilo AK, Situmeang B, Susparini NT, Rusydi ID. Antioxidant, cholesterol lowering activity, and analysis of Caesalpinia bonducella seeds extract. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e96817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tombili plant (Caesalpinia bonducella) belongs to the family of Fabaceae. The seed extract of tombili has been empirically used as a traditional medicine. The purpose of this research was to fractionate tombili seed extract and test their antioxidant and cholesterol lowering activities. Extraction was made into fractions using n-hexane, ethyl acetate, and methanol as a solvent. The chemical compound of the ethyl acetate fraction was analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Antioxidant activity was tested using the DPPH method. The highest antioxidant activity was shown in ethyl acetate fraction with an IC50 value of 86.153 μg/mL. The second was the methanol fraction with an IC50 value of 94.053 μg/mL, and the third was the n-hexane fraction with an IC50 value of 100.933 μg/mL. The cholesterol lowering activity analysis showed that all fractions could inhibit cholesterol. The highest anti-cholesterol activity shown in ethyl acetate fraction with the concentration of 600 μg/mL can inhibit 81.5% of the cholesterol activity. The LC-MS/MS analysis showed that the ethyl acetate fraction contained glucoside, homoplantaginin, and vernolic acid compounds.
Collapse
|
14
|
Minor bioactive lipids. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516468 DOI: 10.1016/bs.afnr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bioactive lipids-major and minor-comprise an array of compounds belonging to different chemical categories. Among the minor bioactive lipids carotenoids, sterols and tocochromanols attract continuously the interest of food scientists, nutritionists and medical doctors for their importance in food processing, preservation and for their health properties. Provitamin A and non-provitamin A carotenoids are found in various food sources of plant and animal origin and are added to foods as colorants. Their interactions with other food ingredients are critical because of their role against reactive oxygen species. The role of cholesterol through the diet after decades of disputes is better justified whereas at the same time emphasis is given to the technological and health aspects of phytosterols, which became very efficiently part of the daily diet for many population groups. Last but not least the importance of vitamin E is in a continuous debate for over 100years whereas studies on tocotrienols are intensified as a result of a transient to palm oil product consumption globally. Chemistry, natural occurrence, absorption and metabolism, dietary intake and dietary recommendations, major health impacts and key technological issues are updated and discussed with the support of recent findings.
Collapse
|
15
|
Yousuf S, Shabir S, Kauts S, Minocha T, Obaid AA, Khan AA, Mujalli A, Jamous YF, Almaghrabi S, Baothman BK, Hjazi A, Singh SK, Vamanu E, Singh MP. Appraisal of the Antioxidant Activity, Polyphenolic Content, and Characterization of Selected Himalayan Herbs: Anti-Proliferative Potential in HepG2 Cells. Molecules 2022; 27:molecules27238629. [PMID: 36500720 PMCID: PMC9735473 DOI: 10.3390/molecules27238629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Natural antioxidants derived from plants have played a vital role in preventing a wide range of human chronic conditions and provide novel bioactive leads for investigators in pharmacotherapy discovery. This work was designed to examine the ethnopharmacological role of Urtica dioica (UD), Capsella bursa-pastoris (CBP), and Inula racemosa (IR). The total phenolic and flavonoid contents (TPC and TFC) were illustrated through colorimetric assays, while the antioxidant activity was investigated through DPPH and ABTS assays. The evaluation of phytochemicals by FT-IR of UD and CBP revealed high contents of aliphatic amines, while IR showed a major peak for ketones. The antioxidant activity, TPC and TFC were highest in the ethanol extract of UD, followed by CBP, and IR showed the lowest activity. All of the extracts revealed significant antioxidant capacities along a dosage gradient. Through a HPLC analysis at a wavelength of 280 nm, UD leaves demonstrated an intense peak of quercetin, and the peak for rutin was less intense. CBP (whole plant), instead, demonstrated a major yield of rutin, and a peak for quercetin was not observed in CBP. IR (rhizomes) showed both quercetin and rutin. All of the extracts were significantly cytotoxic to HepG2 cells after 48 h with the trend IR > UD > CBP. The outcomes of this study may be effective in the selection of specific plants as realistic sources of the bioactive components that might be useful in the nutraceutical progression and other biomedical efficacies.
Collapse
Affiliation(s)
- Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Simran Kauts
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Tarun Minocha
- Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ahmad A. Obaid
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Anmar A. Khan
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Yahya F. Jamous
- National Center of Vaccines and Bio Processing, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Bandar K. Baothman
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Ab dulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
- Correspondence: (S.K.S.); (E.V.); (M.P.S.)
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
- Correspondence: (S.K.S.); (E.V.); (M.P.S.)
| | - Mahendra P. Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
- Correspondence: (S.K.S.); (E.V.); (M.P.S.)
| |
Collapse
|
16
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Biomimetic metalloporphyrin oxidase modified carbon nanotubes for highly sensitive and stable quantification of anti-oxidants tert-butylhydroquinone in plant oil. Food Chem 2022; 388:132898. [DOI: 10.1016/j.foodchem.2022.132898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022]
|
18
|
Improving the Oxidation Stability and Shelf-Life of Peanut Oil by Addition of Rosemary Extract Combined with Vitamin C and Ascorbyl Palmitate. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7229412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rosemary extracts are natural antioxidants, which can be considered an alternative for synthetic antioxidants in the food industry. The aim of the present study was to evaluate the oxidation stability and shelf-life of rosemary extracts combined with vitamin C (VC) and ascorbyl palmitate (AP) in peanut oil stored at 65°C. Peanut oil with tertbutyl hydroquinone (TBHQ) and without additives served as positive and negative controls, respectively. The peroxide value (POV), thiobarbituric acid reactant (TBARs), conjugated diene (CD), and conjugated triene (CT) values of the peanut oil samples were evaluated during accelerated storage every 48 h. Among them, 0.23 g/kg rosemary extracts combined with 0.13 g/kg VC and 0.07 mg/kg AP exhibited the best oxidative stability. Additionally, the oxidation kinetics model predicated that the rosemary extracts combined with VC and AP could effectively prolong the shelf-life of peanut oil. In accelerated storage, the rosemary extracts combined with VC and AP not only inhibited peanut oil oxidation like chemical antioxidants, but also were safer than chemical antioxidants. Therefore, the rosemary extracts combined with VC and AP were an effective alternative to chemical antioxidants, which could improve the oxidation stability and shelf-life of peanut oil.
Collapse
|
19
|
Rodrigues MJ, Jekő J, Cziáky Z, Pereira CG, Custódio L. The Medicinal Halophyte Frankenia laevis L. (Sea Heath) Has In Vitro Antioxidant Activity, α-Glucosidase Inhibition, and Cytotoxicity towards Hepatocarcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101353. [PMID: 35631777 PMCID: PMC9148066 DOI: 10.3390/plants11101353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 05/03/2023]
Abstract
This work explored the medicinal halophyte Frankenia laevis L. (sea heath) as a potential source of bioactive natural products. In this sense, methanol and dichloromethane extracts were prepared from aerial organs containing flowers, leaves and stems, and were profiled for their chemical composition using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS). The extracts were evaluated for their in vitro antioxidant capacity using five complementary methods: enzyme inhibitory effects on enzymes related with neurodegeneration (acetyl (AChE) and butyrylcholinesterase (BuChE)), Type 2 diabetes (α-glucosidase and α-amylase), hyperpigmentation/food oxidation (tyrosinase), and cytotoxicity towards human hepatocarcinoma (HepG2) cells. Fifty-one molecules were identified in the extracts, including several derivatives of phenolic acids, lignans and flavonoids, monoterpenes, and hydroxylated derivatives of linoleic acid. The methanol extract was effective in DPPH and ABTS radical scavenging (EC50 = 0.25 and 0.65 mg/mL, respectively), copper chelation (EC50 = 0.78 mg/mL), and iron reduction (EC50 = 0.51 mg/mL) activities, whereas the dichloromethane extract had high iron chelating ability (EC50 = 0.76 mg/mL). Both extracts showed the capacity to inhibit α-glucosidase, especially the dichloromethane (EC50 = 0.52 mg/mL). This extract also exerted a significant selective cytotoxicity towards HepG2 cells (EC50 = 52.1 μg/mL, SI > 1.9). In conclusion, extracts from the aerial parts of sea heath were shown to be a promising source of natural products for pharmaceutical and/or food additive applications due to their high antioxidant, anti-diabetic, and cytotoxic properties.
Collapse
Affiliation(s)
- Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (L.C.)
- Correspondence:
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (J.J.); (Z.C.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary; (J.J.); (Z.C.)
| | - Catarina G. Pereira
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (L.C.)
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (L.C.)
| |
Collapse
|
20
|
Pavani M, Singha P, Dash DR, Asaithambi N, Singh SK. Novel encapsulation approaches for phytosterols and their importance in food products: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mekala Pavani
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Poonam Singha
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Dibya Ranjan Dash
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Niveditha Asaithambi
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Sushil Kumar Singh
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| |
Collapse
|
21
|
Zhang R, Han Y, McClements DJ, Xu D, Chen S. Production, Characterization, Delivery, and Cholesterol-Lowering Mechanism of Phytosterols: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2483-2494. [PMID: 35170307 DOI: 10.1021/acs.jafc.1c07390] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytosterols are natural plant-based bioactive compounds that can lower blood cholesterol levels and help prevent cardiovascular diseases. Consequently, they are being utilized in functional foods, supplements, and pharmaceutical products designed to improve human health. This paper summarizes different approaches to isolate, purify, and characterize phytosterols. It also discusses the hypolipidemic mechanisms of phytosterols and their impact on cholesterol transportation. Phytosterols have a low water-solubility, poor chemical stability, and limited bioavailability, which limits their utilization and efficacy in functional foods. Strategies are therefore being developed to overcome these shortcomings. Colloidal delivery systems, such as emulsions, oleogels, liposomes, and nanoparticles, have been shown to be effective at improving the water-dispersibility, stability, and bioavailability of phytosterols. These delivery systems can be used to incorporate phytosterols into a broader range of cholesterol-lowering functional foods and beverages. We also discuses several issues that need to be addressed before these phytosterol delivery systems can find widespread commercial utilization.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yahong Han
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
22
|
Bioactive compounds of parsley (Petroselinum crispum), chives (Allium schoenoprasum L) and their mixture (Brazilian cheiro-verde) as promising antioxidant and anti-cholesterol oxidation agents in a food system. Food Res Int 2022; 151:110864. [PMID: 34980400 DOI: 10.1016/j.foodres.2021.110864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
This study determined the bioactive composition and antioxidant potential of parsley, chives and their mixture (Brazilian cheiro-verde). Additionally, the effect of these herbs against cholesterol oxidation in grilled sardines (Sardinella brasiliensis) was also investigated. Ultra-high Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UHPLC-ESI-MS) analyses revealed the presence of phenolic acids (caffeic, chlorogenic, and ferulic acids) and flavonoids (apigenin, kaempferol, catechin) in the herbs. Higher levels of phenolics (2.10 ± 0.02 mg GAE/g) and carotenoids (205.95 ± 0.17 µg/g) were determined in parsley extracts. Moreover, parsley also presented higher antioxidant capacity by DPPH (59.21 ± 0.07 %) and ORAC (109.94 ± 18.7 µM TE/g) than the other herbs. In vivo analyses demonstrated that the herbs' extracts decreased the damage on Saccharomyces cerevisiae cells exposed to H2O2, except the chives extract at 10 μg/mL. Higher levels of cholesterol oxidation products (COPs) were determined after grilling. The total COPs increased from 61.8 ± 0.7 (raw fish) to 139.7 ± 10.1 µg/g (control). However, the addition of herbs effectively reduced cholesterol oxides formation, this effect was more pronounced in fish containing 4% parsley and 4% cheiro-verde. Promising results were found for cheiro-verde; however, it did not present synergic antioxidant effects.
Collapse
|
23
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
24
|
The use of lemon juice and its role on polyunsaturated fatty acids and cholesterol oxides formation in thermally prepared sardines. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Gulzar S, Raju N, Prodpran T, Benjakul S. Chitosan‐Tripolyphosphate Nanoparticles Improves Oxidative Stability of Encapsulated Shrimp Oil throughout the Extended Storage. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Saqib Gulzar
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Thummanoon Prodpran
- Center of Excellence in Bio‐based Materials and Packaging Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
26
|
Gutiérrez-del-Río I, López-Ibáñez S, Magadán-Corpas P, Fernández-Calleja L, Pérez-Valero Á, Tuñón-Granda M, Miguélez EM, Villar CJ, Lombó F. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants (Basel) 2021; 10:1264. [PMID: 34439512 PMCID: PMC8389302 DOI: 10.3390/antiox10081264] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Synthetic antioxidant food additives, such as BHA, BHT and TBHQ, are going through a difficult time, since these products generate a negative perception in consumers. This has generated an increased pressure on food manufacturers to search for safer natural alternatives like phytochemicals (such as polyphenols, including flavonoids, and essential oils rich in terpenoids, including carotenoids). These plant bioactive compounds have antioxidant activities widely proven in in vitro tests and in diverse food matrices (meat, fish, oil and vegetables). As tons of food are wasted every year due to aesthetic reasons (lipid oxidation) and premature damage caused by inappropriate packaging, there is an urgent need for natural antioxidants capable of replacing the synthetic ones to meet consumer demands. This review summarizes industrially interesting antioxidant bioactivities associated with terpenoids and polyphenols with respect to the prevention of lipid oxidation in high fat containing foods, such as meat (rich in saturated fat), fish (rich in polyunsaturated fat), oil and vegetable products, while avoiding the generation of rancid flavors and negative visual deterioration (such as color changes due to oxidized lipids). Terpenoids (like monoterpenes and carotenoids) and polyphenols (like quercetin and other flavonoids) are important phytochemicals with a broad range of antioxidant effects. These phytochemicals are widely distributed in fruits and vegetables, including agricultural waste, and are remarkably useful in food preservation, as they show bioactivity as plant antioxidants, able to scavenge reactive oxygen and nitrogen species, such as superoxide, hydroxyl or peroxyl radicals in meat and other products, contributing to the prevention of lipid oxidation processes in food matrices.
Collapse
Affiliation(s)
- Ignacio Gutiérrez-del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Sara López-Ibáñez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Luis Fernández-Calleja
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Mateo Tuñón-Granda
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Elisa M. Miguélez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| |
Collapse
|
27
|
Estévez M. Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Sci 2021; 181:108610. [PMID: 34147961 DOI: 10.1016/j.meatsci.2021.108610] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
The number of articles devoted to study the effect of "natural antioxidants" on meat systems has remarkably increased in the last 10 years. Yet, a critical review of literature reveals recurrent flaws in regards to the rationale of the application, the experimental design, the characterisation of the plant sources, the discussion of the molecular mechanisms and of the potential benefits. The selection of the appropriate source of these antioxidants and the identification of their bioactive constituents, are essential to understand their mode of action and set effective and safe doses. The methodological approach should also be planned with care as the recorded effects and main conclusions largely depend on the accuracy and specificity of the methods. This article aims to critically review the recent advances in the application of plant antioxidants in meat and meat products and briefly covers current trends of innovative application and future trends.
Collapse
Affiliation(s)
- M Estévez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
28
|
Imbabi TA, Ahmed-Farid O, Selim DA, Sabeq II. Antioxidant and anti-apoptotic potential of whole-pomegranate extract promoted growth performance, physiological homeostasis, and meat quality of V-line rabbits under hot summer conditions. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Chauhan PS, Yadav D. Dietary Nutrients and Prevention of Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:217-227. [PMID: 33820525 DOI: 10.2174/1871527320666210405141123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is an irrevocable, progressive brain disorder that gradually destroys memory and cognitive skills. One of the extensively studied method of preventing Alzheimer's disease (AD) disease progression is by providing nutritional diet. Several reports have shown that intake of nutritional elements as huperzine A, ursolic acid, vitamins etc. can directly influence pathogenesis of AD. Surprisingly, occurrence of metabolic disorders due to unhealthy diet has been known to be a major environmental causes for AD. It has been noted that AD disease severity can be controlled by supplementing dietary supplements containing huge amounts of health-promoting ingredients. These elements promote cell health, regeneration, and the anti-aging process that specifically interrupt the pathogenic pathways in AD development. Fortunately, incorporating changes in the nutritional content is inexpensive, easy, acceptable, safe, effective, and in most cases free from major adverse events. Many nutritional phytoconstituents such as flavonoids, alkaloids, and terpenoids are still being evaluated in the hope of identifying a successful therapy for AD. This review discusses the therapeutical potential of several key nutrients that have been researched for treating AD treatment and the method of their neuroprotective intervention.
Collapse
Affiliation(s)
- Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior (M.P.). India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541. South Korea
| |
Collapse
|
30
|
Tavakoli S, Regenstein JM, Daneshvar E, Bhatnagar A, Luo Y, Hong H. Recent advances in the application of microalgae and its derivatives for preservation, quality improvement, and shelf-life extension of seafood. Crit Rev Food Sci Nutr 2021; 62:6055-6068. [PMID: 33706613 DOI: 10.1080/10408398.2021.1895065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Seafood is a highly perishable food product due to microbiological, chemical, and enzymatic reactions, which are the principal causes of their rapid quality deterioration. Therefore, ever-increasing consumers' demand for high-quality seafood along with a negative perception of synthetic preservatives creates opportunities for natural preservatives such as microalgae extracts. They are potential alternatives to reduce microbial growth, increase oxidative stability, and protect the sensorial properties of seafood. Research has shown that the inclusion of microalgae extracts into the aquatic animal's diet could enhance their meat quality and increase production. This review focuses on the direct application of various microalgae extracts as seafood preservative, and their functional properties in seafood, such as antioxidant and antimicrobial activities. Besides, the potential nutritional application of microalgae extracts as an alternative in aqua-feed and their impact on seafood quality (indirect application) are also presented. The safety aspects and regulatory issues of products from microalgae are highlighted.
Collapse
Affiliation(s)
- Samad Tavakoli
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Ehsan Daneshvar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Mikkeli, Finland
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, China
| |
Collapse
|
31
|
Dantas NM, de Oliveira VS, Sampaio GR, Chrysostomo YSK, Chávez DWH, Gamallo OD, Sawaya ACHF, Torres EAFDS, Saldanha T. Lipid profile and high contents of cholesterol oxidation products (COPs) in different commercial brands of canned tuna. Food Chem 2021; 352:129334. [PMID: 33657479 DOI: 10.1016/j.foodchem.2021.129334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Canned fish is submitted to processes that may degrade its lipids and form harmful compounds called cholesterol oxidation products (COPs). Samples of Brazilian commercial canned tuna were analyzed to evaluate the influence of different liquid mediums (oil and brine) on the fatty acid composition and formation of COPs. The exchange between fish lipids and the constituents of the covering liquid was highlighted by the high levels of linoleic acid found in tuna conserved in oil. High amounts of COPs were found. However, higher contents of COPs were found in tuna in brine (933.14 to 1914.23 µg/g) than in oil (698.24 to 1167.88 µg/g). This result was mainly promoted by the presence of pro-oxidant elements such as salt, as well as greater heat transfer in brine than in oil. This study showed that canned tuna is a potential source of exogenous COPs, indicating the role of liquid mediums in oxidative processes.
Collapse
Affiliation(s)
- Natalie Marinho Dantas
- Department of Food Technology, Institute of Technology, University Federal Rural of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ, 23890-000, Brazil; Department of Nutrition, School of Public Health, University of São Paulo (USP), Av. Dr. Arnaldo, 715, São Paulo, SP, 01246-904, Brazil
| | - Vanessa Sales de Oliveira
- Department of Food Technology, Institute of Technology, University Federal Rural of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ, 23890-000, Brazil
| | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo (USP), Av. Dr. Arnaldo, 715, São Paulo, SP, 01246-904, Brazil
| | - Yane Sane Koppe Chrysostomo
- Department of Food Technology, Institute of Technology, University Federal Rural of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ, 23890-000, Brazil
| | - Davy William Hidalgo Chávez
- Department of Food Technology, Institute of Technology, University Federal Rural of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ, 23890-000, Brazil
| | - Ormindo Domingues Gamallo
- Department of Food Technology, Institute of Technology, University Federal Rural of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ, 23890-000, Brazil
| | | | | | - Tatiana Saldanha
- Department of Food Technology, Institute of Technology, University Federal Rural of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ, 23890-000, Brazil
| |
Collapse
|
32
|
Yamin Y, Ruslin R, Sabarudin S, Sida NA, Kasmawati H, Diman LOM. Determination of Antiradical Activity, Total Phenolic, and Total Flavonoid Contents of Extracts and Fractions of Langsat (Lansium domesticum Coor.) Seeds. BORNEO JOURNAL OF PHARMACY 2020. [DOI: 10.33084/bjop.v3i4.1500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lansium domesticum Coor. is a fruit species from the Meliaceae family, which is a tropical plant native to Southeast Asia. Local citizens call it langsat, longkong, or duku and have used it as traditional medicine. The seeds of L. domesticum are used as a fever medicine, its bark is used to treat scorpion sting, and its leaves are used to repel mosquitoes. Because of its various uses, it is necessary to explore the antiradical potential of L. domesticum seeds. This study aims to determine the antiradical potential of L. domesticum seeds extract and fractions by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and to discover compounds that act as antiradical. Lansium domesticum seed powder was macerated with methanol, and then the extract was concentrated using a rotary evaporator and fractionated by n-hexane and ethyl acetate. The antiradical assay was conducted on extract and fractions by using DPPH radicals. Phenolic and flavonoid contents from extract and fractions were also tested. The ethyl acetate fraction obtained strong antiradical potential with an IC50 value of 8.938 � 0.031 �g/mL. Total phenolic and flavonoid contents of ethyl acetate fraction were higher with values ??of 58.25 � 0.501 mgGAE/g sample and 75.123 � 0.175 mgQE/g sample, respectively. Correlation of phenolic and flavonoid contents, which inhibited radicals had R2 values ??of 0.9182 and 0.7658. Ethyl acetate fraction of L. domesticum seeds had very strong antiradical activity. Further isolation is expected to be conducted to discover which compounds are the most responsible as antiradical.
Collapse
|
33
|
Verardo V, Messia MC, Marconi E, Caboni MF. Effect of Different Egg Products on Lipid Oxidation of Biscuits. Foods 2020; 9:E1714. [PMID: 33266449 PMCID: PMC7700660 DOI: 10.3390/foods9111714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
Egg products are one of the main ingredients used in bakery industries, and they contain cholesterol. Cholesterol suffers several chemical changes during the food processes, allowing some potentially toxic compounds called cholesterol oxidized products (COPs). Thus, the aim of this work was to study the evolution of lipid oxidation from eggs to egg products, and to evaluate the influence of egg products on COPs formation in biscuits formulated with them. The results confirmed that spray-drying technology improves the cholesterol oxidation 2.6 times compared to pasteurized eggs. Biscuit samples showed a COPs content that is strictly related to the egg products used. Samples formulated with spray-dried eggs noticed lower amounts of COPs compared to those formulated with pasteurized eggs. It is important to stress that COPs composition was different between the two samples, underlining that the kinetic of COPs formation is dependent on the type of egg products.
Collapse
Affiliation(s)
- Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, Avda del Conocimiento sn., Armilla, 18100 Granada, Spain
| | - Maria Cristina Messia
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via F. De Sanctis, I-86100 Campobasso (CB), Italy; (M.C.M.); (E.M.)
| | - Emanuele Marconi
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via F. De Sanctis, I-86100 Campobasso (CB), Italy; (M.C.M.); (E.M.)
| | - Maria Fiorenza Caboni
- Department of Agricultural and Food Sciences, University of Bologna, piazza Goidanich 60, 47521 Cesena (FC), Italy;
- Inter-Departmental Centre for Agri-Food Industrial Research (CIRI Agroalimentare), University of Bologna, via Quinto Bucci 336, 47521 Cesena (FC), Italy
| |
Collapse
|
34
|
Nistor OV, Șeremet (Ceclu) L, Mocanu GD, Barbu V, Andronoiu DG, Stănciuc N. Three Types of Red Beetroot and Sour Cherry Based Marmalades with Enhanced Functional Properties. Molecules 2020; 25:E5090. [PMID: 33147832 PMCID: PMC7663248 DOI: 10.3390/molecules25215090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022] Open
Abstract
The importance of bioactive compounds such as betalains and anthocyanins was highlighted in the present study by the valorization of red beetroot and sour cherry as an attempt to develop healthy products. The aim of the study was to obtain and characterize three types of marmalade based on red beetroot, sour cherry and both in 1:1 combination, obtained by heating at 95 °C for 30 min. Changes in total phenolic content, total flavonoids, betalains, anthocyanins and antioxidant activity were evaluated before and after the thermal treatment. Several other analyses such as color, rheological and textural analyses and confocal laser microscopy were performed to provide further information about the quality of the added-value food products. A significant decrease of 34% in betalains content was registered in the red beetroot marmalade due to the chemical changes in bioactives induced by the temperature. A satisfactory ABTS radical scavenging activity of 8.12 ± 0.38 mMol Trolox/g dry weight (dw) was obtained for the red beetroot and sour cherry based marmalade. The gelled structure was validated by the rheological and textural characteristics. The results highlighted the potential use of red beetroot and sour cherry as food raw materials, due to their particular profile of bioactive compounds.
Collapse
Affiliation(s)
- Oana Viorela Nistor
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galati, Romania; (O.V.N.); (G.D.M.); (V.B.); (D.G.A.)
| | - Liliana Șeremet (Ceclu)
- Faculty of Economics, Engineering and Applied Sciences Cahul State University “B.P. Hasdeu”, 3901 Cahul, Moldova;
| | - Gabriel Dănuț Mocanu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galati, Romania; (O.V.N.); (G.D.M.); (V.B.); (D.G.A.)
| | - Vasilica Barbu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galati, Romania; (O.V.N.); (G.D.M.); (V.B.); (D.G.A.)
| | - Doina Georgeta Andronoiu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galati, Romania; (O.V.N.); (G.D.M.); (V.B.); (D.G.A.)
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galati, Romania; (O.V.N.); (G.D.M.); (V.B.); (D.G.A.)
| |
Collapse
|
35
|
Guizellini GM, Torres EAFDS, Freitas RAMS, Saldanha T, Sawaya ACHF, Gamallo OD, Soares MJ, de Oliveira VS, Sampaio GR. The anticholesterol oxidation effects of garlic (Allium sativum L.) and leek (Allium ampeloprasum L.) in frozen fish burgers submitted to grilling. J Food Sci 2020; 85:2416-2426. [PMID: 32681539 DOI: 10.1111/1750-3841.15344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
This study determined the total phenolic content and antioxidant capacity of garlic (Allium sativum L.) and leek (Allium ampeloprasum L.), as well as evaluated their anticholesterol oxidation potential in fish burgers. The total phenolic contents were 1.1 ± 0.1 mg GAE/g FW to garlic and 1.3 ± 0.4 mg GAE/g FW for leek. Leek extract showed antioxidant activity index (1.3 ± 0.01) in DPPH and β-carotene/linoleic acid assay (66.5 ± 1.6%); however, in ORAC assay, no statistic differences were observed (P > 0.05). Besides that, bioactive compounds of garlic and leek extracts were identified by ultra-high performance liquid chromatography-electrospray by ionization-mass spectrometry (UHPLC-ESI-MS). Fish burgers were prepared using different concentrations of leek and garlic and stored at -18 °C for 90 days. Thus, at days 0, 30, 60, and 90, the samples were grilled and analyzed as to their cholesterol and cholesterol oxidation products contents. Storage and grilling led to an increase in cholesterol oxidation products; however, addition of garlic and leek minimized cholesterol oxidation products formation. After 90 days, samples containing 3% leek + 0.5% garlic ware the most effective in inhibiting the cholesterol oxides formation during storage and showed the lowest increase in cholesterol oxidation products content (21.16%). Thus, the findings of this research indicate the potential application of garlic and leek as natural inhibitors of cholesterol oxidation in food. PRACTICAL APPLICATION: Garlic and leek have a set of bioactive compounds with a wide antioxidant capacity when used in meat foods such as fish burgers. Garlic and leek used as natural antioxidants perform well in the shelf life of fish burgers and can be substitutes for synthetic antioxidants in this type of product. The presence of both vegetables reduced the formation of prejudicial products to human health generated during the shelf life of the food.
Collapse
Affiliation(s)
- Glória Maria Guizellini
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Tatiana Saldanha
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | - Ormindo Domingues Gamallo
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Maiara Jurema Soares
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Vanessa Sales de Oliveira
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
36
|
Tavdidishvili D, Khutsidze T, Pkhakadze M, Kalandia A, Vanidze M. The effect of antioxidants on the quality of semi-finished minced rabbit meat. POTRAVINARSTVO 2020. [DOI: 10.5219/1335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Under the current adverse environmental conditions, enrichment of the human diet with essential nutrients, including antioxidants, which exhibit immunostimulatory and adaptogenic properties and protect the body against the negative effects of free radicals, is extremely relevant. Their use in food production, including that of semi-finished meat products, improves the quality of such products and extends their shelf life. It is of scientific and practical interest to enrich rabbit meat with the antioxidant-containing plant raw materials and to study their influence on the quality parameters of semi-finished products. In this work, modern, standard, commonly accepted methods of research were used to fulfill the stated objectives. Statistical processing of the results obtained and evaluation of the reliability of the data was carried out by statistical methods using IBM SPSS Statistics for Windows. This study demonstrates the expediency of using grape-seed powder, green tea extract, and amaranth/flax flour in semi-finished rabbit meat products. The optimum component composition and amount of multiple supplements to add to the semi-finished product were determined. The total phenolic and flavonoid content and antioxidant characteristics of the test samples were studied. The highest antioxidant potential was observed in samples with flax-containing multiple supplements. This paper demonstrates that microbiological indicators in all samples throughout the storage period, in line with hygienic requirements, were lower than those in semi-finished products containing multiple supplements as compared with a reference sample, while organoleptic indicators of quality were more stable. The content of toxic elements indicates the sanitary reliability of semi-finished products. Determination of the acid number and peroxide number values during storage revealed high resistance of semi-finished products containing multiple supplements to the accumulation of free fatty acids and peroxide compounds. The obtained data indicate the effectiveness of using developed semi-finished products as antioxidant products in the diet of the population.
Collapse
|
37
|
Aroeira fruit (Schinus terebinthifolius Raddi) as a natural antioxidant: Chemical constituents, bioactive compounds and in vitro and in vivo antioxidant capacity. Food Chem 2020; 315:126274. [DOI: 10.1016/j.foodchem.2020.126274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/16/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022]
|
38
|
Effect of aroeira (Schinus terebinthifolius Raddi) fruit against polyunsaturated fatty acids and cholesterol thermo-oxidation in model systems containing sardine oil (Sardinella brasiliensis). Food Res Int 2020; 132:109091. [DOI: 10.1016/j.foodres.2020.109091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 02/01/2023]
|
39
|
Preparation of Chlorophyll-free Young Barley Leaf Extract Powders Using Supercritical Carbon Dioxide Modified with Cosolvent. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Domínguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants (Basel) 2019; 8:E429. [PMID: 31557858 PMCID: PMC6827023 DOI: 10.3390/antiox8100429] [Citation(s) in RCA: 756] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry. Nonetheless, despite lipid oxidation being widely investigated for decades, the complex reactions involved in the process, as well as the different pathways and factors that influenced them, make that lipid oxidation mechanisms have not yet been completely understood. Thus, this article reviews the fundamental mechanisms of lipid oxidation, the most important oxidative reactions, the main factors that influence lipid oxidation, and the routine methods to measure compounds derived from lipid oxidation in meat.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain.
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| |
Collapse
|
41
|
Inhibition of human breast cancer cells (MCF-7 cell line) growth via cell proliferation, migration, and angiogenesis by auraptene of Ferula szowitsiana root extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00185-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|