1
|
Zhou Q, Liao D, Liu H, Wang L, Zhang X, Sun L, Tong Z, Feng X, Zhou G. Insight into the interaction of serum albumin with antihypertensive peptide Val-Ala-Pro from bovine casein hydrolysate based on the biolayer interferometry, multi-spectroscopic analysis and computational evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125433. [PMID: 39561530 DOI: 10.1016/j.saa.2024.125433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024]
Abstract
Food-derived angiotensin-converting enzyme inhibitory peptide (ACEIP) has an effect in supportive therapeutic on hypertension. Bovine serum albumin (BSA) as a model transporter protein to explore the interaction mechanisms with casein-hydrolyzed ACEIP Val-Ala-Pro (VAP) by multi-spectroscopic, biolayer interferometry (BLI), isothermal titration calorimetry (ITC), molecular docking, and molecular dynamics simulations. Multi-spectroscopic analysis showed that the non-covalent complexes formed by VAP and BSA resulted in decreased hydrophobicity and α-helix contents on BSA, revealing the unfolding of the BSA structure. BLI revealed the reversible binding process of BSA to VAP. ITC confirmed that the combination of VAP to BSA was a spontaneous process mainly driven by entropy. Molecular docking and molecular dynamic simulations showed that VAP was primarily bound in site II of BSA by hydrogen bonding, hydrophobic interactions, van der Waals force, and electrostatic force. This study provides a systematic method to reveal the structure-activity relationship of ACEIPs.
Collapse
Affiliation(s)
- Qian Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Haibo Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Lei Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xueping Zhang
- Department of Pharmacy, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Guangxi, People's Republic of China
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xuezhen Feng
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, People's Republic of China.
| | - Guangzhi Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, People's Republic of China.
| |
Collapse
|
2
|
Chourasia R, Abedin MM, Phukon LC, Sarkar P, Sharma S, Sahoo D, Singh SP, Kumar Rai A. Unearthing novel and multifunctional peptides in peptidome of fermented chhurpi cheese of Indian Himalayan region. Food Res Int 2025; 201:115651. [PMID: 39849787 DOI: 10.1016/j.foodres.2024.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025]
Abstract
Fermented foods of the Indian Himalaya are unexplored functional resources with high nutritional potential. Chhurpi cheese, fermented by defined native proteolytic lactic acid bacteria of Sikkim was assessed for ACE inhibitory, HOCl reducing, and MPO inhibitory, activity across varying stages of gastrointestinal (GI) digestion. The enhanced bioactivity of Lactobacillus delbrueckii WS4 chhurpi was associated with the generation of bioactive and multifunctional peptides during fermentation and GI digestion. Qualitative and quantitative in silico tools were employed for prediction of ACE inhibitory activity of novel chhurpi peptides. Selected peptides, with highest predictive ACE inhibitory potential were synthesized and in vitro validation revealed the ACE inhibitory potential of peptides HPHPHLSFM and LKPTPEGDL. LKPTPEGDL showed the most potent ACE inhibitory activity (IC50 of 25.82 ± 0.26 µmol) which slightly decreased upon GI digestion. The peptides demonstrated a non-competitive type mixed ACE inhibition modality. Furthermore, the two peptides exerted observable HOCl reducing and MPO inhibitory activity, demonstrating their antioxidative potential. HPHPHLSFM exhibited superior HOCl reduction (EC50 of 0.29 ± 0.01 mmol), while LKPTPEGDL demonstrated higher MPO (IC50 of 0.29 ± 0.01 mmol) inhibition. Molecular docking of the two peptides with MPO revealed proline and aspartate near peptidyl C-terminus to bind with enzyme catalytic residues. This study presents the first peptidome analysis of chhurpi produced through controlled fermentation and identifies novel peptides with MPO and ACE inhibitory activity. Furthermore, it marks the first synthesis and in vitro bioactivity validation of bioactive peptides from chhurpi cheese, highlighting its multifunctional potential.
Collapse
Affiliation(s)
- Rounak Chourasia
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Md Minhajul Abedin
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India
| | | | - Puja Sarkar
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India; Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India; Department of Botany, University of Delhi, New Delhi, India
| | - Sudhir Pratap Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India; Department of Industrial Biotechnology, Gujarat Biotechnology University, GIFT City, Shahpur, Gandhinagar, Gujarat, India.
| | - Amit Kumar Rai
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India.
| |
Collapse
|
3
|
Liang Q, Liu Z, Xu M, Zhu J, Liang Z, Zhu C, Mou H. Heterologous expression of a recombinant ACE inhibitory peptide LYPVK and its potential antihypertensive action mechanism. Int J Biol Macromol 2025; 300:140274. [PMID: 39863209 DOI: 10.1016/j.ijbiomac.2025.140274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3). The expressed tandem repeat protein with molecular weight of 13.4 kDa was verified by high performance liquid chromatography (HPLC) and amino acid composition. Subsequently, LYPVK was generated following His-tag removal and trypsin-mediated cleavage of the purified protein, which was performed HPLC and liquid chromatography-mass spectrometry (LC-MS) analysis. LYPVK exhibited an IC50 value of 10.6 ± 0.86 μg/mL, demonstrating a non-competitive mode of action and resistance to gastrointestinal enzyme hydrolysis and heat conditions. Molecular docking results showed that LYPVK interacted with ACE through conventional hydrogen bonds and hydrophobic interactions. Except for ACE, ALB, SRC, PPARG, and MMP9 are identified as potential key targets for its antihypertensive activity by network pharmacological analysis. This study provides a promising biotechnological approach for the preparation of active peptides with high purity and yield.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Menghao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jihai Zhu
- Shandong Mingbang Food Co., Ltd, Rizhao 276800, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
4
|
Du T, Yang J, Qin Y, Huang X, Li J, Xiong S, Xu X, Zhang L, Zhao M, Li H, Huang T, Xiong T, Xie M. Transport and action of sesame protein-derived ACE inhibitory peptides ITAPHW and IRPNGL. Food Chem 2025; 472:142965. [PMID: 39842202 DOI: 10.1016/j.foodchem.2025.142965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Vascular endothelial dysfunction is an important pathogenic factor in hypertension, in which angiotensin-converting enzyme (ACE) plays an important role. Peptides that bind to ACE may attenuate vascular endothelial dysfunction by altering the structure of ACE. This study demonstrated that ITAPHW and IRPNGL were resistant to simulated gastrointestinal fluid and were transported across the Caco-2 monolayer via the intercellular space, with ITAPHW showing a high apparent permeability coefficient of (1.44 ± 0.01) × 10-5 cm/s. Subsequently, multispectral analysis and molecular dynamic simulation revealed the stability, conformation changes, and potential binding sites of ITAPHW- and IRPNGL-ACE complex. Furthermore, ITAPHW and IRPNGL alleviated endothelial dysfunction in the angiotensin I-induced human umbilical vein endothelial cells (HUVECs) by reducing ACE activity and the concentrations of angiotensin II and endothelin-1 (ET-1), while promoting the level of nitric oxide (NO), endothelial nitric oxide synthase (eNOS), cyclic guanosine 3', 5'-monophosphate (cGMP), and ACE2.
Collapse
Affiliation(s)
- Tonghao Du
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Jiahui Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Yuan Qin
- Party Committee Office for Faculty Affairs, Jiangxi Vocational Technical College of Industry & Trade, No. 699 Jiayan Road, Nanchang, Jiangxi, 330038, PR China
| | - Xizhuo Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Jiahui Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Shijin Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Xiaoyan Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Linli Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingwei Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Huiyu Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; Jiangxi Academy of Nutrition and Health Management Medicine, The First Affiliated Hospital of Nanchang University, No. 1519 Dongyue Avenue, Nanchang, Jiangxi 330209, PR China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| |
Collapse
|
5
|
Yao X, Cao X, Chen L, Liao W. Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin-Angiotensin System. Nutrients 2024; 17:97. [PMID: 39796531 PMCID: PMC11722916 DOI: 10.3390/nu17010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect. In addition, artificial intelligence has improved the efficiency of ACE inhibitory peptide identifications. Moreover, the inhibition of renin and blockade or down-regulation of angiotensin type I receptor (AT1R) have also been demonstrated to be effective intervention strategies. With the identification of the ACE2/Ang (1-7)/MasR axis, activation or up-regulation of angiotensin-converting enzyme 2 (ACE2) has also emerged as a new intervention pathway. This review summarizes the research progress of antihypertensive peptides in intervening with hypertension from the perspective of their properties, sources, and key factors. The objective of this review is to provide theoretical references for the development of antihypertensive peptides and the explorations of the molecular mechanisms.
Collapse
Affiliation(s)
- Xinyu Yao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| |
Collapse
|
6
|
Hu Y, Luo H, Netala VR, Li H, Zhang Z, Hou T. Comprehensive Review of Biological Functions and Therapeutic Potential of Perilla Seed Meal Proteins and Peptides. Foods 2024; 14:47. [PMID: 39796337 PMCID: PMC11719718 DOI: 10.3390/foods14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
This comprehensive review explores the biological functions of Perilla frutescens seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells. Additionally, they demonstrate antidiabetic activity by inhibiting α-amylase and α-glucosidase. The cardioprotective effects of perilla peptides are underscored by ACE-inhibitory activities and combat oxidative stress through enhanced antioxidant defenses. Further, perilla peptides contribute to improved gut health by enhancing beneficial gut flora and reinforcing intestinal barriers. In liver, kidney, and testicular health, they reduce oxidative stress and apoptotic damage while normalizing electrolyte levels and protecting against cyclophosphamide-induced reproductive and endocrine disruptions by restoring hormone synthesis. Promising anticancer potential is also demonstrated by perilla peptides through the inhibition of key cancer cell lines, alongside their anti-inflammatory and immunomodulating activities. Their anti-fatigue effects enhance exercise performance and muscle function, while perilla seed peptide nanoparticles show potential for targeted drug delivery. The diverse applications of perilla peptides support their potential as functional food additives and therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (Y.H.); (H.L.); (V.R.N.); (H.L.); (Z.Z.)
| |
Collapse
|
7
|
Xing S, Zhang X, Mu T, Cao J, Zhao K, Han B, Peng X. Goat Milk Protein-Derived ACE Inhibitory Peptide SLPQ Exerts Hypertension Alleviation Effects Partially by Regulating the Inflammatory Stress of Endothelial Cells. Foods 2024; 13:3392. [PMID: 39517176 PMCID: PMC11545510 DOI: 10.3390/foods13213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertension has always posed a severe threat to people's health. Food-derived angiotensin-converting enzyme (ACE)-inhibitory peptides have the potential to both prevent and treat hypertension. In the current investigation, two ACE-inhibitory peptides (SLPQ and PYVRYL) from goat milk were studied for their endothelial effects using EA.hy926 cells. PYVRYL outperformed SLPQ, yet neither impacted cell survival below 200 μg/mL. Investigation of SLPQ's impact on EA.hy926 cell expression revealed 114 differentially expressed genes, with 65 downregulated and 49 upregulated. The genes were enriched in cytokine interactions, coagulation cascades, Hippo signaling, and ECM-receptor interaction. Decreased c-x-c motif chemokine ligand 2 (CXCL2), integrin subunit beta 2 (ITGB2), and fbj murine osteosarcoma viral oncogene homologue (FOS) expression and increased secreted phosphoprotein 1 (SPP1) expression may protect endothelial cells from inflammation. Our findings suggest that beyond ACE inhibition, SLPQ aids blood pressure control by influencing endothelial function, paving the way for its use as an antihypertensive food ingredient.
Collapse
Affiliation(s)
- Shenghao Xing
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xiaotong Zhang
- College of Life Science, Yantai University, Yantai 264005, China
| | - Tong Mu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Jianxin Cao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Bing Han
- College of Life Science, Yantai University, Yantai 264005, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
8
|
Mu X, Li D, Xiao R, Guan K, Ma Y, Wang R, Niu T. Discovery of novel dipeptidyl peptidase-IV inhibitory peptides derived from walnut protein and their bioactivities in vivo and in vitro. Curr Res Food Sci 2024; 9:100893. [PMID: 39555024 PMCID: PMC11567926 DOI: 10.1016/j.crfs.2024.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
The inhibition of dipeptidyl peptidase IV (DPP-IV) has been regarded as a major target for treating type-2 diabetes (T2D). Food-derived peptides are a great source of DPP-IV inhibitory peptides. In this study, we utilized walnut protein as the raw material and hydrolyzed it using four different proteases. The trypsin hydrolysate exhibited the highest DPP-IV inhibitory activity. A DEAE-52 anion exchange column and a Sephadex G-25 gel filtration column were used to sequentially separate and purify the enzymatic hydrolysates. Mass spectrometry identified 117 peptide sequences, of which LPFA, VPFWA, and WGLP were three highly active DPP-IV inhibitory peptides. Molecular docking results revealed that three peptides primarily bind tightly to DPP-IV through hydrogen bonds and van der Waals forces. The inhibitory activity and absorption transport of the peptides were examined using a Caco-2 cell model. LPFA, VPFWA, and WGLP could cross the Caco-2 cell monolayer intact, with in situ IC50s of 267.9 ± 7.2 μM, 325.0 ± 8.4 μM, and 350.9 ± 8.3 μM, respectively. Oral glucose tolerance tests (OGTT) demonstrated that the three inhibitory peptides significantly improved glucose metabolism in normal ICR mice. This study establishes a theoretical basis for the high-value utilization of walnuts and the therapeutic treatment of T2D.
Collapse
Affiliation(s)
- Xinxin Mu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Dan Li
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Ran Xiao
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, 101100, China
| | - Kaifang Guan
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianjiao Niu
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, 101100, China
| |
Collapse
|
9
|
Mirdhayati I, Zain WNH, Fatah A, Yokoyama I, Arihara K. Purification of angiotensin converting enzyme inhibitory peptides and antihypertensive effect generated from Indonesian traditional fermented beef (Cangkuk). Anim Biosci 2024; 37:1799-1808. [PMID: 38754854 PMCID: PMC11366520 DOI: 10.5713/ab.23.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE Traditional fermented meat products can be considered a source of bioactive peptides. Cangkuk, a traditional Indonesian fermented beef product is one source of angiotensin converting enzyme (ACE) inhibitory peptides. This study aimed to identify ACE-inhibitory peptides from Cangkuk and analyze their antihypertensive effects. METHODS The water-soluble fraction of Cangkuk was fractionated to obtain ACE-inhibitory peptides using an ethanol solvent at several concentrations and solid-phase extraction with an OASIS HLB cartridge followed by purification with reversed-phase high-performance liquid chromatography (RP-HPLC). HPLC-MS was used to identify target peptides, followed by automatic protein sequencer analysis to detect peptide sequences. Antihypertensive effects were analyzed on the water-soluble fraction and synthesized peptides. The animal model comprised 14-16-week-old male spontaneously hypertensive rats (SHRs) (~320 g average body weight) with mean systolic blood pressures (SBPs) higher than 190 mmHg. All oral doses of peptides were 1 mL in volume. Distilled water was used as a control. The antihypertensive activities of the sample and control were observed by measuring the SBP at 0, 2, 4, 6, 8 and 24 h after oral administration. RESULTS Two sequences of ACE inhibitory peptides were found, EAPLNPKANR (IC50 value of 44.6 μmol/L) and IVG (IC50 value of 97.3 μmol/L). The water-soluble fraction demonstrated an antihypertensive effect on SHRs after oral administration at 100 mg/kg body weight, maximally lowering the SBP by 14.9 mmHg 8 h after administration. The tripeptide IVG showed the highest reduction of SBP, 24.76±2.1 mmHg 8 h after administration. The decapeptide EAPLNPKANR showed the highest reduction of SBP, 21.0±1.9 mmHg, 8 h after administration. All the samples differed significantly from the control (p<0.01). CONCLUSION Cangkuk has potential as a functional food ingredient acting as an antihypertensive agent.
Collapse
Affiliation(s)
- Irdha Mirdhayati
- Department of Animal Science, Faculty of Agriculture and Animal Science, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, 28293,
Indonesia
| | - Wieda Nurwidada Haritsah Zain
- Department of Animal Science, Faculty of Agriculture and Animal Science, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, 28293,
Indonesia
| | - Abdul Fatah
- Department of Animal Science, Faculty of Agriculture and Animal Science, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, 28293,
Indonesia
| | - Issei Yokoyama
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada-shi, 034-8628,
Japan
| | - Keizo Arihara
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada-shi, 034-8628,
Japan
| |
Collapse
|
10
|
Panjaitan FCA, Shie ST, Park SH, Sevi T, Ko WL, Aluko RE, Chang YW. Bioactive Properties of Enzymatic Gelatin Hydrolysates Based on In Silico, In Vitro, and In Vivo Studies. Molecules 2024; 29:4402. [PMID: 39339395 PMCID: PMC11434199 DOI: 10.3390/molecules29184402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
This current study aims to analyze the potential bioactivities possessed by the enzymatic hydrolysates of commercial bovine, porcine, and tilapia gelatins using bioinformatics in combination with in vitro and in vivo studies. The hydrolysate with superior inhibition of angiotensin converting enzyme (ACE) activity was used to treat the D-galactose (DG)-induced amnesic mice. In silico digestion of the gelatins led to the identification of peptide sequences with potential antioxidant, ACE-inhibitory, and anti-amnestic properties. The results of in vitro digestion revealed that the <1 kDa peptide fraction of porcine gelatin hydrolysate obtained after 1 h digestion with papain (PP) (PP1, <1 kDa) potently inhibited ACE, acetylcholinesterase, and prolyl endopeptidase activities at 87.42%, 21.24%, and 48.07%, respectively. Administering the PP1 to DG-induced amnesic mice ameliorated the spatial cognitive impairment and Morris water maze learning abilities. The dentate area morphology in the PP1-treated mice was relatively similar to the control group. In addition, PP1 enhanced the antioxidant capacity in the DG-induced amnesic mice. This study suggests that PP1 could serve as a potential treatment tool against oxidative stress, hypertension, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fenny Crista A Panjaitan
- Marine Products Processing Study Program, Marine and Fisheries Polytechnic of Jembrana, Bali 82218, Indonesia
| | - Sin-Ting Shie
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sung Hoon Park
- Department of Food and Nutrition, College of Life Sciences, Gangneug-Wonju National University, Gangneung 25457, Republic of Korea
| | - Tesalonika Sevi
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Ling Ko
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Yu-Wei Chang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
11
|
Wang W, Liang Q, Zhao B, Chen X, Song X. Functional Peptides from Yak Milk Casein: Biological Activities and Structural Characteristics. Int J Mol Sci 2024; 25:9072. [PMID: 39201758 PMCID: PMC11354251 DOI: 10.3390/ijms25169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The average content of casein in yak milk is 40.2 g/L. Casein can be degraded by enzymatic digestion or food processing to produce abundant degradation peptides. International researchers have studied the degradation peptides of yak milk casein by using multiple techniques and methods, such as in vitro activity tests, cellular experiments, proteomics, bioinformatics, etc., and found that the degradation peptides have a wide range of functional activities that are beneficial to the human body, such as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, and immunomodulatory activities, etc., and it has been proved that the types and strengths of functional activities are closely related to the structural characteristics of the peptides. This paper describes the characteristics of yak milk proteins, the functional activities, and mechanism of action of degraded peptides. Based on the types of functional activities of yak milk casein degradation peptides, we classified and elucidated the effects of structural factors, such as peptide molecular weight, peptide length, amino acid sequence, physicochemical properties, electrical charge, hydrophobicity, spatial conformation, chain length, and the type of enzyme on these activities. It reveals the great potential of yak milk casein degradation peptides as functional active peptide resources and as auxiliary treatments for diseases. It also provides important insights for analyzing yak casein degradation peptide activity and exploring high-value utilization.
Collapse
Affiliation(s)
| | - Qi Liang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (W.W.); (B.Z.); (X.C.); (X.S.)
| | | | | | | |
Collapse
|
12
|
Li W, Chen W, Zhang Z, Wu D, Liu P, Li Z, Yang Y. Combined Peptidomics and Metabolomics Analyses to Characterize the Digestion Properties and Activity of Stropharia rugosoannulata Protein-Peptide-Based Materials. Foods 2024; 13:2546. [PMID: 39200473 PMCID: PMC11353256 DOI: 10.3390/foods13162546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Protein-peptide-based materials typically possess high nutritional value and various physiological regulatory activities. This study evaluated the digestion, metabolism, and activity of Stropharia rugosoannulata protein-peptide-based materials. After the S. rugosoannulata protein-peptide-based materials were digested (simulated) orally, in the stomach, and in the intestines, the proportions of >10,000 Da, 5000~10,000 Da, and <180 Da in the digestion products increased, and the peptide content was maintained at more than 120 mg/g dry weight. The digestion products of eight test groups with different oral-gastrointestinal digestion-level settings all had suitable ACE inhibitory activity (IC50 range 0.004~0.096 mg/mL). The main metabolite groups were lipid-like molecules, fatty acids, carboxylic acids, their derivatives, amino acids, peptides, and analogs. Bile and glycosylated amino acids were the main compounds that caused differences between groups. KEGG pathways enriched in differentially expressed metabolites included eight significantly upregulated pathways, including valine, leucine, and isoleucine biosynthesis, etc., and six significantly downregulated pathways, including the citric acid cycle (tricarboxylic acid cycle), etc. The arginine and proline metabolism pathways and the aminoacyl-tRNA biosynthesis pathways were upregulation and downregulation pathways that enriched multiple differentially expressed metabolites. Twenty-six metabolites, including bile acids, total bile acids, and the essential amino acids L-isoleucine and L-leucine, were differentially expressed metabolite markers of the protein-peptide-based material oral-gastrointestinal digestion products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (W.C.); (Z.Z.); (D.W.); (P.L.); (Z.L.)
| |
Collapse
|
13
|
Chourasia R, Dabrha G, Abedin MM, Phukon LC, Singh AK, Sahoo D, Singh SP, Rai AK. Exploring peptidomes of by-products generated during chhurpi production using Lactobacillus delbrueckii WS4 for identification of novel bioactive peptides. Food Funct 2024; 15:5987-5999. [PMID: 38742436 DOI: 10.1039/d4fo00405a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The considerable value of whey is evident from its significant potential applications and contributions to the functional food and nutraceutical market. The by-products were individually obtained during functional chhurpi and novel soy chhurpi cheese production using defined lactic acid bacterial strains of Sikkim Himalaya's traditional chhurpi. Hydrolysis of substrate proteins by starter proteinases resulted in a comparable peptide content in whey and soy whey which was associated with antioxidant and ACE inhibition potential. Peptidome analysis of Lactobacillus delbrueckii WS4 whey and soy whey revealed the presence of several bioactive peptides including the multifunctional peptides PVVVPPFLQPE and YQEPVLGPVRGPFPIIV. In silico analyses predicted the antihypertensive potential of whey and soy whey peptides with strong binding affinity for ACE active sites. QSAR models predicted the highest ACE inhibition potential (IC50) for the β-casein-derived decapeptide PVRGPFPIIV (0.95 μM) and the Kunitz trypsin inhibitor protein-derived nonapeptide KNKPLVVQF (16.64 μM). Chhurpi whey and soy whey can be explored as a valuable source of diverse and novel bioactive peptides for applications in designer functional foods development.
Collapse
Affiliation(s)
- Rounak Chourasia
- National Agri-food Biotechnology Institute, SAS Nagar, Mohali, India.
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Gayatri Dabrha
- National Agri-food Biotechnology Institute, SAS Nagar, Mohali, India.
| | | | | | - Ashish Kumar Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India.
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
- Department of Botany, University of Delhi, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India.
- Gujarat Biotechnology University, Shahpur, Gandhinagar, Gujarat, India
| | - Amit Kumar Rai
- National Agri-food Biotechnology Institute, SAS Nagar, Mohali, India.
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| |
Collapse
|
14
|
Li X, Peng C, Xiao S, Wang Q, Zhou A. Two Novel Angiotensin-Converting Enzyme (ACE) Inhibitory and ACE2 Upregulating Peptides from the Hydrolysate of Pumpkin ( Cucurbita moschata) Seed Meal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10909-10922. [PMID: 38689562 DOI: 10.1021/acs.jafc.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 μM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.
Collapse
Affiliation(s)
- Xin Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Chenghai Peng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Suyao Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, GuangDong 510642, China
| |
Collapse
|
15
|
Du T, Xu Y, Xu X, Xiong S, Zhang L, Dong B, Huang J, Huang T, Xiao M, Xiong T, Xie M. ACE inhibitory peptides from enzymatic hydrolysate of fermented black sesame seed: Random forest-based optimization, screening, and molecular docking analysis. Food Chem 2024; 437:137921. [PMID: 37944395 DOI: 10.1016/j.foodchem.2023.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
In this study, black sesame seeds were fermented by Lactobacillus Plantarum NCU116 and then hydrolyzed using acid protease to improve Angiotensin-I-converting enzyme (ACE) inhibitory activity. The random forest-particle swarm optimization (RF-PSO) model was applied to predict the ACE inhibitory activity during the hydrolysis process based on the experimental data. After separating by adsorption chromatography, gel filtration chromatography, and reversed phased-high performance liquid chromatography and then screening in silico method, eight peptides were identified from fermented black sesame seed hydrolysates as ITAPHW, SLPNYHPSPR, QYLPR, IRPNGL, YHNAPIL, LSYPR, GFAGDDAPRA, and LDPNPRSF with IC50 values of 51.69 μM, 146.67 μM, 655.02 μM, 752.60 μM, 1.02 mM, 2.01 mM, 1.97 mM, and 3.43 mM, respectively. ITAPHW and SLPNYHPSPR exhibited high antioxidant activity and inhibited the ACE activity in a non-competitive pattern. Molecular docking revealed that the strong ACE inhibition of ITAPHW and SLPNYHPSPR is probably attributed to the interaction with Zn2+ of ACE.
Collapse
Affiliation(s)
- Tonghao Du
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yazhou Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xiaoyan Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Shijin Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Linli Zhang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Biao Dong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jinqing Huang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Nanchang 330200, China
| | - Tao Huang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Muyan Xiao
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Mingyong Xie
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
16
|
Meng M, She Z, Feng Y, Zhang J, Han R, Qi Y, Sun L, Sun H. Optimization of Extraction Process and Activity of Angiotensin-Converting Enzyme (ACE) Inhibitory Peptide from Walnut Meal. Foods 2024; 13:1067. [PMID: 38611371 PMCID: PMC11012047 DOI: 10.3390/foods13071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In order to further realize the resource reuse of walnut meal after oil extraction, walnut meal was used as raw material to prepare polypeptide, and its angiotensin-converting enzyme (ACE) inhibitory activity was investigated. The ACE inhibitory peptides were prepared from walnut meal protein by alkaline solution and acid precipitation. The hydrolysis degree and ACE inhibition rate were used as indexes to optimize the preparation process by single-factor experiment and response surface method. The components with the highest ACE activity were screened by ultrafiltration, and their antioxidant activities were evaluated in vitro. The effect of gastrointestinal digestion on the stability of walnut peptide was analyzed by measuring molecular weight and ACE inhibition rate. The results showed that the optimal extraction conditions were pH 9.10, hydrolysis temperature 54.50 °C, and hydrolysis time 136 min. The ACE inhibition rate of walnut meal hydrolysate (WMH) prepared under these conditions was 63.93% ± 0.43%. Under the above conditions, the fraction less than 3 kDa showed the highest ACE inhibitory activity among the ACE inhibitory peptides separated by ultrafiltration. The IC50 value of scavenging ·OH free radical was 1.156 mg/mL, the IC50 value of scavenging DPPH free radical was 0.25 mg/mL, and the IC50 value of scavenging O2- was 3.026 mg/mL, showing a strong total reducing ability. After simulated gastrointestinal digestion in vitro, the ACE inhibitory rate of walnut peptide decreased significantly, but it still maintained over 90% ACE inhibitory activity. This study provides a reference for the application of low-molecular-weight walnut peptide as a potential antioxidant and ACE inhibitor.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ziyi She
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yinyin Feng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Junhan Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yanlong Qi
- Research Institute of Farm Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, No. 403 Nanchang Road, Urumqi 830091, China;
| | - Lina Sun
- Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences, No. 291 South Nanchang Road, Urumqi 830091, China
| | - Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China; (M.M.); (Z.S.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| |
Collapse
|
17
|
Du T, Huang J, Xu X, Xiong S, Zhang L, Xu Y, Zhao X, Huang T, Xiao M, Xiong T, Xie M. Effects of fermentation with Lactiplantibacillus plantarum NCU116 on the antihypertensive activity and protein structure of black sesame seed. Int J Biol Macromol 2024; 262:129811. [PMID: 38302018 DOI: 10.1016/j.ijbiomac.2024.129811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Effects of fermentation by Lactobacillus Plantarum NCU116 on the antihypertensive potential of black sesame seed (BSS) and structure characteristics of fermented black sesame seed protein (FBSSP) were investigated. Angiotensin-I-converting enzyme (ACE) inhibition and zinc chelating ability of fermented black sesame seed hydrolysate (FBSSH) reached the highest of 60.78 ± 3.67 % and 2.93 ± 0.04 mg/mL at 48 h and 60 h of fermentation, respectively. Additionally, the antioxidant activities of FBSSH and surface hydrophobicity of FBSSP were increased noticeably by fermentation. The α-helix and β-rotation of FBSSP tended to decrease and increase, respectively, during fermentation. Correlation analysis indicated strong positive relationships between β-turn and ACE inhibition activity as well as zinc chelating ability with correlation coefficients r of 0.8976 and 0.8932. Importantly, novel ACE inhibitory peptides LLLPYY (IC50 = 12.20 μM) and ALIPSF (IC50 = 558.99 μM) were screened from FBSSH at 48 h using in silico method. Both peptides showed high antioxidant activities in vitro. Molecular docking analysis demonstrated that the hydrogen bond connected with zinc ions of ACE mainly attributed to the potent ACE inhibitory activity of LLLPYY. The findings indicated that fermentation by Lactobacillus Plantarum NCU116 is an effective method to enhance the antihypertensive potential of BSS.
Collapse
Affiliation(s)
- Tonghao Du
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Jinqing Huang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Nanchang 330200, China
| | - Xiaoyan Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Shijin Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Linli Zhang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Yazhou Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Xueting Zhao
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China
| | - Tao Huang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Muyan Xiao
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Mingyong Xie
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, PR China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
18
|
Wu CL, Ni ZF, Kuang XY, Li MF, Zong MH, Fan XD, Lou WY. Novel Multitarget ACE Inhibitory Peptides from Bovine Colostrum Immunoglobulin G: Cellular Transport, Efficacy in Regulating Endothelial Dysfunction, and Network Pharmacology Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4155-4169. [PMID: 38366990 DOI: 10.1021/acs.jafc.3c08795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 μM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.
Collapse
Affiliation(s)
- Chu-Li Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Zi-Fu Ni
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Xiao-Yan Kuang
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Meng-Fan Li
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Xiao-Dan Fan
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, Guangdong China
| |
Collapse
|
19
|
Wu Y, Zhang J, Mu T, Zhang H, Cao J, Li H, Tang H, Chen L, Liu H, Xu X, Zhao K. Selection of goat β-casein derived ACE-inhibitory peptide SQPK and insights into its effect and regulatory mechanism on the function of endothelial cells. Int J Biol Macromol 2023; 253:127312. [PMID: 37827416 DOI: 10.1016/j.ijbiomac.2023.127312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
The angiotensin I-converting enzyme (ACE)-inhibitory peptide SQPK was selected by in silico digestion and virtual screening from goat β-casein, and its effect and regulatory mechanism on function of endothelial cells was further evaluated. The results showed that SQPK exhibited relatively good ACE inhibition capacity (IC50 = 452.7 μg/mL). Treatment with 25 μg/mL SQPK for 12 h significantly elevated nitric oxide (NO) production, stimulated eNOS expression (p < 0.05) and affected the transcriptomic profiling of EA. Hy926 cells. In particular, SQPK stimulated the expression of genes encoding inflammatory cytokines (CXCL1/2 and IL6) but depressed encoding mesenchymal markers (FN1 and CNN3). Furthermore, SQPK modified the expression of genes involved in endothelial-to-mesenchymal transition (EndMT). Therefore, the selected peptide SQPK may exert potential protective effects on the function of endothelial cells by inhibiting the EndMT.
Collapse
Affiliation(s)
- Yulong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Jin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Tong Mu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Hong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Jianxin Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Huanhuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Honggang Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Lihong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Hongyun Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xianrong Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China.
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
20
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction? Food Res Int 2023; 174:113640. [PMID: 37986483 DOI: 10.1016/j.foodres.2023.113640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Dairy-derived angiotensin-I-converting enzyme inhibitory peptides (ANGICon-EIPs) have been regarded as a relatively safe supplementary diet-therapy strategy for individuals with hypertension, and short-chain peptides may have more relevant antihypertensive benefits due to their direct intestinal absorption. Our previous explorations have confirmed that endogenous goat milk short-chain peptides are also an essential source of ANGICon-EIPs. Nonetheless, there are limited explorations on endogenous ANGICon-EIPs owing to the limitations of the extraction and enrichment of endogenous peptides, currently. This review outlined ameliorated pre-treatment strategies, data acquisition methods, and tools for the prediction of peptide structure and function, aiming to provide creative ideas for discovering novel ANGICon-EIPs. Currently, deep learning-based peptide structure and function prediction algorithms have achieved significant advancements. The convolutional neural network (CNN) and peptide sequence-based multi-label deep learning approach for determining the multi-functionalities of bioactive peptides (MLBP) can predict multiple peptide functions with absolute true value and accuracy of 0.699 and 0.708, respectively. Utilizing peptide sequence input, torsion angles, and inter-residue distance to train neural networks, APPTEST predicted the average backbone root mean square deviation (RMSD) value of peptide (5-40 aa) structures as low as 1.96 Å. Overall, with the exploration of more neural network architectures, deep learning could be considered a critical research tool to reduce the cost and improve the efficiency of identifying novel endogenous ANGICon-EIPs.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
21
|
Fu Q, Zhao J, Rong S, Han Y, Liu F, Chu Q, Wang S, Chen S. Research Advances in Plant Protein-Based Products: Protein Sources, Processing Technology, and Food Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15429-15444. [PMID: 37824166 DOI: 10.1021/acs.jafc.3c02224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Plant proteins are high-quality dietary components of food products. With the growing interest in sustainable and healthy food alternatives, plant proteins have gained significant attention as viable substitutes for animal-based proteins. Understanding the diversity of protein sources derived from plants, novel processing technology, and multiple applications is crucial for developing nutritious and sustainable plant protein-based products. This Review summarizes the natural sources of traditional and emerging plant proteins. The classifications, processing technologies, and applications of plant protein-based products in the food industry are explicitly elucidated. Moreover, the advantages and disadvantages of plant protein-based food products are revealed. Strategies such as protein fortification and complementation to overcome these shortcomings are critically discussed. We also demonstrate several issues that need to be addressed in future development.
Collapse
Affiliation(s)
- Qi Fu
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78542, United States
| | - Shuang Rong
- School of Public Health, Wuhan University, 430071, Wuhan, China
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling 712199, China
| | - Qianmei Chu
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Suqing Wang
- School of Nursing, Wuhan University, Wuhan 430071, China
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, Wuhan, China
| |
Collapse
|
22
|
Zhang J, Liang L, Shan Y, Zhou X, Sun B, Liu Y, Zhang Y. Antihypertensive Effect, ACE Inhibitory Activity, and Stability of Umami Peptides from Yeast Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37812565 DOI: 10.1021/acs.jafc.3c04819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Bioactive peptides from foods have garnered considerable attention as viable supplements for hypertensive patients. Herein, the antihypertensive effect and mechanism of umami peptides from yeast extract were investigated based on the pharmacophore model, simulated digestion, spontaneously hypertensive rat (SHR) model, and molecular docking. Notably, umami peptide LLLLPKP exhibited favorable angiotensin I-converting enzyme (ACE) inhibitory activity (IC50 = 10.22 μM) in vitro and regulated blood pressure in the SHR model with excellent durability. Remarkably, LLLLPKP showed the highest Fitvalue (4.022) of the pharmacophore model, indicating its similar pharmacological effects as ACE inhibitors. During the simulated gastrointestinal digestion, the ACE inhibition rate of LLLLPKP was merely reduced by 5.89%, but it was enzymatically cleaved into 14 peptide segments. The C-terminal sequence comprising L (4), P (5), K (6), and P (7) exhibited robust stability and a notable presence within the peptide segments postdigestion. Meanwhile, according to molecular docking, these four residues within LLLLPKP were responsible for all interactions with key sites within active pockets S1 and S2 and the active pocket of Zn2+. In light of these findings, LLLLPKP is a highly promising antihypertensive peptide. Developing this umami peptide with antihypertensive effects holds substantial importance for the long-term treatment of hypertension.
Collapse
Affiliation(s)
- Jincheng Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yimeng Shan
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
23
|
Ning J, Li M, Chen W, Yang M, Chen J, Luo X, Yue X. Characterization and biological function analysis of endogenous peptides derived from donkey colostrum proteins. Food Funct 2023; 14:8261-8275. [PMID: 37602399 DOI: 10.1039/d3fo01703f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Donkey colostrum, due to its abundance of active ingredients, including lysozyme, proteins, and peptides, is essential for the growth and immune defence of newborns. However, research on endogenous peptides in donkey colostrum is inadequate. This study analysed the profiles of endogenous peptides, their potential bioactivity, and the enzymes that generated these peptides using two different strategies. A total of 6202 endogenous peptides were characterised through a database search, while an additional 2997 peptides were identified de novo. Among the 1142 proteins identified, trypsin and plasmin demonstrated the highest bioactivities. Furthermore, a bioinformatics-based screening identified antioxidant peptides, angiotensin I-converting enzyme inhibitory peptides, and dipeptidyl peptidase IV inhibitory peptides as the three most active peptides. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted. These findings enhance our knowledge of endogenous peptides in donkey colostrum and provide crucial information regarding these peptides as nutritional factors for the future development of functional foods derived from donkey sources.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Weiyan Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
24
|
Du T, Huang J, Xiong S, Zhang L, Xu X, Xu Y, Peng F, Huang T, Xiao M, Xiong T. Effects of enzyme treatment on the antihypertensive activity and protein structure of black sesame seed (Sesamum indicum L.) after fermentation pretreatment. Food Chem 2023; 428:136781. [PMID: 37418882 DOI: 10.1016/j.foodchem.2023.136781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Effects of enzyme treatment on the hypertensive potential and protein structure of black sesame seed (BSS) were investigated. Compared with BSS, Angiotensin-converting enzyme (ACE) inhibition of fermented black sesame seed (FBSS) has significantly improved after acid protease processing and reached 75.39% at 2 U/g in 3 h. Meanwhile, the zinc chelating ability and antioxidant activity of FBSS hydrolysate as well as surface hydrophobicity, free sulfhydryl content, and peptide content of FBSS protein, were significantly increased. The results illustrated that this strategy promoted the protein unfolding and exposure of hydrophobic residues, thus contributing toward enzymatic hydrolysis. Secondary structure results indicated that the α-helix of FBSS protein and β-sheet of BSS protein decreased after hydrolyzing. The differences in ACE inhibition may also result from the difference in peptide sequence except for peptide content. In conclusion, the combination of fermentation pretreatment and enzyme treatment is an effective method to enhance the antihypertensive potential of BSS.
Collapse
Affiliation(s)
- Tonghao Du
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jinqing Huang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Nanchang 330200, China
| | - Shijin Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Linli Zhang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xiaoyan Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yazhou Xu
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Fei Peng
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tao Huang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Muyan Xiao
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330052, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
25
|
Goyal N, Hajare SN, Gautam S. Release of an encrypted, highly potent ACE-inhibitory peptide by enzymatic hydrolysis of moth bean ( Vigna aconitifolia) protein. Front Nutr 2023; 10:1167259. [PMID: 37360301 PMCID: PMC10288869 DOI: 10.3389/fnut.2023.1167259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/28/2023] [Indexed: 06/28/2023] Open
Abstract
Aim Dietary approaches for the regulation of blood pressure are the need of the hour. Hence, identifying the foods possessing such activity is gaining importance. With this aim, moth bean (Vigna aconitifolia), an underutilized pulse, was explored for the presence of antihypertensive activity in terms of angiotensin converting enzyme (ACE)-inhibition bioactivity. Methods Defatted moth bean protein concentrate was hydrolyzed by using different proteases including Alcalase, papain, and trypsin, to identify the enzyme producing highly potent ACE inhibitory peptides. The hydrolysate showing the highest ACE inhibitory activity was further fractionated using an ultrafiltration membrane (10, 3 and 1 kDa) based on ACE inhibitory activity. The active fraction was further subjected to the ion-exchange chromatography followed by RP-HPLC and LC-MS/MS analysis for the enrichment and identification of ACE inhibitory peptides. Finally, based on the bioinformatic analysis, few peptides were synthesized and evaluated for ACE inhibitory activity, followed by docking study and molecular dynamic simulation of a peptide with the highest ACE inhibitory activity. Results and discussion Out of the three proteases, Alcalase-derived hydrolysate showed the highest (~59%) ACE inhibition activity. Molecular weight-based fractionation revealed that <1 kDa fraction possessed the highest ACE inhibitory activity. Activity guided separation of 1 kDa fraction using ion-exchange chromatography, RP-HPLC and LC-MS/MS showed the presence of about 45 peptides. Based on the bioinformatic analysis, 15 peptides were synthesized and evaluated for ACE inhibitory activity. Among these, a novel octapeptide FPPPKVIQ showed the highest ACE inhibitory activity (93.4%) with an IC50 of 0.24 μM. This peptide retained about 59% activity post gastrointestinal digestion simulation. A Dixon plot as well as docking studies revealed the uncompetitive inhibitory nature of this peptide with a Ki value of 0.81 μM. Molecular dynamic simulation studies till 100 ns ensured the stability of the ACE-peptide complex. Conclusion Thus, present study identified a novel potent ACE inhibitory peptide from moth bean that can be incorporated in a functional dietary formulation for regulation of hypertension.
Collapse
Affiliation(s)
- Nancy Goyal
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sachin N. Hajare
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences Department, Homi Bhabha National Institute, Mumbai, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences Department, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
26
|
Duan X, Dong Y, Zhang M, Li Z, Bu G, Chen F. Identification and molecular interactions of novel ACE inhibitory peptides from rapeseed protein. Food Chem 2023; 422:136085. [PMID: 37141758 DOI: 10.1016/j.foodchem.2023.136085] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Plant-derived bioactive peptides have drawn much attention because of their physiological functions. This study aimed to evaluate bioactive peptides in rapeseed protein and identify novel angiotensin Ⅰ-converting enzyme (ACE) inhibitory peptides using bioinformatics methods. A total of 24 kinds of bioactive peptides were encrypted in the 12 selected rapeseed proteins by analysis in BIOPEP-UWM, with higher occurrence frequency of dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitory peptides (0.5727-0.7487) and ACE inhibitory peptides (0.3500-0.5364). Novel ACE inhibitory peptides FQW, FRW and CPF were identified by in silico proteolysis, and they had strong inhibitory effects on ACE in vitro, showing IC50 values of 44.84 ± 1.48 μM, 46.30 ± 1.39 μM and 131.35 ± 3.87 μM, respectively. Molecular docking results displayed that these three peptides were able to interact with ACE active site via hydrogen bonds and hydrophobic interactions, and coordinate with Zn2+. It suggested that rapeseed protein could be a good source for the production of ACE inhibitory peptides.
Collapse
Affiliation(s)
- Xiaojie Duan
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Yifan Dong
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Min Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Zihui Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Guanhao Bu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
27
|
Akan E, Karakaya S, Eda Eker Özkacar M, Kinik Ö. Effect of food matrix and fermentation on angiotensin-converting enzyme inhibitory activity and β-glucan release after in vitro digestion in oat-based products. Food Res Int 2023; 165:112508. [PMID: 36869510 DOI: 10.1016/j.foodres.2023.112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The aim of this study was to determine the effects of fermentation and food matrix on the ACE inhibitory activities of the peptides obtained after in vitro gastrointestinal digestion, protein profiles (SDS-PAGE) and β-glucan amounts of oat products. Furthermore, the physicochemical and microbiological properties of fermented oat drinks and oat yogurt-like product obtained from oat fermentation were evaluated. Oat grains were mixed with a certain ratio of water 1:3 w/v (oat:water, yogurt consistency) and 1:5 w/v (oat:water, drink consistency), and this mixture was fermented with yogurt culture and probiotic Lactobacillus plantarum and fermented drinks and yogurt were produced. The results indicated that the fermented oat drink and the oat yogurt-like product had L. plantarum viability over 107 cfu/g. After the in vitro gastrointestinal digestion of the samples, the hydrolysis levels ranged from 57.70 % to 82.06 %.The hydrolysis level of the samples with fermented-drink consistency was significantly higher than the samples with yogurt consistency (p < 0.05).The SDS-PAGE profiles of the non-digested samples showed that the bands had molecular weights of 12-15 kDa and around 35 kDa. Bands whose molecular weights were around 35 kDA disappeared after gastric digestion. ACE inhibitory activities of the fractions composed of molecular weights of 2 kDa and 2-5 kDa obtained after in vitro gastrointestinal digestion of the oat samples were in the range of 46.93-65.91 %. The effect of fermentation on the ACE inhibitory activities of the peptide mixture with molecular weights between 2 and 5 kDa was not statistically significant, however, fermentation caused an increase in the ACE inhibitory activities of the peptide mixture with a molecular weight<2 kDa (p < 0.05). The β-glucan amounts of fermented and non-fermented oat products were in the range of 0.57-1.28 %. The β-glucan amounts detected after gastric digestion decreased considerably and β-glucan could not be detected in the supernatant after gastrointestinal digestion. This indicated that β-glucan did not solubilize in the supernatant (bioaccessible) and remained in the pellet. In conclusion, fermentation is a valuable process for releasing peptides with moderately high ACE inhibitory effects from the parent oat proteins.
Collapse
Affiliation(s)
- Ecem Akan
- Aydin Adnan Menderes University Faculty of Agriculture Department of Dairy Technology, Aydin, Türkiye.
| | - Sibel Karakaya
- Ege University Faculty of Engineering Department of Food Engineering, Izmir, Türkiye
| | | | - Özer Kinik
- Ege University Faculty of Agriculture Department of Dairy Technology, Izmir, Türkiye
| |
Collapse
|
28
|
Zhu Q, Xue J, Wang P, Wang X, Zhang J, Fang X, He Z, Wu F. Identification of a Novel ACE Inhibitory Hexapeptide from Camellia Seed Cake and Evaluation of Its Stability. Foods 2023; 12:foods12030501. [PMID: 36766030 PMCID: PMC9914026 DOI: 10.3390/foods12030501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The camellia seed cake proteins (CP) used in this study were individually hydrolyzed with neutral protease, alkaline protease, papain, and trypsin. The results showed that the hydrolysate had the highest ACE inhibitory activity at 67.36 ± 0.80% after four hours of neutral protease hydrolysis. Val-Val-Val-Pro-Gln-Asn (VVVPQN) was then obtained through ultrafiltration, Sephadex G-25 gel chromatography separation, LC-MS/MS analysis, and in silico screening. VVVPQN had ACE inhibitory activity with an IC50 value of 0.13 mg/mL (198.66 μmol/L), and it inhibited ACE in a non-competitive manner. The molecular docking indicated that VVVPQN can combine with ACE to form eight hydrogen bonds. The results of the stability study showed that VVVPQN maintained high ACE-inhibitory activity in weakly acidic and neutral environments and that heat treatment (20-80 °C) and Na+, Mg2+, as well as Fe3+ metal ions had little effect on the activity of VVVPQN. Moreover, it remained relatively stable after in vitro simulated gastrointestinal digestion. These results revealed that VVVPQN identified in camellia seed cake has the potential to be applied in functional food or antihypertensive drugs.
Collapse
Affiliation(s)
- Qiaonan Zhu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jiawen Xue
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xianbo Wang
- Zhejiang Feixiangyuan Food Co., Ltd., Lishui 323400, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xuezhi Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhiping He
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (Z.H.); (F.W.)
| | - Fenghua Wu
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (Z.H.); (F.W.)
| |
Collapse
|
29
|
Liu W, Ma R, Lu S, Wen Y, Li H, Wang J, Sun B. Acid-Resistant Mesoporous Metal-Organic Frameworks as Carriers for Targeted Hypoglycemic Peptide Delivery: Peptide Encapsulation, Release, and Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55447-55457. [PMID: 36478454 DOI: 10.1021/acsami.2c18452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oral administration of bioactive peptides with α-glucosidase inhibitory activities is a promising strategy for diabetes mellitus. The wheat germ peptide Leu-Asp-Leu-Gln-Arg (LDLQR) has been previously proven to inhibit the activity of α-glucosidase efficiently. However, it is still difficult to transport the peptide to the intestine completely due to the harsh condition of the stomach. Herein, an acid-resistant zirconium-based metal-organic framework, NU-1000, was used to immobilize LDLQR with a high encapsulation capacity (92.72%) and encapsulation efficiency (44.08%) in only 10 min. The in vitro release results showed that the acid-stable NU-1000 not only effectively protected LDLQR from degradation in the presence of stomach acid and pepsin effectively but also ensured the release of encapsulated LDLQR under simulated intestinal conditions. Furthermore, LDLQR@NU-1000 could slow down the elevated blood sugar caused by maltose in mice and the area under blood sugar curve decreased by almost 20% when compared with the control group. The inflammatory factor (IL-1β, IL-6) in vivo and cell growth in vitro were almost the same between NU-1000 treatment and normal control groups. This study indicates NU-1000 is a promising vehicle for targeted peptide-based bioactive delivery to the small intestine.
Collapse
Affiliation(s)
- Weiwei Liu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Ruolan Ma
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Shiyi Lu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), Beijing100048, China
| | - Hongyan Li
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Jing Wang
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Baoguo Sun
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| |
Collapse
|
30
|
Screening and Mechanism of Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides in X. sorbifolia Seed Meal: A Computer-Assisted Experimental Study Method. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248792. [PMID: 36557925 PMCID: PMC9785712 DOI: 10.3390/molecules27248792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitors are used extensively to control hypertension. In this study, a computer-assisted experimental approach was used to screen ACE-inhibiting peptides from X. sorbifolum seed meal (XSM). The process conditions for XSM hydrolysis were optimized through the orthogonal experimental method combined with a database. The optimal conditions for ACE inhibition included an alkaline protease dose of 5%, 45 °C, 15 min and pH 9.5. The hydrolysate was analyzed by LC-MS/MS, and 10 optimal peptides were screened. Molecular docking results revealed four peptides (GGLPGFDPA, IMAVLAIVL, ETYFIVR, and INPILLPK) with ACE inhibitory potential. At 0.1 mg/mL, the synthetic peptides GGLPGFDPA, ETYFIVR, and INPILLPK provided ACE inhibition rates of 24.89%, 67.02%, and 4.19%, respectively. GGLPGFDPA and ETYFIVR maintained high inhibitory activities during in vitro digestions. Therefore, the XSM protein may be a suitable material for preparing ACE inhibitory peptides, and computer-assisted experimental screening is an effective, accurate and promising method for discovering new active peptides.
Collapse
|
31
|
Response surface optimization of selenium-enriched Moringa oleifera seed peptides with antioxidant, ACEI and XOI activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
33
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Peptide-rich extracts from spent yeast waste streams as a source of bioactive compounds for the nutraceutical market. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Karami Z, Duangmal K. Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zohreh Karami
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kiattisak Duangmal
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
36
|
Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022; 9:950823. [PMID: 36118740 PMCID: PMC9479208 DOI: 10.3389/fnut.2022.950823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of bioactive peptides to exert biological functions has mainly contributed to their exploitation. The exploitation and utilization of these peptides have grown tremendously over the past two decades. Food-derived peptides from sources such as plant, animal, and marine proteins and their byproducts constitute a more significant portion of the naturally-occurring peptides that have been documented. Due to their high specificity and biocompatibility, these peptides serve as a suitable alternative to pharmacological drugs for treating non-communicable diseases (such as cardiovascular diseases, obesity, and cancer). They are helpful as food preservatives, ingredients in functional foods, and dietary supplements in the food sector. Despite their unique features, the application of these peptides in the clinical and food sector is to some extent hindered by their inherent drawbacks such as toxicity, bitterness, instability, and susceptibility to enzymatic degradation in the gastrointestinal tract. Several strategies have been employed to eliminate or reduce the disadvantages of peptides, thus enhancing the peptide bioactivity and broadening the opportunities for their applications. This review article focuses on the current research status of various bioactive peptides and the strategies that have been implemented to overcome their disadvantages. It will also highlight future perspectives regarding the possible improvements to be made for the development of bioactive peptides with practical uses and their commercialization.
Collapse
Affiliation(s)
- Julieth Joram Majura
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Ran Du
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Pei Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
37
|
|
38
|
Polysaccharides-based delivery system for efficient encapsulation and controlled release of food-derived active peptides. Carbohydr Polym 2022; 291:119580. [DOI: 10.1016/j.carbpol.2022.119580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
39
|
Chourasia R, Chiring Phukon L, Minhajul Abedin M, Sahoo D, Kumar Rai A. Production and characterization of bioactive peptides in novel functional soybean chhurpi produced using Lactobacillus delbrueckii WS4. Food Chem 2022; 387:132889. [PMID: 35430540 DOI: 10.1016/j.foodchem.2022.132889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/14/2022] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
A novel soy chhurpi product was developed by fermentation of soymilk using proteolytic Lactobacillus delbrueckii strains isolated from traditional chhurpi production of Sikkim Himalaya. Soymilk fermentation by L. delbrueckii WS4 was associated with the hydrolysis of globulin proteins, with observed antioxidant, and ACE-inhibitory activity which further increased upon simulated in vitro gastrointestinal digestion. Peptidomics analysis of soy chhurpi and its gastrointestinal digest resulted in the identification of bioactive peptides with ACE-inhibitory and antioxidant properties. In silico antihypertensive property prediction followed by molecular docking study demonstrated strong binding affinity of selected peptides with ACE. The glycinin-derived peptide, SVIKPPTDE escaped gastrointestinal digestion and demonstrated strong non-bond interactions with ACE catalytic residues. QSAR models predicted an ACE-inhibitory IC50 of 21.29 µM for SVIKPPTDE. This is the first report on the production of novel functional soy chhurpi cheese using defined starter strains and the identification of bioactive peptides in undigested and gastrointestinal digested soy chhurpi.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India; Department of Botany, University of Delhi, Delhi, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India.
| |
Collapse
|
40
|
Preparation, Characterization and In Vitro Stability of a Novel ACE-Inhibitory Peptide from Soybean Protein. Foods 2022; 11:foods11172667. [PMID: 36076853 PMCID: PMC9455805 DOI: 10.3390/foods11172667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022] Open
Abstract
A soy protein isolate was hydrolyzed with Alcalase®, Flavourzyme® and their combination, and the resulting hydrolysates (A, F and A + F) were ultrafiltered and analyzed through SDS-PAGE. Fractions with MW < 1 kDa were investigated for their ACE-inhibitory activity, and the most active one (A < 1 kDa) was purified by semi-preparative RP-HPLC, affording three further subfractions. NMR analysis and Edman degradation of the most active subfraction (A1) enabled the identification of four putative sequences (ALKPDNR, VVPD, NDRP and NDTP), which were prepared by solid-phase synthesis. The comparison of their ACE-inhibitory activities suggested that the novel peptide NDRP might be the main agent responsible for A1 fraction ACE inhibition (ACE inhibition = 87.75 ± 0.61%; IC50 = 148.28 ± 9.83 μg mL−1). NDRP acts as a non-competitive inhibitor and is stable towards gastrointestinal simulated digestion. The Multiple Reaction Monitoring (MRM) analysis confirmed the presence of NDRP in A < 1 kDa.
Collapse
|
41
|
Li W, Chen W, Ma H, Wu D, Zhang Z, Yang Y. Structural characterization and angiotensin-converting enzyme (ACE) inhibitory mechanism of Stropharia rugosoannulata mushroom peptides prepared by ultrasound. ULTRASONICS SONOCHEMISTRY 2022; 88:106074. [PMID: 35753137 PMCID: PMC9240869 DOI: 10.1016/j.ultsonch.2022.106074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 05/05/2023]
Abstract
To reveal the structural characteristics and angiotensin-converting enzyme (ACE) inhibition mechanism of Stropharia rugosoannulata mushroom peptides prepared by multifrequency ultrasound, the peptide distribution, amino acid sequence composition characteristics, formation pathway, and ACE inhibition mechanism of S. rugosoannulata mushroom peptides were studied. It was found that the peptides in S. rugosoannulata mushroom samples treated by multifrequency ultrasound (probe ultrasound and bath ultrasound mode) were mainly octapeptides, nonapeptides, and decapeptides. Hydrophobic amino acids were the primary amino acids in the peptides prepared by ultrasound, and the amino acid dissociation of the peptide bonds at the C-terminal under the action of ultrasound was performed mainly to produce hydrophobic amino acids. Pro and Val (PV), Arg and Pro (RP), Pro and Leu (PL), and Asp (D) combined with hydrophobic amino acids were the characteristic amino acid sequence basis of the active peptides of the S. rugosoannulata mushroom. The docking results of active peptides and ACE showed that hydrogen bond interaction remained the primary mode of interaction between ACE and peptides prepared by ultrasound. The peptides can bind to the amino acid residues in the ACE active pocket, zinc ions, or key amino acids in the domain, and this results in inhibition of ACE activity. Cation-pi interactions also played an important role in the binding of mushroom peptides to ACE. This study explains the structural characteristics and ACE inhibition mechanism used by S. rugosoannulata mushroom peptides prepared by ultrasound, and it will provide a reference for the development and application of S. rugosoannulata mushroom peptides.
Collapse
Affiliation(s)
- Wen Li
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
42
|
Okagu IU, Ezeorba TPC, Aham EC, Aguchem RN, Nechi RN. Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100078. [PMID: 35415696 PMCID: PMC8991738 DOI: 10.1016/j.fochms.2022.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Hypertension has remained a silent-killer. Novel peptides recently isolated from food proteins. Molecular mechanism of blood pressure-lowering: renin and ACE-inhibition, and beyond. Proposed molecular mechanisms for future research. Novel peptides are excellent candidates for nutraceutical development.
Hypertension impacts negatively on the quality of life of sufferers, and complications associated with uncontrolled hypertension are life-threatening. Hence, many research efforts are exploring the antihypertensive properties of bioactive peptides derived from food proteins using in vitro ACE-inhibitory assay, experimentally-induced and spontaneous hypertensive rats, normotensive and hypertensive human models. In this study, the cellular and molecular mechanisms of blood pressure-lowering properties of novel peptides reported in recent studies (2015-July 30, 2021) were discussed. In addition to common mechanisms such as the inhibition of angiotensin I-converting enzyme (ACE) and renin activities, recently recognized mechanisms through which bioactive peptides exert their antihypertensive properties including the induction of vasodilation via upregulation of cyclo-oxygenase (COX) and prostaglandin receptor and endothelial nitric oxide synthase expression and L-type Ca2+ channel blockade were presented. Similarly, emerging mechanisms of blood pressure-lowering by bioactive peptides such as modulation of inflammation (TNF-α, and other cytokines signaling), oxidative stress (Keap-1/Nrf2/ARE/HO-1 and related signaling pathways), PPAR-γ/caspase3/MAPK signaling pathways and inhibition of lipid accumulation were discussed. The review also highlighted factors that influence the antihypertensive properties of peptides such as method of hydrolysis (type and number of enzymes, and chemical used for hydrolysis, and microbial fermentation), and amino acid sequence and chain length of peptides.
Collapse
Affiliation(s)
- Innocent U Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | | | - Emmanuel C Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Rita N Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Regina N Nechi
- Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
43
|
Li M, Fan W, Xu Y. Comprehensive Identification of Short and Medium-Sized Peptides from Pixian Broad Bean Paste Protein Hydrolysates Using UPLC-Q-TOF-MS and UHPLC-Q Exactive HF-X. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8288-8299. [PMID: 35785966 DOI: 10.1021/acs.jafc.2c02487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pixian broad bean paste (PBBP) is an indispensable food widely used in many East Asian countries, yet the knowledge about bioactive peptides released from parent proteins by enzymatic hydrolysis is limited. A total of 5867 low-molecular weight peptides were identified in the highly bioactive subfractions of the PBBP alcalase hydrolysates using traditional and peptidomics approaches. 19 short peptides (3-5 amino acids) were identified by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, including 5 tripeptides, 8 tetrapeptides, and 6 pentapeptides. 5848 medium-sized peptides (6-10 amino acids) were characterized using the peptidomics approach, including 1484 hexapeptides, 1217 heptapeptides, 1634 octapeptides, 927 nonapeptides, and 586 decapeptides. The comprehensive method can be used for the investigation of bioactive peptides in complex food matrices.
Collapse
Affiliation(s)
- Mingyang Li
- Lab of Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Wenlai Fan
- Lab of Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
44
|
Lu Z, Sun N, Dong L, Gao Y, Lin S. Production of Bioactive Peptides from Sea Cucumber and Its Potential Health Benefits: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7607-7625. [PMID: 35715003 DOI: 10.1021/acs.jafc.2c02696] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioactive peptides from food have been widely studied due to their potential applications as functional foods and pharmaceuticals. Sea cucumber, a traditional tonic food, is characterized by high protein and low fat, thereby substrates are being studied to release sea cucumber peptides (SCPs). Although recent studies have shown that SCPs have various bioactive functions, there is no literature reviewing the development status of SCPs. In this review, we summarized the production of SCPs, including their purification and identification, then mainly focused on the comprehensive potential health benefits of SCP in vivo and in vitro, and finally discussed the challenge facing the development of SCPs. We found that SCPs have well-documented health benefits due to their antioxidation, anti-diabetes, ACE inhibitory, immunomodulatory, anti-cancer, anti-fatigue, anti-aging, neuroprotection, micromineral-chelating, etc. However, the structure-activity relationships of SCPs and the functional molecular mechanisms underlying their regulation in vivo need further investigation. Research on the safety of SCP and its potential regulation mechanism will contribute to transferring these findings into commercial applications. Hopefully, this review could promote the development and application of SCPs in further investigation and commercialization.
Collapse
Affiliation(s)
- Zhiqiang Lu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuanhong Gao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
45
|
He J, Li W, Deng J, Lin Q, Bai J, Zhang L, Fang Y. An insight into the health beneficial of probiotics dairy products: a critical review. Crit Rev Food Sci Nutr 2022; 63:11290-11309. [PMID: 35730254 DOI: 10.1080/10408398.2022.2090493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic dairy products satisfy people's pursuit of health, and are widely favored because of their easy absorption, high nutritional value, and various health benefits. However, its effectiveness and safety are still controversial. This proposal aims to analyze the effect of probiotics on the quality characteristics of dairy products, clarify a series of physiological functions of probiotic dairy products and critically evaluate the effectiveness and safety of probiotic dairy products. Also, dairy products containing inactivated microorganisms were compared with probiotic products. The addition of probiotics enables dairy products to obtain unique quality characteristics, and probiotic dairy products have better health-promoting effects. This review will promote the further development of probiotic dairy products, provide directions for the research and development of probiotic-related products, and help guide the general public to choose and purchase probiotic fermentation products.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jie Bai
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| |
Collapse
|
46
|
Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123864. [PMID: 35744987 PMCID: PMC9229108 DOI: 10.3390/molecules27123864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 12/31/2022]
Abstract
Paramyosins, muscle proteins occurring exclusively in invertebrates, are abundant in seafoods. The potential of seafood paramyosins (SP) as sources of anti-angiotensin-converting-enzyme (ACE) and anti-dipeptidyl-peptidase (DPP-IV) peptides is underexplored. This in silico study investigated the release of anti-ACE and anti-DPP-IV peptides from SP after gastrointestinal (GI) digestion. We focused on SP of the common octopus, Humboldt squid, Japanese abalone, Japanese scallop, Mediterranean mussel, Pacific oyster, sea cucumber, and Whiteleg shrimp. SP protein sequences were digested on BIOPEP-UWM, followed by identification of known anti-ACE and anti-DPP-IV peptides liberated. Upon screening for high-GI-absorption, non-allergenicity, and non-toxicity, shortlisted peptides were analyzed via molecular docking and dynamic to elucidate mechanisms of interactions with ACE and DPP-IV. Potential novel anti-ACE and anti-DPP-IV peptides were predicted by SwissTargetPrediction. Physicochemical and pharmacokinetics of peptides were predicted with SwissADME. GI digestion liberated 2853 fragments from SP. This comprised 26 known anti-ACE and 53 anti-DPP-IV peptides exhibiting high-GI-absorption, non-allergenicity, and non-toxicity. SwissTargetPrediction predicted three putative anti-ACE (GIL, DL, AK) and one putative anti-DPP-IV (IAL) peptides. Molecular docking found most of the anti-ACE peptides may be non-competitive inhibitors, whereas all anti-DPP-IV peptides likely competitive inhibitors. Twenty-five nanoseconds molecular dynamics simulation suggests the stability of these screened peptides, including the three predicted anti-ACE and one predicted anti-DPP-IV peptides. Seven dipeptides resembling approved oral-bioavailable peptide drugs in physicochemical and pharmacokinetic properties were revealed: AY, CF, EF, TF, TY, VF, and VY. In conclusion, our study presented in silico evidence for SP being a promising source of bioavailable and safe anti-ACE and anti-DPP-IV peptides following GI digestions.
Collapse
|
47
|
Identification of peptides in Qingke baijiu and evaluation of its angiotensin converting enzyme (ACE) inhibitory activity and stability. Food Chem 2022; 395:133551. [DOI: 10.1016/j.foodchem.2022.133551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
|
48
|
Rul F, Béra-Maillet C, Champomier-Vergès MC, El-Mecherfi KE, Foligné B, Michalski MC, Milenkovic D, Savary-Auzeloux I. Underlying evidence for the health benefits of fermented foods in humans. Food Funct 2022; 13:4804-4824. [PMID: 35384948 DOI: 10.1039/d1fo03989j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fermented foods (FFs) have been a part of our diets for millennia and comprise highly diverse products obtained from plants and animals all over the world. Historically, fermentation has been used to preserve food and render certain raw materials edible. As our food systems evolve towards more sustainability, the health benefits of FFs have been increasingly touted. Fermentation generates new/transformed bioactive compounds that may occur in association with probiotic bacteria. The result can be specific, advantageous functional properties. Yet, when considering the body of human studies on the topic, whether observational or experimental, it is rare to come across findings supporting the above assertion. Certainly, results are lacking to confirm the widespread idea that FFs have general health benefits. There are some exceptions, such as in the case of lactose degradation via fermentation in individuals who are lactose intolerant; the impact of select fermented dairy products on insulin sensitivity; or the benefits of alcohol consumption. However, in other situations, the results fail to categorically indicate whether FFs have neutral, beneficial, or detrimental effects on human health. This review tackles this apparent incongruity by showing why it is complex to test the health effects of FFs and what can be done to improve knowledge in this field.
Collapse
Affiliation(s)
- F Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - C Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - M C Champomier-Vergès
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - K E El-Mecherfi
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - B Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - M C Michalski
- Univ-Lyon, CarMeN Laboratory, Inserm, U1060, INRAE, UMR1397, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France
| | - D Milenkovic
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France. .,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - I Savary-Auzeloux
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France.
| |
Collapse
|
49
|
Singh BP, Bangar SP, Alblooshi M, Ajayi FF, Mudgil P, Maqsood S. Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application. Crit Rev Food Sci Nutr 2022; 63:9539-9560. [PMID: 35521961 DOI: 10.1080/10408398.2022.2067120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of novel protein sources to compensate for the expected future shortage of traditional animal proteins due to their high carbon footprint is a major contemporary challenge in the agri-food industry currently. Therefore, both industry and consumers are placing a greater emphasis on plant proteins as a sustainable source of protein to meet the growing nutritional demand of ever increasing population. In addition to being key alternatives, many plant-based foods have biological properties that make them potentially functional or health-promoting foods, particularly physiologically active peptides and proteins accounting for most of these properties. This review discusses the importance of plant-based protein as a viable and sustainable alternative to animal proteins. The current advances in plant protein isolation and production and characterization of bioactive hydrolysates and peptides from plant proteins are described comprehensively. Furthermore, the recent research on bioactivities and bioavailability of plant protein-derived bioactive peptides is reviewed briefly. The limitations of using bioactive peptides, regulatory criteria, and the possible future applications of plant protein-derived bioactive peptides are highlighted. This review may help understand plant proteins and their bioactive peptides and provide valuable suggestions for future research and applications in the food industry.
Collapse
Affiliation(s)
- Brij Pal Singh
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Munira Alblooshi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Feyisola Fisayo Ajayi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
50
|
Hu X, Zhang Q, Zhang Q, Ding J, Liu Y, Qin W. An updated review of functional properties, debittering methods, and applications of soybean functional peptides. Crit Rev Food Sci Nutr 2022; 63:8823-8838. [PMID: 35482930 DOI: 10.1080/10408398.2022.2062587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Soybean functional peptides (SFPs) are obtained via the hydrolysis of soybean protein into polypeptides, oligopeptides, and a small amount of amino acids. They have nutritional value and a variety of functional properties, including regulating blood lipids, lowering blood pressure, anti-diabetes, anti-oxidant, preventing COVID-19, etc. SFPs have potential application prospects in food processing, functional food development, clinical medicine, infant milk powder, special medical formulations, among others. However, bitter peptides containing relatively more hydrophobic amino acids can be formed during the production of SFPs, seriously restricting the application of SFPs. High-quality confirmatory human trials are needed to determine effective doses, potential risks, and mechanisms of action, especially as dietary supplements and special medical formulations. Therefore, the physiological activities and potential risks of soybean polypeptides are summarized, and the existing debitterness technologies and their applicability are reviewed. The technical challenges and research areas to be addressed in optimizing debittering process parameters and improving the applicability of SFPs are discussed, including integrating various technologies to obtain higher quality functional peptides, which will facilitate further exploration of physiological mechanism, metabolic pathway, tolerance, bioavailability, and potential hazards of SFPs. This review can help promote the value of SFPs and the development of the soybean industry.
Collapse
Affiliation(s)
- Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qinqiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|