1
|
Brown RB. Statins in the Cause and Prevention of Cancer: Confounding by Indication and Mediation by Rhabdomyolysis and Phosphate Toxicity. J Cardiovasc Dev Dis 2024; 11:296. [PMID: 39330354 PMCID: PMC11432391 DOI: 10.3390/jcdd11090296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Statins are drugs used in cardiovascular pharmacotherapy to decrease hypercholesterolemia and lower the risk of atherosclerosis. Statins also increase the risk of rhabdomyolysis, which is often minimized in comparison with large relative risk reductions of cardiovascular disease reported in clinical trials. By contrast, absolute risk reductions of cardiovascular disease are often clinically insignificant and unreported in statin clinical trials. Additionally, cytotoxic effects of statins inhibit cancer cell proliferation and reduce cancer risk, but other studies found that statins are carcinogenic. Due to an inverse association between incidence of cancer and atherosclerosis, the indication to prescribe statins likely biases the association of statins with cancer prevention. Dietary patterns associated with atherosclerosis and cancer contain inverse amounts of cholesterol and phosphate, an essential mineral that stimulates tumorigenesis. Accordingly, lower cancer risk is associated with high dietary cholesterol intake and increased risk of atherosclerosis. Furthermore, serum is exposed to excessive inorganic phosphate that could increase cancer risk as rhabdomyolysis induced by statins releases phosphate from skeletal muscle breakdown. Increased risk of comorbid conditions associated with statins may share the mediating factor of phosphate toxicity. More research is warranted on statins in the cause and prevention of cancer.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Adeyemi KD, Sulaimon RO, Ishola H, Shittu RM, Olaniran FJ, Jimoh JO, Akinola HO, Rasheed AO, Yusuf YI, Oluwasola A, Olabisi BM. Influence of Capsicum chinense concentration and salt varieties on the quality attributes of Kilishi, a sundried beef jerky. Meat Sci 2024; 219:109653. [PMID: 39277995 DOI: 10.1016/j.meatsci.2024.109653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The impact of Capsicum chinense concentration and salt varieties on cholesterol oxides, physicochemical properties, microbial profiles and organoleptic attributes of Kilishi, a sundried beef jerky, was assessed. Kilishi (KL) was prepared from sundried strips of Biceps femoris and marinated with either 2 % Sodium chloride (NaCl) + 7 % fresh Capsicum chinense (CC) (KL-1), 1 % NaCl + 1 % Potassium chloride (KCl) + 7 % CC (KL-2), 1 % NaCl + 1 % Potassium citrate (C6H5K3O7) + 7 % CC (KL-3), 1 % NaCl + 14 % CC (KL-4), 1 % KCl + 14 % CC (KL-5) or 1 % C6H5K3O7 + 14 % CC (KL-6), and stored at 29 ± 1 °C for 90 d. The partial or total replacement of NaCl lowered (P < 0.05) the Na content in KL. The KL samples treated with 14 % CC had lower (P < 0.05) 25-hydroxy cholesterol, cholesta-3,5-dien-7-one, carbonyl, pH, malondialdehyde, and lightness and greater (P < 0.05) redness and Lactobacillus counts than those treated with 7 % CC. The chemical composition, sensory scores and water activity were unaffected by the additives. The taste, flavor, and overall acceptance scores of KL decreased (P < 0.05) after 30 days of storage. The substitution of KCl and C6H5K3O7 for NaCl and the increase in CC concentration from 7 to 14 % lowered the Na content and selected cholesterol oxides, respectively, without impairing the organoleptic traits of Kilishi.
Collapse
Affiliation(s)
- Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria.
| | - Rasheed O Sulaimon
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria; Department of Animal Science, Faculty of Agriculture, University of Abuja, Abuja, Nigeria
| | - Hakeem Ishola
- Department of Animal Production, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Rafiat M Shittu
- Department of Food Science and Technology, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Feranmi J Olaniran
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Jamiu O Jimoh
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Halimat O Akinola
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Ahmed O Rasheed
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Yusuf Ibn Yusuf
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Abdulfatai Oluwasola
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Bukunmi M Olabisi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| |
Collapse
|
3
|
Medina-Meza IG, Vaidya Y, Barnaba C. FooDOxS: a database of oxidized sterols content in foods. Food Funct 2024; 15:6324-6334. [PMID: 38726678 DOI: 10.1039/d4fo00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Dietary oxidized sterols (DOxS) are cholesterol-like molecules known to exert pro-inflammatory, pro-oxidant, and pro-apoptotic effects, among others. We present the FooDOxS database, a comprehensive compilation of DOxS content in over 1680 food items from 120 publications across 25 countries, augmented by data generated by our group. This database reports DOxS content in foods classified under the NOVA and What We Eat in America (WWEIA) systems, allowing a comprehensive and statistically robust summary of DOxS content in foods. Notably, we evaluated the efficacy of using NOVA and WWEIA classifications in capturing DOxS variations across food categories. Our findings provide insights into the strengths and limitations of these classification systems, enhancing their utility for assessing dietary components. This research contributes to the understanding of DOxS in food processing and suggests refinements for classification systems, holding promise for improved food safety and public health assessments.
Collapse
Affiliation(s)
- Ilce Gabriela Medina-Meza
- Department of Biosystems and Agricultural Engineering, Michigan State University, 469 Wilson Rd. | Room 302C, East Lansing, MI, USA.
| | - Yashasvi Vaidya
- Department of Biosystems and Agricultural Engineering, Michigan State University, 469 Wilson Rd. | Room 302C, East Lansing, MI, USA.
| | - Carlo Barnaba
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr. | Room 320D, Lawrence, KS, USA.
| |
Collapse
|
4
|
Mercatante D, Curró S, Rosignoli P, Cardenia V, Sordini B, Taticchi A, Rodriguez-Estrada MT, Fabiani R. Effects of Phenols from Olive Vegetation Water on Mutagenicity and Genotoxicity of Stored-Cooked Beef Patties. Antioxidants (Basel) 2024; 13:695. [PMID: 38929134 PMCID: PMC11200613 DOI: 10.3390/antiox13060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This explorative study aimed to assess the mutagenicity and genotoxicity of stored-cooked beef patties formulated with and without phenols (7.00 mg of phenols/80-g patty) extracted from olive vegetation water (OVW), as related to the formation of cholesterol oxidation products (COPs) and heterocyclic amines (HCAs). The patties were packaged in a modified atmosphere, sampled during cold storage (4 °C) for 9 days, and grilled at 200 °C. The genotoxicity was evaluated by the Comet assay. The patty extract was found to be genotoxic on primary peripheral blood mononuclear cells (PBMCs), while no mutagenicity was detected. The addition of OVW phenols significantly decreased the genotoxicity of the patty extract and reduced the total COPs content in stored-cooked patties (4.59 times lower than control); however, it did not affect the content of total HCAs (31.51-36.31 ng/patty) and the revertants' number. Therefore, these results demonstrate that the OVW phenols were able to counteract the formation of genotoxic compounds in stored-cooked beef patties.
Collapse
Affiliation(s)
- Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Sarah Curró
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy;
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06129 Perugia, Italy; (P.R.); (R.F.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10124 Torino, Italy;
| | - Beatrice Sordini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum—University of Bologna, 47521 Cesena, Italy
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06129 Perugia, Italy; (P.R.); (R.F.)
| |
Collapse
|
5
|
Zhao T, Sun H, Ji S, Yang B, Wang Z, Liu Y, Chen C, Lu B. The Effect of Whey Protein Isolate Hydrolysate on Digestive Properties of Phytosterol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12738-12751. [PMID: 38788151 DOI: 10.1021/acs.jafc.4c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Phytosterol (PS) is a steroid, and its bioavailability can be enhanced by interacting with protein in the C-24 hydroxyl group. The interaction between sterols and amino acid residues in proteins can be enhanced by enzymatic hydrolysis. Phytosterol and whey insulation hydrolysates (WPH1-4) fabricated by the Alcalase enzyme at different enzymatic hydrolysis times were selected as delivery systems to simulate sterol C-24 hydroxyl group interaction with protein. Increasing hydrolysis time can promote the production of β-Lg, which raises the ratio of β-turn in the secondary structure and promotes the formation of interaction between WPH and PS. The correlation coefficient between hydrogen bonds and encapsulation efficiency (EE) and bioaccessibility is 0.91 and 0.88 (P < 0.05), respectively, indicating that hydrogen bonds of two components significantly influenced the combination by concealing the hydrophobic amino acids and some residues, which improved PS EE and bioavailability by 3.03 and 2.84 times after PS was combined with the WPI hydrolysate. These findings are expected to enhance the absorption of PS and other macromolecules by protein enzymatic hydrolysis to broaden their applications for food.
Collapse
Affiliation(s)
- Tian Zhao
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Haihui Sun
- Yichun Dahaigui Life Science Co., Ltd., Yichun 336000, China
| | - Shengyang Ji
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Bowen Yang
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Zhangtie Wang
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
6
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Czerwonka M, Białek A, Bobrowska-Korczak B. A Novel Method for the Determination of Squalene, Cholesterol and Their Oxidation Products in Food of Animal Origin by GC-TOF/MS. Int J Mol Sci 2024; 25:2807. [PMID: 38474053 DOI: 10.3390/ijms25052807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Cholesterol present in food of animal origin is a precursor of oxysterols (COPs), whose high intake through diet can be associated with health implications. Evaluation of the content of these contaminants in food is associated with many analytical problems. This work presents a GC-TOF/MS method for the simultaneous determination of squalene, cholesterol and seven COPs (7-ketocholesterol, 7α-hydroxycholesterol, 7β-hydroxycholesterol, 25-hydroxycholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestanetriol). The sample preparation procedure includes such steps as saponification, extraction and silylation. The method is characterized by high sensitivity (limit of quantification, 0.02-0.25 ng mL-1 for instrument, 30-375 μg kg of sample), repeatability (RSD 2.3-6.2%) and a wide linearity range for each tested compound. The method has been tested on eight different animal-origin products. The COP to cholesterol content ratio in most products is about 1%, but the profile of cholesterol derivatives differs widely (α = 0.01). In all the samples, 7-ketocholesterol is the dominant oxysterol, accounting for 31-67% of the total COPs level. The levels of the other COPs range between 0% and 21%. In none of the examined products are cholestanetriol and 25-hydroxycholesterol present. The amount of squalene, which potentially may inhibit the formation of COPs in food, ranges from 2 to 57 mg kg-1.
Collapse
Affiliation(s)
- Małgorzata Czerwonka
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
| | - Agnieszka Białek
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Gouvêa FDJ, de Oliveira VS, Mariano BJ, Takenaka NAR, Gamallo OD, da Silva Ferreira M, Saldanha T. Natural antioxidants as strategy to minimize the presence of lipid oxidation products in canned fish: Research progress, current trends and future perspectives. Food Res Int 2023; 173:113314. [PMID: 37803625 DOI: 10.1016/j.foodres.2023.113314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 10/08/2023]
Abstract
Canned fish is one of the most popular forms of fish consumption due to its high nutritional value, availability, and practicality. However, canning may induce lipid oxidation. Thus, this study provides in-depth information on the impact of high temperatures applied during canning on fish lipids. The thermo-oxidation is evidenced, for example, by the high levels of both primary and secondary oxidation products determined in fish after canning, as well as the presence of harmful compounds such as cholesterol oxides. Given the role of lipid oxidation in canned fish, this study also presents a comprehensive review on using natural antioxidants to control it. The antioxidant properties of common liquid mediums (vegetable oils and sauces) are highlighted. Moreover, adding algae extracts, spices, and condiments to the liquid medium to enhance its antioxidant potential has been considered, while the exploitation of by-products and wastes from the food industry also emerges as a suitable strategy. Besides the promising results, these practices may promote positive impacts on other quality parameters (e.g. water and oil holding capacities, texture, microbiological growth). However, further studies are needed, including research on aspects related to safety, effective concentrations and application methods, without ignoring consumers' sensory acceptance.
Collapse
Affiliation(s)
- Fernanda de Jorge Gouvêa
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Vanessa Sales de Oliveira
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Barbara Jardim Mariano
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Nayara Ayumi Rocha Takenaka
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Ormindo Domingues Gamallo
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Micheli da Silva Ferreira
- Department of Food Technology, Faculty of Veterinary, Federal Fluminense University, UFF, Niterói, RJ, Brazil
| | - Tatiana Saldanha
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil.
| |
Collapse
|
9
|
Yan C, Huang SH, Ding HF, Kwek E, Liu JH, Chen ZX, Ma KY, Chen ZY. Adverse effect of oxidized cholesterol exposure on colitis is mediated by modulation of gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132057. [PMID: 37467611 DOI: 10.1016/j.jhazmat.2023.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Both cholesterol and oxidized cholesterol (OXC) are present in human diets. The incidence of inflammatory bowel diseases (IBDs) is increasing in the world. The present study was to investigate the mechanism by which OXC promotes colitis using C57BL/6 mice as a model. Results shown that more severe colitis was developed in OXC-treated mice with the administration of dextran sulfate sodium (DSS) in water. Direct effects of short-term OXC exposure on gut barrier or inflammation were not observed in healthy mice. However, OXC exposure could cause gut microbiota dysbiosis with a decrease in the relative abundance of short-train fatty acids (SCFAs)-producing bacteria (Lachnospiraceae_NK4A136_group and Blautia) and an increase in the abundance of some potential harmful bacteria (Bacteroides). OXC-induced symptoms of colitis were eliminated when mice were administered with antibiotic cocktails, indicating the promoting effect of OXC on DSS-induced colitis was mediated by its effect on gut microbiota. Moreover, bacteria-depleted mice colonized with gut microbiome from OXC-DSS-exposed mice exhibited a severe colitis, further proving the gut dysbiosis caused by OXC exposure was the culprit in exacerbating the colitis. It was concluded that dietary OXC exposure increased the susceptibility of colitis in mice by causing gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Chi Yan
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Shou-He Huang
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Hua-Fang Ding
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Erika Kwek
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jian-Hui Liu
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Zi-Xing Chen
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ka Ying Ma
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Zhen-Yu Chen
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
10
|
Zhuang Y, Wang X, Zhang X, Fang Q, Zhang X, Song Y. The relationship between dietary patterns derived from inflammation and cognitive impairment in patients undergoing hemodialysis. Front Nutr 2023; 10:1218592. [PMID: 37599702 PMCID: PMC10434788 DOI: 10.3389/fnut.2023.1218592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Dietary patterns were shown to be closely related to inflammation, which was independently associated with cognitive impairment (CI) in patients undergoing hemodialysis (HD). However, it remains unclear the influence of dietary patterns derived from inflammation on CI in this population. This study aimed to examine the association between dietary patterns derived from C-reactive protein (CRP) and interleukin-6 (IL-6) and CI in patients undergoing HD. Methods Dietary intake was obtained from the simplified quantitative food frequency questionnaire. Reduced rank regression (RRR) was used to extract two dietary patterns, with IL-6 and CRP as response variables. Cognitive function was examined by the Montreal Cognitive Assessment (Beijing version). Venous blood was drawn for measuring IL-6 and CRP levels. Multivariable logistic regression was used to investigate the association between dietary patterns and CI. Results Dietary pattern derived from IL-6 was not significantly associated with CI. The third quartile of dietary pattern, which used CRP as the response variable, significantly contributed to the increased risk of CI (AOR 8.62, 95% CI 1.47-50.67) after controlling age, sex, education level, marital status, and residential pattern (p-for-trend = 0.028). After considering hypertension and diabetes, physical activity level, anxiety and depression, smoking and drinking status, social support, energy intake, and the dietary pattern derived from IL-6 (p-for-trend = 0.026), the relationship between the dietary pattern derived from CRP and CI remained significant (AOR 14.54, 95% CI 1.40-151.13). Conclusion Dietary pattern associated with high CRP level, including high intake of rice, liquor, fruit, tea and coffee and low intake of dark vegetables and juice, contributed to the increased risk of CI. The association between the consumption of seafood, sweet beverages, and alcohol and CI is yet to be established. However, they may be dietary contributing factors to inflammation in patients undergoing HD.
Collapse
Affiliation(s)
- Yan Zhuang
- Medical School (School of Nursing), Nantong University, Nantong, Jiangsu, China
| | - Xinmei Wang
- Blood Purification Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xuanrui Zhang
- Medical School (School of Nursing), Nantong University, Nantong, Jiangsu, China
| | - Qian Fang
- Medical School (School of Nursing), Nantong University, Nantong, Jiangsu, China
| | - Xinyi Zhang
- Medical School (School of Nursing), Nantong University, Nantong, Jiangsu, China
| | - Yan Song
- Medical School (School of Nursing), Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Zeng J, Song Y, Fan X, Luo J, Song J, Xu J, Xue C. Effect of lipid oxidation on quality attributes and control technologies in dried aquatic animal products: a critical review. Crit Rev Food Sci Nutr 2023; 64:10397-10418. [PMID: 37335143 DOI: 10.1080/10408398.2023.2224451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Aquatic animals are viewed as a good source of healthy lipids. Although drying is an effective method for the preservation of aquatic animal products (AAPs), the whole process is accompanied by lipid oxidation. This article reviews the main mechanism of lipid oxidation in the drying process. It also summarizes the effects of lipid oxidation on the quality of dried aquatic animal products (DAAPs), including nutrients, color, flavor, and hazard components, especially for those harmful aldehydes and heterocyclic amines. In addition, it concluded that moderate lipid oxidation contributes to improving the quality of products. Still, excessive lipid oxidation produces hazardous substances and induces health risks. Hence, to obtain high-quality DAAPs, some effective control technologies to promote/prevent lipid oxidation are introduced and deeply discussed, including salting, high-pressure processing, irradiation, non-thermal plasma technology, defatting treatments, antioxidants, and edible coating. A systematic review of the effect of lipid oxidation on quality attributes and control technologies in DAAPs is presented, and some perspectives are made for future research.
Collapse
Affiliation(s)
- Junpeng Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaowei Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingyi Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Junyi Song
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Hernández-Becerra JA, Ochoa-Flores AA, Rodriguez-Estrada MT, García HS. Antioxidant addition improves cholesterol and astaxanthin stability in dry salted shrimp. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1704-1713. [PMID: 36426798 DOI: 10.1002/jsfa.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Traditional production of dry salted shrimp enhances cholesterol oxidation and astaxanthin degradation in the product. The aim of this study was to evaluate the effect of addition of the antioxidants butylhydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ) to cooked shrimp on the formation of cholesterol oxidation products (COPs) and astaxanthin degradation during solar drying of shrimp. RESULTS The added antioxidants significantly inhibited COPs formation after the product was boiled in brine. Smaller amounts of COPs were formed in antioxidant-treated shrimps (~-23%) as compared to untreated samples. The antioxidants continued to significantly inhibit COPs formation (~-39%) during sun drying. Similarly, TBHQ and BHT reduced by 51.3% and 37.2%, respectively, the degradation rate of astaxanthin, favoring a higher retention of this carotenoid in the final product. CONCLUSION The use of the antioxidants BHT and TBHQ in the preparation of dry salted shrimp significantly inhibited the formation of COPs after cooking raw shrimp and during direct solar drying. They also protected astaxanthin contained in the cooked shrimp from photodegradation. These results are technologically relevant because it is possible to prepare a product with a higher content of astaxanthin and lower the presence of hazardous COPs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Angélica A Ochoa-Flores
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - María T Rodriguez-Estrada
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Hugo S García
- UNIDA, Tecnológico Nacional de México/IT de Veracruz, Veracruz, Mexico
| |
Collapse
|
13
|
Barreira CFT, de Oliveira VS, Chávez DWH, Gamallo OD, Castro RN, Júnior PCD, Sawaya ACHF, da Silva Ferreira M, Sampaio GR, Torres EAFDS, Saldanha T. The impacts of pink pepper (Schinus terebinthifolius Raddi) on fatty acids and cholesterol oxides formation in canned sardines during thermal processing. Food Chem 2023; 403:134347. [DOI: 10.1016/j.foodchem.2022.134347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
|
14
|
Phenolic composition and insights into the use of pink pepper (Schinus terebentifolius Raddi) fruit against lipid oxidation in food systems. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
15
|
Yan C, Kwek E, Ding HF, He Z, Ma KY, Zhu H, Chen ZY. Dietary Oxidized Cholesterol Aggravates Chemically Induced Murine Colon Inflammation and Alters Gut Microbial Ecology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13289-13301. [PMID: 36198042 DOI: 10.1021/acs.jafc.2c05001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Western diet with a higher intake of fat and cholesterol has been claimed as an intestinal inflammation trigger. Human diet contains both cholesterol and oxidized cholesterol. Oxidized cholesterol has been claimed to be associated with various inflammation diseases, but its effects on colitis and gut microbiome remain largely unknown. The present study was the first time to investigate the effect of the oxidized cholesterol on gut microbiota and dextran sodium sulfate-induced colitis using mice as a model. The results showed that oxidized cholesterol promoted colitis by exacerbating bleeding, body weight decrease, colon shortening, gut barrier damage, oxidative stress, and gut inflammation, whereas non-oxidized cholesterol had no effect. Meanwhile, oxidized cholesterol could adversely modulate the gut microbiota by increasing the relative abundance of pro-inflammatory bacteria (including Escherichia-Shigella and Bacteroides) and decreasing that of beneficial bacteria (Lachnospiraceae_NK4A136_group and Odoribacter). In addition, oxidized cholesterol significantly reduced the production of fecal short-chain fatty acids in colitis mice. It was concluded that oxidized cholesterol was a potential dietary factor of gut dysbiosis.
Collapse
Affiliation(s)
- Chi Yan
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Erika Kwek
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Hua-Fang Ding
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Zouyan He
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- School of Public Health, Guanxi Medical University, Nanning 530021, China
| | - Ka Ying Ma
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Hanyue Zhu
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- School of Food Science and Engineering/South China Food Safety Research Center, Foshan University, Foshan 528000, Guangdong, China
| | - Zhen-Yu Chen
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
16
|
Parsley (Petroselinum crispum Mill.): A source of bioactive compounds as a domestic strategy to minimize cholesterol oxidation during the thermal preparation of omelets. Food Res Int 2022; 156:111199. [DOI: 10.1016/j.foodres.2022.111199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/23/2022]
|