1
|
Alcon E, Hidalgo FJ, Zamora R. Alkylresorcinols trap malondialdehyde in whole grain crackers. Food Chem 2025; 463:141128. [PMID: 39276546 DOI: 10.1016/j.foodchem.2024.141128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
To study the alkylresorcinols ability to trap lipid oxidation products in foods, crackers were prepared with either whole grain rye, wheat, spelt, or oat flour, and either sunflower or linseed oil, and were stored for up to 36 days at room temperature. During storage, polyunsaturated fatty acyl chains degraded, malondialdehyde was produced, and alkylresorcinol content decreased. At the end of the storage, alkylresorcinol content in crackers was reduced by 61-78 % and a part of disappeared alkyresorcinols (3-8 %) appeared as malondialdehyde/alkylresorcinol adducts. Formed adducts were unambiguously identified by using synthesized and characterized (NMR, MS) labelled and unlabelled standards, and determined by LC-MS/MS. This ability of alkylresorcinols to trap malondialdehyde, and most likely other lipid oxidation products, might be playing a role in both the reduction of hazardous reactive carbonyls in whole grain foodstuffs and the observed flavor differences between whole and refined grain food products.
Collapse
Affiliation(s)
- Esmeralda Alcon
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain
| | - Francisco J Hidalgo
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain
| | - Rosario Zamora
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain.
| |
Collapse
|
2
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Zhi L, Gong X, Zhang H, Liu J, Cao S, Zhang Y, Yan J, Tian W, He Z. Identification of QTL for Alkylresorcinols in Wheat and Development of KASP Markers for Marker-Assisted Selection of Health-Promoting Varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39052860 DOI: 10.1021/acs.jafc.4c04674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This study evaluated alkylresorcinol concentration (ARC) in recombinant inbred lines (RILs) from the cross of Zhongmai 578 and Jimai 22 in three environments. ARC exhibited a continuous distribution ranging from 337.4 to 758.0, 495.4-768.0, and 456.3-764.7 μg/g, respectively, in three environments. Analysis of variance (ANOVA) indicated significant (P < 0.001) impacts of genotypes, environments, and their interactions. The broad-sense heritability of ARC was 0.76. Genome-wide linkage mapping analysis identified four stable quantitative trait loci (QTL) for ARC on chromosomes 2A, 3A, 4D, and 7A. Kompetitive allele-specific PCR (KASP) marker of each QTL was developed and validated in 206 representative wheat varieties. Wheat varieties harboring 0, 1, 2, 3, and 4 favorable alleles had ARC of 499.1, 587.8, 644.7, 668.5, and 711.1 μg/g, respectively. This study suggests that combining multiple minor-effect QTL through KASP markers can serve as an effective strategy for breeding high-ARC wheat, thereby enhancing innovations in functional food production.
Collapse
Affiliation(s)
- Lei Zhi
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xue Gong
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jindong Liu
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuanghe Cao
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Zhang
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453519, China
| | - Jun Yan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenfei Tian
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Liao M, Gao J, Shen Y, Lv Z, Wang Z, Liu J, Yao Z. A colorimetric probe for rapid and simultaneous detection of alkylresorcinols and ferulic acid based on in-situ coupling reaction in aqueous media. Food Chem 2024; 440:138230. [PMID: 38134828 DOI: 10.1016/j.foodchem.2023.138230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Rapid and simultaneous detection of Alkylresorcinols (ARs) and ferulic acid (FA) could evaluate qualities of commercial wheat products comprehensively and improving product quality. In this work, we have developed a colorimetric strategy for rapid and simultaneous detection of ARs and FA by using in-situ coupling reaction between analytes and diazotized small molecule probe in aqueous media. This strategy featured a rapid response, obvious color change, simple preprocessing, high sensitivity and selectivity. The limit of detection (LOD) can be as low as 0.244 μM and 0.5 μM for ARs and FA, respectively. The sensing mechanism was investigated by spectroscopy technique. Excellent practical application of this method was further confirmed to simultaneously monitor ARs and FA in real samples. The accuracy of the method could be reached to 95.0 % and 99.6 % for ARs and FA respectively. To our knowledge, this work firstly reported a sensor for ARs and FA simultaneous determination.
Collapse
Affiliation(s)
- Mengyu Liao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinghui Gao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yao Shen
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zheng Lv
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Zhiyi Yao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Zhang C, Sha Y, Wang Q, Liu J, Zhang P, Cheng S, Qin P. Integrative metabolome and transcriptome profiling provide insights into elucidation of the synthetic mechanisms of phenolic compounds in Yunnan hulled wheat (Triticum aestivum ssp. yunnanense King). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4109-4127. [PMID: 38308467 DOI: 10.1002/jsfa.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Yunnan hulled wheat grains (YHWs) have abundant phenolic compounds (PCs). However, a systematic elucidation of the phenolic characteristics and molecular basis in YHWs is currently lacking. The aim of the study, for the first time, was to conduct metabolomic and transcriptomic analyses of YHWs at different developmental stages. RESULTS A total of five phenolic metabolite classes (phenolic acids, flavonoids, quinones, lignans and coumarins, and tannins) and 361 PCs were identified, with flavonoids and phenolic acids being the most abundant components. The relative abundance of the identified PCs showed a dynamic decreasing pattern with grain development, and the most significant differences in accumulation were between the enlargement and mature stage, which is consistent with the gene regulation patterns of the corresponding phenolic biosynthesis pathway. Through co-expression and co-network analysis, PAL, HCT, CCR, F3H, CHS, CHI and bZIP were identified and predicted as candidate key enzymes and transcription factors. CONCLUSION The results broaden our understanding of PC accumulation in wheat whole grains, especially the differential transfer between immature and mature grains. The identified PCs and potential regulatory factors provide important information for future in-depth research on the biosynthesis of PCs and the improvement of wheat nutritional quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanli Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- College of Tropical Crops, Yunnan Agricultural University, Kunming, China
| | - Yun Sha
- Agricultural Technology Extension Station of Lincang, Lincang, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shunhe Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Jiangshu Lixiahe Institue of Agriculture Science, Yangzhou, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Wächter K, Longin CFH, Winterhalter PR, Bertsche U, Szabó G, Simm A. The Antioxidant Potential of Various Wheat Crusts Correlates with AGE Content Independently of Acrylamide. Foods 2023; 12:4399. [PMID: 38137203 PMCID: PMC10743060 DOI: 10.3390/foods12244399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Epidemiological studies have indicated that the consumption of whole-grain products is associated with a reduced risk of cardiovascular diseases, type II diabetes, and cancer. In the case of bread, high amounts of antioxidants and advanced glycation end products (AGEs) are formed during baking by the Maillard reaction in the bread crust; however, the formation of potentially harmful compounds such as acrylamide also occurs. This study investigated the antioxidant responses of different soluble extracts from whole-grain wheat bread crust extracts (WBCEs) in the context of the asparagine, AGE, and acrylamide content. For that, we analyzed nine bread wheat cultivars grown at three different locations in Germany (Hohenheim, Eckartsweier, and Oberer Lindenhof). We determined the asparagine content in the flour of the 27 wheat cultivars and the acrylamide content in the crust, and measured the antioxidant potential using the induced expression of the antioxidant genes GCLM and HMOX1 in HeLa cells. Our study uncovered, for the first time, that the wheat crust's antioxidant potential correlates with the AGE content, but not with the acrylamide content. Mass spectrometric analyses of WBCEs for identifying AGE-modified proteins relevant to the antioxidant potential were unsuccessful. However, we did identify the wheat cultivars with a high antioxidant potential while forming less acrylamide, such as Glaucus and Lear. Our findings indicate that the security of BCEs with antioxidative and cardioprotective potential can be improved by choosing the right wheat variety.
Collapse
Affiliation(s)
- Kristin Wächter
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (P.R.W.); (G.S.); (A.S.)
| | | | - Patrick R. Winterhalter
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (P.R.W.); (G.S.); (A.S.)
| | - Ute Bertsche
- Core Facility Hohenheim, Mass Spectrometry Module, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Gábor Szabó
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (P.R.W.); (G.S.); (A.S.)
| | - Andreas Simm
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (P.R.W.); (G.S.); (A.S.)
- Center for Medical Basic Research, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Wang X, Zhang X, Zhang D. Enhancement of cation exchange and glucose binding capacity, flavonoids release and antioxidant capacity of Tartary buckwheat powder with ultrafine grinding. Front Nutr 2023; 10:1276017. [PMID: 37927498 PMCID: PMC10620305 DOI: 10.3389/fnut.2023.1276017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
The objective of this paper was to study the effects of ultrafine grinding on the cation exchange capacity, glucose binding capacity and in vitro digestion characteristics of Tartary buckwheat powder. The results showed that the cation exchange ability and glucose binding strength of Tartary buckwheat powder, Tartary buckwheat bran powder and Tartary buckwheat core powder increased significantly with the increase of crushing frequency (20, 40 and 60 Hz), and the Tartary buckwheat bran powder was the highest. The results of in vitro digestion showed that ultrafine grinding improved the flavonoid release and antioxidant activity of Tartary buckwheat bran powder in the in vitro digestion process. The correlation analysis indicated that the amount of flavonoids released in digestive fluid was significantly related to antioxidant activity. This study may provide a theoretical basis for improving the physicochemical properties and functions of Tartary buckwheat by ultrafine grinding technology.
Collapse
Affiliation(s)
- Xinhui Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Xue Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, Heilongjiang Province, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang Province, China
| |
Collapse
|
8
|
Hidalgo FJ, Zamora R. Carbonyl-trapping by phenolics and the inhibition of the formation of carcinogenic heterocyclic aromatic amines with the structure of aminoimidazoazaarene in beef patties. Food Chem 2023; 425:136505. [PMID: 37276668 DOI: 10.1016/j.foodchem.2023.136505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Carcinogenic heterocyclic aromatic amines (HAAs) with the structure of aminoimidazoazaarene (PhIP, MeIQx, IQ, and MeIQ) are produced by reaction of creatin(in)e, ammonia, and reactive carbonyls (phenylacetaldehyde, acrolein, and crotonaldehyde). In an attempt to provide efficient methodologies for HAA reduction in beef patties, this study: identified phloroglucinol as the most efficient phenolic to reduce HAA formation (76-96% inhibition); isolated and characterized by NMR and MS phloroglucinol/phenylcetaldehyde and phloroglucinol/acrolein adducts; and determined by LC-MS/MS adduct formation in beef patties treated with phloroglucinol. Obtained results suggested that addition of trihydroxyphenols (including phloroglucinol) to beef patties should decrease HAA formation. This was confirmed by both immersing beef patties in apple (or pear) juice before cooking (>90% inhibition) and including wheat bran in patty recipe. All these results confirm the key role of reactive carbonyls in the formation of carcinogenic HAAs and propose carbonyl-trapping as a way for controlling HAA formation in food products.
Collapse
Affiliation(s)
- Francisco J Hidalgo
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain
| | - Rosario Zamora
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain.
| |
Collapse
|
9
|
Shewry PR, Brouns F, Dunn J, Hood J, Burridge AJ, America AHP, Gilissen L, Proos-Huijsmans ZAM, van Straaten JP, Jonkers D, Lazzeri PA, Ward JL, Lovegrove A. Comparative compositions of grain of tritordeum, durum wheat and bread wheat grown in multi-environment trials. Food Chem 2023; 423:136312. [PMID: 37182491 DOI: 10.1016/j.foodchem.2023.136312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Three genotypes each of bread wheat, durum wheat and tritordeum were grown in randomized replicated field trials in Andalusia (Spain) for two years and wholemeal flours analysed for a range of components to identify differences in composition. The contents of all components that were determined varied widely between grain samples of the individual species and in most cases also overlapped between the three species. Nevertheless, statistically significant differences between the compositions of the three species were observed. Notably, tritordeum had significantly higher contents of protein, some minerals (magnesium and iron), total phenolics and methyl donors. Tritordeum also had higher levels of total amino acids (but not asparagine) and total sugars, including raffinose. By contrast, bread wheat and tritordeum had similar contents of the two major dietary fibre components in white flour, arabinoxylan and β-glucan, with significantly lower contents in durum wheat.
Collapse
Affiliation(s)
- Peter R Shewry
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | - Fred Brouns
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Jack Dunn
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Jessica Hood
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Amanda J Burridge
- Life Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Antoine H P America
- BU Bioscience, Plant Sciences Group, Wageningen University & Research, Netherlands
| | - Luud Gilissen
- Plant Breeding, Wageningen University & Research, Wageningen, PoBox 16, 6700AA Wageningen, Netherlands
| | - Zsuzsan A M Proos-Huijsmans
- Nederlands Bakkerij Centrum, Agro Business Park 75-83, 6708 PV Wageningen, Postbus 360, 6700 AJ Wageningen, Netherlands
| | - Jan Philip van Straaten
- Nederlands Bakkerij Centrum, Agro Business Park 75-83, 6708 PV Wageningen, Postbus 360, 6700 AJ Wageningen, Netherlands
| | - Daisy Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine and School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Paul A Lazzeri
- Vivagran SL, Calle Calabria 35, SA2, 08015 Barcelona, Spain
| | - Jane L Ward
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | |
Collapse
|
10
|
Zhao C, Tong J, Gao Z, Liu J, Hao Y, Xia X, He Z, Zhang Y, Tian W. Genome-wide association study of alkylresorcinols content in 161 wheat cultivars. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Šebestíková R, Burešová I, Vyhnánek T, Martinek P, Pospiech M. Rheological and fermentation properties of doughs and quality of breads from colored wheat varieties. Heliyon 2023; 9:e15118. [PMID: 37095904 PMCID: PMC10121936 DOI: 10.1016/j.heliyon.2023.e15118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
The objective of this study was to examine the rheological and fermentation behavior of doughs prepared from five different colored wheat varieties (black AF Zora, yellow KM 111-18, purple AF Jumiko, blue AF Oxana and red Vanessa - chosen as a standard), which contain polyphenolics in the outer layers of grains. Three wholemeal flour fractions (fine, semi-coarse and coarse) were used for each variety. The flour fractions differed in the particle size of the bran, the ash content and thus the phenolic compound content. The baking trials, texture and sensory analyses of breads were performed, to assess their overall acceptability. The coarser granulation of flour fractions, average hardness (8.5<12.6<20.2 N) and chewiness (584<796<1053 N) of breads increased, while other parameters: springiness (90>87>77%), cohesiveness (78>75>70%) and resilience (35>32>27%) decreased. Moreover, the increase in off-flavors was detected with higher bran content. Regarding the flour granulation, the fine fraction seemed to be the most suitable due to its high gas-retention capacity. The best products in terms of both dough and bread quality reached blue AF Oxana and yellow KM 111-18. Utilization of colored wheat in bakery industry may present a good strategy of providing value-added products to the consumers.
Collapse
Affiliation(s)
- Romana Šebestíková
- Tomas Bata University in Zlín, Faculty of Technology, Department of Food Technology, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
- Corresponding author.
| | - Iva Burešová
- Tomas Bata University in Zlín, Faculty of Technology, Department of Food Technology, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - Tomáš Vyhnánek
- Mendel University in Brno, Faculty of AgriSciences, Department of Plant Biology, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Petr Martinek
- Agrotest Fyto, Ltd., Havlíčkova 2787/121, 767 01, Kroměříž, Czech Republic
| | - Matej Pospiech
- University of Veterinary Sciences Brno, Department of Plant Origin Foodstuffs Hygiene and Technology, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
12
|
Wang Y, Fan M, Qian H, Ying H, Li Y, Wang L. Whole grains-derived functional ingredients against hyperglycemia: targeting hepatic glucose metabolism. Crit Rev Food Sci Nutr 2023; 64:7268-7289. [PMID: 36847153 DOI: 10.1080/10408398.2023.2183382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycemia. However, concerns have been raised about the safety and efficacy of current hypoglycemic drugs due to undesirable side effects. Increasing studies have shown that whole grains (WG) consumption is inversely associated with the risk of T2DM and its subsequent complications. Thus, dietary strategies involving functional components from the WG provide an intriguing approach to restoring and maintaining glucose homeostasis. This review provides a comprehensive understanding of the major functional components derived from WG and their positive effects on glucose homeostasis, demonstrates the underlying molecular mechanisms targeting hepatic glucose metabolism, and discusses the unclear aspects according to the latest viewpoints and current research. Improved glycemic response and insulin resistance were observed after consumption of WG-derived bioactive ingredients, which are involved in the integrated, multi-factorial, multi-targeted regulation of hepatic glucose metabolism. Promotion of glucose uptake, glycolysis, and glycogen synthesis pathways, while inhibition of gluconeogenesis, contributes to amelioration of abnormal hepatic glucose metabolism and insulin resistance by bioactive components. Hence, the development of WG-based functional food ingredients with potent hypoglycemic properties is necessary to manage insulin resistance and T2DM.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Ying
- CAS Key laboratory of nutrition, metabolism and food safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Chen Z, Mense AL, Brewer LR, Shi YC. Wheat bran layers: composition, structure, fractionation, and potential uses in foods. Crit Rev Food Sci Nutr 2023; 64:6636-6659. [PMID: 36728922 DOI: 10.1080/10408398.2023.2171962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Wheat bran, the main by-product of dry milling of wheat, is currently mainly used in the animal feed industry, but has attracted attention as a food ingredient owing to its high dietary fiber and phytochemical contents, providing excellent physiological effects. The bran layers (aleurone layer, outer pericarp and intermediate layer) contain different compositions, structures, and nutrients, and have different properties. Each layer, when separated and isolated, potentially could find more extensive applications in foods. This triggered interest in isolating the bran layers using milling and wet- or dry-fractionation techniques based on their chemical or physical properties. The recent progress has allowed the production of commercial products from wheat bran layers, particularly aleurone-rich products, enhancing the value of wheat bran layers and their applications in food. The present review highlights the recent advances in studying the chemical composition including distribution of chemical components, physical structure, biopolymer matrix, and physicochemical properties of each wheat bran layer. Technologies to fractionate wheat bran layers and utilization of different bran layers in foods are discussed and reviewed, providing new strategies for improving the value of wheat bran and utilization of wheat bran in foods.
Collapse
Affiliation(s)
- Zhongwei Chen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Andrew L Mense
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
- Wheat Marketing Center, Portland, OR, USA
| | - Lauren R Brewer
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
14
|
Li C, Tilley M, Chen R, Siliveru K, Li Y. Effect of bran particle size on rheology properties and baking quality of whole wheat flour from four different varieties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants (Basel) 2022; 11:antiox11122451. [PMID: 36552659 PMCID: PMC9774353 DOI: 10.3390/antiox11122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Biofilms are the multicellular lifestyle of microorganisms and are present on potentially every type of biotic or abiotic surface. Detrimental biofilms are generally targeted with antimicrobial compounds. Phytochemicals at sub-lethal concentrations seem to be an exciting alternative strategy to control biofilms, as they are less likely to impose selective pressure leading to resistance. This overview gathers the literature on individual phytocompounds rather than on extracts of which the use is difficult to reproduce. To the best of our knowledge, this is the first review to target only individual phytochemicals below inhibitory concentrations against biofilm formation. We explored whether there is an overall mechanism that can explain the effects of individual phytochemicals at sub-lethal concentrations. Interestingly, in all experiments reported here in which oxidative stress was investigated, a modest increase in intracellular reactive oxygen species was reported in treated cells compared to untreated specimens. At sub-lethal concentrations, polyphenolic substances likely act as pro-oxidants by disturbing the healthy redox cycle and causing an accumulation of reactive oxygen species.
Collapse
|
16
|
Yan YC, Xu ZH, Wang J, Yu WB. Uncovering the pharmacology of Ginkgo biloba folium in the cell-type-specific targets of Parkinson's disease. Front Pharmacol 2022; 13:1007556. [PMID: 36249800 PMCID: PMC9556873 DOI: 10.3389/fphar.2022.1007556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with a fast-growing prevalence. Developing disease-modifying therapies for PD remains an enormous challenge. Current drug treatment will lose efficacy and bring about severe side effects as the disease progresses. Extracts from Ginkgo biloba folium (GBE) have been shown neuroprotective in PD models. However, the complex GBE extracts intertwingled with complicated PD targets hinder further drug development. In this study, we have pioneered using single-nuclei RNA sequencing data in network pharmacology analysis. Furthermore, high-throughput screening for potent drug-target interaction (DTI) was conducted with a deep learning algorithm, DeepPurpose. The strongest DTIs between ginkgolides and MAPK14 were further validated by molecular docking. This work should help advance the network pharmacology analysis procedure to tackle the limitation of conventional research. Meanwhile, these results should contribute to a better understanding of the complicated mechanisms of GBE in treating PD and lay the theoretical ground for future drug development in PD.
Collapse
Affiliation(s)
| | | | - Jian Wang
- *Correspondence: Jian Wang, ; Wen-Bo Yu,
| | - Wen-Bo Yu
- *Correspondence: Jian Wang, ; Wen-Bo Yu,
| |
Collapse
|
17
|
Tian W, Wang F, Xu K, Zhang Z, Yan J, Yan J, Tian Y, Liu J, Zhang Y, Zhang Y, He Z. Accumulation of Wheat Phenolic Acids under Different Nitrogen Rates and Growing Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11172237. [PMID: 36079618 PMCID: PMC9460400 DOI: 10.3390/plants11172237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/27/2023]
Abstract
The health benefits of whole wheat grains are partially attributed to their phenolic acid composition, especially that of trans-ferulic acid (TFA), which is a powerful natural antioxidant. Breeders and producers are becoming interested in wheat with enhanced health-promoting effects. This study investigated the effects of different nitrogen (N) application rates (0, 42, 84, 126, and 168 N kg ha-1) on the phenolic acid composition of three wheat varieties in four locations for two years. The results indicate that the different N rates did not affect the TFA concentration but that they significantly affected the concentrations of para-coumaric acid, sinapic acid, and cis-ferulic acid in the wheat grains. A statistical analysis suggested that the wheat phenolic acid composition was predominantly determined by wheat variety, though there existed some interaction effect between the wheat variety and environments. The TFA concentration of the variety Jimai 22 was generally higher (with a mean value of 726.04 µg/g) but was easily affected by the environment, while the TFA concentration of the variety Zhongmai 578 (with a mean value of 618.01 µg/g) was more stable across the different environments. The results also suggest that it is possible to develop new wheat varieties with high yield potential, good end-use properties, and enhanced nutraceutical values.
Collapse
Affiliation(s)
- Wenfei Tian
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengju Wang
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaijie Xu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhaoxing Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junliang Yan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jun Yan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yubing Tian
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jindong Liu
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Zhang
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Zhang
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghu He
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
18
|
Effect of Wheat Crop Nitrogen Fertilization Schedule on the Phenolic Content and Antioxidant Activity of Sprouts and Wheatgrass Obtained from Offspring Grains. PLANTS 2022; 11:plants11152042. [PMID: 35956521 PMCID: PMC9370410 DOI: 10.3390/plants11152042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022]
Abstract
This work was aimed at investigating the effects of rate and timing of nitrogen fertilization applied to a maternal wheat crop on phytochemical content and antioxidant activity of edible sprouts and wheatgrass obtained from offspring grains. We hypothesized that imbalance in N nutrition experienced by the mother plants translates into transgenerational responses on seedlings obtained from the offspring seeds. To this purpose, we sprouted grains of two bread wheat cultivars (Bologna and Bora) grown in the field under four N fertilization schedules: constantly well N fed with a total of 300 kg N ha−1; N fed only very early, i.e., one month after sowing, with 60 kg N ha−1; N fed only late, i.e., at initial shoot elongation, with 120 kg N ha−1; and unfertilized control. We measured percent germination, seedling growth, vegetation indices (by reflectance spectroscopy), the phytochemical content (total phenols, phenolic acids, carotenoids, chlorophylls), and the antioxidant activity (by gold nanoparticles photometric assay) of extracts in sprout and wheatgrass obtained from the harvested seeds. Our main finding is that grains obtained from crops subjected to late N deficiency produced wheatgrass with much higher phenolic content (as compared to the other N treatments), and this was observed in both cultivars. Thus, we conclude that late N deficiency is a stressing condition which elicits the production of phenols. This may help counterbalance the loss of income related to lower grain yield in crops subjected to such an imbalance in N nutrition.
Collapse
|
19
|
Shi Z, Liu Y, Hu Z, Liu L, Yan Q, Geng D, Wei M, Wan Y, Fan G, Yang H, Yang P. Effect of radiation processing on phenolic antioxidants in cereal and legume seeds: A review. Food Chem 2022; 396:133661. [PMID: 35849987 DOI: 10.1016/j.foodchem.2022.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Phenolic compounds in cereal and legume seeds show numerous benefits to human health mainly because of their good antioxidant capacity. However, long-term storage and some improper preservation may reduce their antioxidant potential. It is necessary to retain or modify the phenolic antioxidants with improved technology before consumption. Radiation processing is usually applied as a physical method to extend the shelf life and retain the quality of plant produce. However, the effect of radiation processing on phenolic antioxidants in cereal and legume seeds is still not well understood. This review summarizes recent research on the effect of radiation, including ionizing and nonionizing radiation on the content and profile of phenolic compounds, and antioxidant activities in cereal and legume seeds, the influencing factors and possible mechanisms are also discussed. The article will improve the understanding of radiation effect on phenolic antioxidants, and promote the radiation modification of natural phenolic compounds in cereal and legume seeds and other sources.
Collapse
Affiliation(s)
- Zhiqiang Shi
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China.
| | - Ying Liu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Zhiming Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Liu Liu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Qinghai Yan
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Dandan Geng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| | - Min Wei
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China.
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan 611130, PR China
| | - Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan 611130, PR China
| | - Pinghua Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China
| |
Collapse
|