1
|
Dai Y, Wei J, Feng W, Huang Y, Li H, Ma L, Chen X. Fabrication and characterization of tea seed starch-tea polyphenol complexes. Carbohydr Polym 2024; 346:122615. [PMID: 39245495 DOI: 10.1016/j.carbpol.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
This study investigates the complexation between tea seed starch (TSS) and tea polyphenols (TPs) at varying concentrations (2.5, 5.0, 7.5, and 10.0 %). The objectives can expand the knowledge of TSS, which is a novel starch, and to examine how TPs influence the structure and physicochemical properties of the complexes. Results indicate that TPs interact with TSS through hydrogen bonding, altering granule morphology and disrupting ordered structure of starch. Depending on the concentration, TPs induce either V-type or non-V-type crystal structures within TSS, which had bearing on iodine binding capacity, swelling, pasting, gelatinization, retrogradation, rheology, and gel structure. In vitro digestibility analysis reveals that TSS-TPs complexes tend to reduce readily digestible starch while increasing resistant starch fractions with higher TP concentrations. Thus, TSS-TPs complexes physicochemical and digestibility properties can be modulated, providing a wide range of potential applications in the food industry.
Collapse
Affiliation(s)
- Yihui Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jiaru Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; State key laboratory of biocatalysis and enzyme engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yang Huang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Hao Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Lixin Ma
- State key laboratory of biocatalysis and enzyme engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Chen J, Xia P. Health effects of synthetic additives and the substitution potential of plant-based additives. Food Res Int 2024; 197:115177. [PMID: 39593388 DOI: 10.1016/j.foodres.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
The growth of the world population and the rapid industrialization of food have led to food producers' increased reliance on food additives. While food additives offer numerous conveniences and advantages in food applications, the potential risks associated with synthetic additives remain a significant concern. This report examines the current status of safety assessment and toxicity studies of common synthetic additives, including flavorings (sweeteners and flavor enhancers), colorants, preservatives (antimicrobials and antioxidants), and emulsifiers. The report also examines recent advances in promising plant-based alternative additives in terms of active ingredients, sensory properties, potential health benefits, food application challenges, and their related technologies (edible coatings/films and nanoencapsulation technologies), providing valuable references and insights for the sustainable development of food additives.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Jiang H, Mo Z, Xie X, Wu Y, Xue X. Bio-Inspired Self-Healing Silicon Anodes: Harnessing Tea Polyphenols to Enhance Lithium-Ion Battery Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59291-59301. [PMID: 39417557 DOI: 10.1021/acsami.4c12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study introduces an anode material for lithium-ion batteries, achieved by integrating tea polyphenols (TP) with the widely utilized polyacrylic acid (PAA) binder. The composite material capitalizes on the intrinsic self-healing properties of TP, enhancing the anode's durability and adhesiveness without the need for additional organic synthesis. The incorporation of TP has been demonstrated to significantly elevate ionic conductivity and expedite lithium ion diffusion, thereby reducing interfacial resistance and decelerating the rate of capacity fade due to electrolyte decomposition and silicon particle expansion. Employing a comprehensive analytical toolkit, including Fourier transform infrared spectroscopy, thermogravimetric analysis, peel strength measurements, and density functional theory calculations, we elucidated the physicochemical properties of the Si@PAA-TP anode. The anode's electrochemical performance was systematically assessed through galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy, with scanning electron microscopy providing insights into postcycling mechanical property alterations. This research advances a cost-effective, high-performance adhesive strategy for silicon anodes and contributes to the development.
Collapse
Affiliation(s)
- Haowen Jiang
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| | - Zuxue Mo
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| | - Xuerui Xie
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| | - Yilong Wu
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| | - Xiangyong Xue
- Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China
| |
Collapse
|
4
|
Zhao Y, Cao G, Wang Z, Liu D, Ren L, Ma D. The recent progress of bone regeneration materials containing EGCG. J Mater Chem B 2024; 12:9835-9844. [PMID: 39257355 DOI: 10.1039/d4tb00604f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most effective active ingredient in tea polyphenols and belongs to the category of catechins. EGCG has excellent antioxidant activity, anti-inflammatory, osteogenesis-promoting, and antibacterial properties, and has been widely studied in orthopedic diseases such as osteoporosis. To reach the lesion site, achieve sustained release, promote osteogenesis, regulate macrophage polarization, and improve the physical properties of materials, EGCG needs to be cross-linked or incorporated in bone regeneration materials. This article reviews the application of bone regeneration materials combined with EGCG, including natural polymer bone regeneration materials, synthetic polymer bone regeneration materials, bioceramic bone regeneration materials, metal bone regeneration materials, hydrogel bone regeneration materials and metal-EGCG networks. In addition, the fabrication methods for the regenerated scaffolds are also elaborated in the text. To sum up, it reveals the excellent development potential of materials containing EGCG and the shortcomings of current research, which will provide important reference for the future exploration of bone regeneration materials containing EGCG.
Collapse
Affiliation(s)
- Yaoye Zhao
- Lanzhou University Second Hospital, Lanzhou University, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730030, Gansu, China.
| | - Guoding Cao
- Lanzhou University Second Hospital, Lanzhou University, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730030, Gansu, China.
| | - Zixin Wang
- School of Stomatology, Lanzhou University, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730000, Gansu, China
| | - Desheng Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Liling Ren
- School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Dongyang Ma
- Lanzhou University Second Hospital, Lanzhou University, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730030, Gansu, China.
| |
Collapse
|
5
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
6
|
Xue H, Du X, Fang S, Gao H, Xie K, Wang Y, Tan J. The interaction of polyphenols-polysaccharides and their applications: A review. Int J Biol Macromol 2024; 278:134594. [PMID: 39127285 DOI: 10.1016/j.ijbiomac.2024.134594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Polyphenols, as important secondary metabolites in nature, are widely distributed in vegetables, fruits, grains, and other foods. Polyphenols have attracted widespread attention in the food industry and nutrition due to their unique structure and various biological activities. However, the health benefits of polyphenols are compromised owing to their structural instability and sensitivity to the external environment. The interaction between polyphenols and polysaccharides largely determined the stability and functional characteristics of polyphenols in food processing and storage. Thus, this topic has attracted widespread attention in recent years. The main purposes of this article are as follows: 1) to review the interaction mechanisms of polyphenols and polysaccharides including non-covalent and covalent bonds; 2) to comprehensively analyze the influencing factors of the interaction between polyphenols and polysaccharides, and introduce the effects of their interaction on the properties of polyphenols; 3) to systematically summarize the applications of interaction between polyphenols and polysaccharides. The findings can provide the important reference and theoretical support for the application of polyphenols and polysaccharides in food industry.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xiaopeng Du
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
7
|
Huang R, Yu H. Extraction methods, chemical compositions, molecular structure, health functions, and potential applications of tea polysaccharides as a promising biomaterial: a review. Int J Biol Macromol 2024; 277:134150. [PMID: 39059531 DOI: 10.1016/j.ijbiomac.2024.134150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Tea polysaccharides (TPS) have attracted much attention due to their multiple biological activities, excellent biocompatibility and good biodegradability, creating a wide range of potential applications in the food and pharmaceutical industries. However, the high molecular weight and complexity of TPS components have restricted its purification and bioactivity, limiting its potential applications. In this review, the effects of various extraction methods, tea processing, and degree of fermentation on the composition and structure of TPS were thoroughly investigated to overcome this dilemma. Through a comprehensive analysis of in vivo and in vitro studies, the health benefits of TPS are discussed in detail, including antioxidant, anti-obesity, modulation of gut microbial communities, and anticancer bioactivities. Typical structural characterization techniques of TPS are also summarized, and interactions with common food components are discussed in depth, providing a deeper perspective on the overall knowledge of TPS. Finally, this review offers an extensive overview of the wide range of applications of TPS, including its strong emulsifying properties and bio-accessibility, in various fields such as food nutrition, drug delivery, encapsulation films, and emulsifiers. This review aims to provide a theoretical basis for the profound development of TPS for productive utilization.
Collapse
Affiliation(s)
- Rong Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai 200030, China.
| | - Hongfei Yu
- North Ring Road no.1, Xinyang Agriculture and Forestry University, Pingqiao, Xinyang, He'nan, China
| |
Collapse
|
8
|
Duan H, Wang D, Zheng Y, Zhou Y, Yan W. The powerful antioxidant effects of plant fruits, flowers, and leaves help to improve retinal damage and support the relief of visual fatigue. Heliyon 2024; 10:e34299. [PMID: 39113954 PMCID: PMC11305225 DOI: 10.1016/j.heliyon.2024.e34299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
With the popularization of electronic products, visual fatigue is inevitably frequent. The causes of visual fatigue are varied, but from the perspective of physiological mechanisms, it is mainly closely related to retinal function or structural damage, especially the light source from various mobile devices and office equipments nowadays, which induces oxidative stress damage in the retina and exacerbates the degree of visual fatigue, resulting in the inability to use the eyes for a long period of time, pain in the eyes and periorbital area, blurred vision, dry eyes, tearing, and other discomforts. Food ingredients derived from natural plants have greater application in relieving visual fatigue. Therefore, this paper presents a detailed compilation of six plants that are widely used for their visual fatigue-relieving function, in the hope of providing more raw material choices for the development of products with visual fatigue-relieving functions in the future.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Yue Zheng
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| |
Collapse
|
9
|
Qin S, Li R, McClements DJ, Chen Y, Duan Z, Chen M, Dai Y, Liao L, Zhou W, Li J. Macronutrient digestion and polyphenol bioaccessibility in oat milk tea products: an in vitro gastrointestinal tract study. Food Funct 2024; 15:7478-7490. [PMID: 38915263 DOI: 10.1039/d4fo01439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
People are increasingly preparing milk tea using plant-based milks rather than cow's milk, e.g., vegans, those with lactose intolerance, and those with flavor preferences. However, adding plant-based milks to tea may impact the digestion, release, and bioaccessibility of nutrients and nutraceuticals in both the tea and milk. In this study, oat milk tea model systems (OMTMSs) containing different fat and tea polyphenol concentrations were used to explore the impact of tea on macronutrient digestion in oat milk, as well as the impact of oat milk matrix on the polyphenol bioaccessibility in the tea. An in vitro gastrointestinal model that mimics the mouth, stomach, and small intestine was used. Tea polyphenols (>0.25%) significantly reduced the glucose and free fatty acids released from oat milk after intestinal digestion. Tea polyphenols (>0.10%) also inhibited protein digestion in oat milk during gastric digestion but not during intestinal digestion. The bioaccessibility of the polyphenols in the tea depended on the fat content of oat milk, being higher for medium-fat (3.0%) and high-fat (5.8%) oat milk than low-fat (1.5%) oat milk. Liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis showed that lipids improved the tea polyphenol bioaccessibility by influencing the release of flavonoids and phenolic acids from the food matrices. These results provide important information about the impact of tea on the gastrointestinal fate of oat milk, and vice versa, which may be important for enhancing the healthiness of plant-based beverages.
Collapse
Affiliation(s)
- Sirui Qin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | | | - Ying Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Zhihao Duan
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Liangkun Liao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
10
|
Li Y, Ma J, Cao Y, Yang D. Efficient removal of allicin from the stalk of Allium fistulosum for dietary fiber production. NPJ Sci Food 2024; 8:32. [PMID: 38877017 PMCID: PMC11178807 DOI: 10.1038/s41538-024-00275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
The stalk of Allium fistulosum contains dietary fibers with complicated monosaccharide composition and glycosidic bond linkages, which renders it a better dietary fiber supplement. However, the unfavorable odor, majorly contributed by allicin, limits its applications. Although many physical and chemical methods have been developed to remove allicin, there is currently no comparison between their efficiencies. Here, we comprehensively compare all these methods of eliminating allicin in the Allium stalk by starting with optimization of the allicin extraction method. Results indicate that incubation of the chopped Allium stalk with water for 20 min and extraction with 75% ethanol reached a maximal extraction yield. Different methods of allicin elimination are examined, and physical removal of allicin by blanching at 100 °C reaches a maximal clearance rate of 73.3%, rendering it the most efficient and effective method eliminating allicin from the stalk of Allium fistulosum for the preparation of a totally green dietary fiber.
Collapse
Affiliation(s)
- Ye Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing, 100083, China
| | - Jiayin Ma
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing, 100083, China
| | - Yubin Cao
- Jiangsu QingGu Foods Co., Ltd, Xingdong Economic Development Zone, Xinghua, 225700, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing, 100083, China.
| |
Collapse
|
11
|
Montes L, Santamaria M, Garzon R, Rosell CM, Moreira R. Effect of polyphenols from Ascophyllum nodosum seaweeds on the rheology and digestion of corn starch gels and gluten-free bread features. Heliyon 2024; 10:e27469. [PMID: 38689966 PMCID: PMC11059404 DOI: 10.1016/j.heliyon.2024.e27469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
The main objective of this work is to study the effect of polyphenols, from the brown seaweed Ascophyllum nodosum, on the structure and digestion behaviour of gels at two corn starch concentrations (1.95 and 5.00% w/w) as well as the structure, color and texture features of crumbs from gluten-free breads. Adsorption isotherms of polyphenols on native and gelled starches were carried out and modelled by means of Langmuir and Henry models, respectively. The formation and characteristics of tested gels were rheologically monitored by means of heating ramp, time sweep at high temperature, cooling ramp and frequency sweep at 25 °C. Elastic modulus values decreased with the presence of polyphenols. Additionally, the polyphenols significantly decreased the digestion rate, measured by both chemical and rheological procedures, and the final concentration of digested starch. Finally, the presence of polyphenols in breads increased the hardness and chewiness values and decreased the cohesiveness and resilience values as well as the crumb hardening during storage.
Collapse
Affiliation(s)
- Leticia Montes
- Department of Chemical Engineering, Universidade de Santiago de Compostela, rúa Lope Gómez de Marzoa, s/n. 15782, Santiago de Compostela, Spain
| | - Maria Santamaria
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980, Paterna, Spain
| | - Raquel Garzon
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980, Paterna, Spain
| | - Cristina M. Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980, Paterna, Spain
- Department of Food and Human Nutritional Sciences. University of Manitoba, Winnipeg, Canada
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, rúa Lope Gómez de Marzoa, s/n. 15782, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
13
|
Chen X, Chen T, Liu J, Wei Y, Zhou W. Physicochemical stability and antibacterial mechanism of theabrownins prepared from tea polyphenols catalyzed by polyphenol oxidase and peroxidase. Food Sci Biotechnol 2024; 33:47-61. [PMID: 38186623 PMCID: PMC10766583 DOI: 10.1007/s10068-023-01341-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tea polyphenols were used as substrates and oxidized successively by polyphenol oxidase and peroxidase to prepare theabrownins (TBs-dE). The conversion rate of catechins to TBs-dE was 90.91%. The ultraviolet and infrared spectroscopic properties and zeta potential of TBs-dE were characterized. TBs-dE is more stable at pH 5.0-7.0, about 25 °C or in dark environment. Ultraviolet light and sunlight can deepen its color due to the further oxidative polymerization. Mg2+, Cu2+, and Al3+ had a significant effect on the stability of TBs-dE. The inhibitory rates of TBs-dE (1 mg/mL) against Staphylococcus aureus and Escherichia coli DH5α were 51.45% and 45.05%, respectively. After TBs-dE treatment, the cell morphology of both bacteria changed, some cell walls were blurred, and the cytoplasmic content leaked. The research results can provide theoretical support for the industrialization of theabrownins.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Tingting Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Jiayan Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Yan’an Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068 China
| | - Weilong Zhou
- National Center for Tea Quality Inspection and Testing, Hangzhou Tea Research Institute, All China Federation of Supply and Marketing Cooperatives, Hangzhou, 310016 China
| |
Collapse
|