1
|
Glushakova A, Kachalkin A. Wild and partially synanthropic bird yeast diversity, in vitro virulence, and antifungal susceptibility of Candida parapsilosis and Candida tropicalis strains isolated from feces. Int Microbiol 2024; 27:883-897. [PMID: 37874524 DOI: 10.1007/s10123-023-00437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Yeast complexes in the fecal samples of wild (Dendrocopos major, Picus viridis) and partially synanthropic (Bombycilla garrulus, Garrulus glandarius, Pica pica, and Pyrrhula pyrrhula) birds were studied in a forest ecosystem during winter. A total of 18 yeast species were identified: 16 ascomycetes and two basidiomycetes belonging to five subphyla of fungi: Saccharomycotina (15), Pezizomycotina (1), Agaricomycotina (1), and Pucciniomycotina (1). Most yeast species were found in the fecal samples of P. pyrrhula (Candida parapsilosis, C. zeylanoides, Debaryomyces hansenii, Hanseniaspora uvarum, Metschnikowia pulcherrima, Meyerozyma carpophila, M. guilliermondii, Rhodotorula mucilaginosa); the lowest number of yeast species was observed in the feces of B. garrulus (C. parapsilosis, C. zeylanoides, Met. pulcherrima, and Rh. mucilaginosa). The opportunistic species of the genus Candida were found only in feces of partially synanthropic birds: C. parapsilosis was observed in the feces of B. garrulus, G. glandarius, P. pica, and P. pyrrhula; its relative abundance was 69.3%, 49.1%, 10.5%, and 1.1%, respectively; C. tropicalis was observed in the feces of P. pica and G. glandarius; its relative abundance was 54.6% and 7.1%, respectively. Strains of C. parapsilosis and C. tropicalis isolated from the feces of partially synanthropic birds were evaluated for their susceptibility to conventional antifungal agents (fluconazole, voriconazole, amphotericin B) and hydrolytic activity. A total of 160 strains were studied. Resistance to fluconazole was detected in 86.8% of C. parapsilosis strains and in 87% of C. tropicalis strains; resistance to voriconazole was detected in 71.7% of C. parapsilosis and in 66.7% of C. tropicalis strains, and the lowest percentage of resistant strains was detected to amphotericin B, 2.8% and 3.7% in C. parapsilosis and C. tropicalis strains, respectively. Multiresistance was detected in one strain of C. parapsilosis isolated from P. pica feces and in one strain of C. tropicalis isolated from G. glandarius feces. Phospholipase and hemolysin activities in the strains of C. parapsilosis were low (mean Pz values of 0.93 and 0.91, respectively); protease activity was moderate (mean Pz value of 0.53). The ability to produce hydrolytic enzymes was higher in the isolated strains of C. tropicalis. The mean Pz values of phospholipase and hemolysin activities were moderate (mean Pz values of 0.63 and 0.60, respectively), whereas protease activity was high (mean Pz value of 0.32). Thus, wild and partially synanthropic birds play an important role in disseminating of various yeast species. These yeasts can enter the topsoil via feces and contribute to the formation of allochthonous and uneven soil yeast diversity in natural ecosystems. In addition, partially synanthropic birds can be vectors of virulent strains of opportunistic Candida species from urban environments to natural biotopes.
Collapse
Affiliation(s)
- Anna Glushakova
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia.
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| | - Aleksey Kachalkin
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| |
Collapse
|
2
|
Kaur J, Tiwari N, Asif MH, Dharmesh V, Naseem M, Srivastava PK, Srivastava S. Integrated genome-transcriptome analysis unveiled the mechanism of Debaryomyces hansenii-mediated arsenic stress amelioration in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133954. [PMID: 38484657 DOI: 10.1016/j.jhazmat.2024.133954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 04/07/2024]
Abstract
Globally, rice is becoming more vulnerable to arsenic (As) pollution, posing a serious threat to public food safety. Previously Debaryomyces hansenii was found to reduce grain As content of rice. To better understand the underlying mechanism, we performed a genome analysis to identify the key genes in D. hansenii responsible for As tolerance and plant growth promotion. Notably, genes related to As resistance (ARR, Ycf1, and Yap) were observed in the genome of D. hansenii. The presence of auxin pathway and glutathione metabolism-related genes may explain the plant growth-promoting potential and As tolerance mechanism of this novel yeast strain. The genome annotation of D. hansenii indicated that it contains a repertoire of genes encoding antioxidants, well corroborated with the in vitro studies of GST, GR, and glutathione content. In addition, the effect of D. hansenii on gene expression profiling of rice plants under As stress was also examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed 307 genes, annotated in D. hansenii-treated rice, related to metabolic pathways (184), photosynthesis (12), glutathione (10), tryptophan (4), and biosynthesis of secondary metabolite (117). Higher expression of regulatory elements like AUX/IAA and WRKY transcription factors (TFs), and defense-responsive genes dismutases, catalases, peroxiredoxin, and glutaredoxins during D. hansenii+As exposure was also observed. Combined analysis revealed that D. hansenii genes are contributing to stress mitigation in rice by supporting plant growth and As-tolerance. The study lays the foundation to develop yeast as a beneficial biofertilizer for As-prone areas.
Collapse
Affiliation(s)
- Jasvinder Kaur
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Nikita Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varsha Dharmesh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mariya Naseem
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Kumar Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suchi Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Glushakova АМ, Kachalkin АV. Yeast community succession in cow dung composting process. Fungal Biol 2023; 127:1075-1083. [PMID: 37344009 DOI: 10.1016/j.funbio.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Yeast complexes in the composting process of cow dung prepared to fertilize the soil for growing vegetables and fruits were studied. The average abundance of yeasts changed during the four temperature stages of the composting process. The highest abundance of yeasts, 1.38 × 104 cfu/g, was observed in the second stage of heating from 20 to 40 °C; the lowest was studied in the stage with the highest temperature (65 °C), 1.68 × 103 cfu/g. A total of 19 yeast species were observed and identified: 11 ascomycetes and 8 basidiomycetes, belonging to five subphyla of Fungi: Saccharomycotina (10), Pezizomycotina (1), Agaricomycotina (5), Pucciniomycotina (2), and Ustilaginomycotina (1). The greatest diversity of yeasts was found in the initial (20 °C) and second (heating up to 40 °C) temperature stages of composting (Aureobasidium pullulans (yeast-like fungus), Candida parapsilosis, Candida saitoana, Candida santamariae, Candida tropicalis, Curvibasidium cygneicollum, Cutaneotrichosporon moniliforme, Debaryomyces fabryi, Debaryomyces hansenii, Filobasidium magnum, Kazachstania sp., Moesziomyces bullatus, Naganishia globosa, Papiliotrema flavescens, Rhodotorula mucilaginosa, Scheffersomyces insectosa, Torulaspora delbrueckii, Vanrija musci), and the lowest in the stage of maximum heating (65 °C) (C. parapsilosis, C. tropicalis, Cyberlindnera jadinii).The opportunistic yeasts C. parapsilosis and C. tropicalis were obtained not only in the initial, second and third temperature stages of the composting process, but also in mature compost in the final stage prepared for soil application. This study shows that the cow dung, used in the farm studied did not meet the microbiological safety criteria. The reduction of opportunistic yeast species was not achieved with the composting method used. The likelihood of these species entering agricultural products via compost and soil and developing as endophytes in the internal tissues of fruits is very high. Since some strains of opportunistic Candida species from cow dung exhibited virulent characteristics (they produced hydrolytic enzymes and were resistant to antifungal compounds), additional phenotypic and genetic studies of the compost strains and their comparison with clinical isolates should be pursued.
Collapse
Affiliation(s)
- Аnna М Glushakova
- M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| | - Аleksey V Kachalkin
- M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| |
Collapse
|
4
|
Kimani BG, Takó M, Veres C, Krisch J, Papp T, Kerekes EB, Vágvölgyi C. Activity of Binary Combinations of Natural Phenolics and Synthetic Food Preservatives against Food Spoilage Yeasts. Foods 2023; 12:foods12061338. [PMID: 36981264 PMCID: PMC10048113 DOI: 10.3390/foods12061338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Natural compounds are a suitable alternative to synthetic food preservatives due to their natural origin and health-promoting properties. In the current study, phenolic-phenolic and phenolic-synthetic combinations were tested for their antibiofilm formation, anti-planktonic growth, and anti-adhesion properties against Debaryomyces hansenii, Wickerhamomyces anomalus (formerly Pichia anomala), Schizosaccharomyces pombe, and Saccharomyces cerevisiae. The phenolics were vanillin and cinnamic acid, while the synthetic preservatives were sodium benzoate, potassium sorbate, and sodium diacetate. The vanillin-cinnamic acid combination had synergistic effect in all the tested yeasts for the biofilm inhibition with a fractional inhibitory concentration index (FICI) of ≤0.19 for W. anomalus, 0.25 for S. pombe, 0.31 for S. cerevisiae, and 0.5 for D. hansenii. Most of the phenolic-synthetic combinations had indifferent interaction regarding biofilm formation. The vanillin-cinnamic acid combination also had higher activity against spoilage yeasts adhesion on the abiotic surface and planktonic growth compared to the phenolic-synthetic combinations. For the phenolic-synthetic anti-planktonic activity, synergistic interaction was present in all the vanillin-synthetic combinations in S. pombe, vanillin-sodium benzoate and vanillin-potassium sorbate in S. cerevisiae, vanillin-sodium benzoate in W. anomalus, and cinnamic acid-sodium diacetate in S. pombe. These results suggest a novel antimicrobial strategy that may broaden the antimicrobial spectrum and reduce compound toxicity against food spoilage yeasts.
Collapse
Affiliation(s)
- Bernard Gitura Kimani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Csilla Veres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Judit Krisch
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, H-6724 Szeged, Hungary
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Erika Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
5
|
Hydrolytic Enzyme Production and Susceptibility to Antifungal Compounds of Opportunistic Candida parapsilosis Strains Isolated from Cucurbitaceae and Rosaceae Fruits. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endophytic yeast species were studied in the internal tissues of ripe cultivated vegetables and fruits. A total of 19 yeast species, 11 ascomycete species, and 8 basidiomycete species were observed in the internal tissues of all fruits examined. The opportunistic yeast Candida parapsilosis was present in all plants studied. Several virulence factors (production of hydrolytic enzymes and sensitivity to antifungal agents) were examined in all 107 isolates of C. parapsilosis from the internal tissues of fruits. The most virulent isolates were found in vegetables. C. parapsilosis is widespread in nature and is often isolated from a variety of non-human sources. It is frequently involved in invasive infections that seriously affect human health. This species poses a high risk to immunocompromised individuals, such as HIV patients and surgical patients or children whose immune systems are not sufficiently mature. Since virulent isolates of Candida parapsilosis have been found in vegetables and fruits; their raw consumption may not be safe. Finally, we emphasize the importance of ongoing phenotypic and genetic studies of endophytic isolates of Candida parapsilosis and their comparison with clinical isolates.
Collapse
|
6
|
Forensic Analysis of Novel SARS2r-CoV Identified in Game Animal Datasets in China Shows Evolutionary Relationship to Pangolin GX CoV Clade and Apparent Genetic Experimentation. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pangolins are the only animals other than bats proposed to have been infected with SARS-CoV-2 related coronaviruses (SARS2r-CoVs) prior to the COVID-19 pandemic. Here, we examine the novel SARS2r-CoV we previously identified in game animal metatranscriptomic datasets sequenced by the Nanjing Agricultural University in 2022, and find that sections of the partial genome phylogenetically group with Guangxi pangolin CoVs (GX PCoVs), while the full RdRp sequence groups with bat-SL-CoVZC45. While the novel SARS2r-CoV is found in 6 pangolin datasets, it is also found in 10 additional NGS datasets from 5 separate mammalian species and is likely related to contamination by a laboratory researched virus. Absence of bat mitochondrial sequences from the datasets, the fragmentary nature of the virus sequence and the presence of a partial sequence of a cloning vector attached to a SARS2r-CoV read suggests that it has been cloned. We find that NGS datasets containing the novel SARS2r-CoV are contaminated with significant Homo sapiens genetic material, and numerous viruses not associated with the host animals sampled. We further identify the dominant human haplogroup of the contaminating H. sapiens genetic material to be F1c1a1, which is of East Asian provenance. The association of this novel SARS2r-CoV with both bat CoV and the GX PCoV clades is an important step towards identifying the origin of the GX PCoVs.
Collapse
|
7
|
Navarrete C, Sánchez BJ, Savickas S, Martínez JL. DebaryOmics: an integrative -omics study to understand the halophilic behaviour of Debaryomyces hansenii. Microb Biotechnol 2022; 15:1133-1151. [PMID: 34739747 PMCID: PMC8966029 DOI: 10.1111/1751-7915.13954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
Debaryomyces hansenii is a non-conventional yeast considered to be a well-suited option for a number of different industrial bioprocesses. It exhibits a set of beneficial traits (halotolerant, oleaginous, xerotolerant, inhibitory compounds resistant) which translates to a number of advantages for industrial fermentation setups when compared to traditional hosts. Although D. hansenii has been highly studied during the last three decades, especially in regards to its salt-tolerant character, the molecular mechanisms underlying this natural tolerance should be further investigated in order to broadly use this yeast in biotechnological processes. In this work, we performed a series of chemostat cultivations in controlled bioreactors where D. hansenii (CBS 767) was grown in the presence of either 1M NaCl or KCl and studied the transcriptomic and (phospho)proteomic profiles. Our results show that sodium and potassium trigger different responses at both expression and regulation of protein activity levels and also complemented previous reports pointing to specific cellular processes as key players in halotolerance, moreover providing novel information about the specific genes involved in each process. The phosphoproteomic analysis, the first of this kind ever reported in D. hansenii, also implicated a novel and yet uncharacterized cation transporter in the response to high sodium concentrations.
Collapse
Affiliation(s)
- Clara Navarrete
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads Building 223Kgs. Lyngby2800Denmark
| | - Benjamín J. Sánchez
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads Building 223Kgs. Lyngby2800Denmark
| | - Simonas Savickas
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads Building 223Kgs. Lyngby2800Denmark
| | - José L. Martínez
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads Building 223Kgs. Lyngby2800Denmark
| |
Collapse
|
8
|
Belloch C, Perea‐Sanz L, Gamero A, Flores M. Selection of
D. hansenii
isolates as starters in meat products based on phenotypic virulence factors, tolerance to abiotic stress conditions and aroma generation. J Appl Microbiol 2022; 133:200-211. [DOI: 10.1111/jam.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Carmela Belloch
- Instituto de Agroquímica y Tecnología de Alimentos (IATA‐CSIC)Avda. Agustín Escardino 746980Paterna, ValenciaSpain
| | - Laura Perea‐Sanz
- Instituto de Agroquímica y Tecnología de Alimentos (IATA‐CSIC)Avda. Agustín Escardino 746980Paterna, ValenciaSpain
| | - Amparo Gamero
- Departamento de Medicina Preventiva y Salud PublicaCC. AlimentaciónToxicología y Medicina LegalFacultad de FarmaciaUniversitat de ValenciaAvda. Vicent Andrés Estellés sn46100Burjassot, ValenciaSpain
| | - Monica Flores
- Instituto de Agroquímica y Tecnología de Alimentos (IATA‐CSIC)Avda. Agustín Escardino 746980Paterna, ValenciaSpain
| |
Collapse
|
9
|
Ramos-Moreno L, Ruiz-Pérez F, Rodríguez-Castro E, Ramos J. Debaryomyces hansenii Is a Real Tool to Improve a Diversity of Characteristics in Sausages and Dry-Meat Products. Microorganisms 2021; 9:microorganisms9071512. [PMID: 34361947 PMCID: PMC8303870 DOI: 10.3390/microorganisms9071512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Debaryomyces hansenii yeast represents a promising target for basic and applied biotechnological research It is known that D. hansenii is abundant in sausages and dry-meat products, but information regarding its contribution to their characteristics is blurry and contradictory. The main goal in this review was to define the biological contribution of D. hansenii to the final features of these products. Depending on multiple factors, D. hansenii may affect diverse physicochemical characteristics of meat products. However, there is general agreement about the significant generation of volatile and aromatic compounds caused by the metabolic activities of this yeast, which consequently provide a tendency for improved consumer acceptance. We also summarize current evidence highlighting that it is not possible to predict what the results would be after the inoculation of a meat product with a selected D. hansenii strain without a pivotal previous study. The use of D. hansenii as a biocontrol agent and to manufacture new meat products by decreasing preservatives are examples of exploring research lines that will complement current knowledge and contribute to prepare new and more ecological products.
Collapse
|
10
|
Lemmel F, Maunoury-Danger F, Leyval C, Cébron A. Altered fungal communities in contaminated soils from French industrial brownfields. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124296. [PMID: 33268205 DOI: 10.1016/j.jhazmat.2020.124296] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 05/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and metals are contaminants of industrial brownfield soils. Pollutants can have harmful effects on fungi, which are major actors of soil functioning. Our objective was to highlight fungal selection following long-term contamination of soils. Fungal diversity was assessed on 30 top-soil samples from ten sites gathered in three groups with different contamination levels and physico-chemical characteristics: 1) uncontaminated controls, 2) slag heaps displaying high PAH and moderate metal contaminations, and 3) settling ponds displaying high metal and intermediate PAH contaminations. Although fungal abundance and richness were similar among the soil groups, the diversity and evenness indices were lower for the slag heap group. Fungal diversity differed among soil groups at the phylum and OTU levels, and indicator species were identified. The relative abundance of Agaricomycetes, Saccharomycetes, Leotiomycetes and Chytridiomycota was higher in the control soils than in the two groups of contaminated soils. Cryptomycota LKM11 representatives were favoured in the slag heap and settling pond groups, and their relative abundance was correlated to the zinc and lead contamination levels. Dothideomycetes - positively linked to PAH contamination - and Eurotiomycetes were specific to the slag heap group. Pucciniomycetes and especially Gymnosporangium members were favoured in the settling pond soils.
Collapse
Affiliation(s)
- Florian Lemmel
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| | | | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, Nancy F-54000, France.
| |
Collapse
|
11
|
Contribution of the mitogen-activated protein kinase Hog1 to the halotolerance of the marine yeast Debaryomyces hansenii. Curr Genet 2020; 66:1135-1153. [PMID: 32719935 DOI: 10.1007/s00294-020-01099-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Halotolerant species are adapted to dealing continually with hyperosmotic environments, having evolved strategies that are uncommon in other organisms. The HOG pathway is the master system that regulates the cellular adaptation under these conditions; nevertheless, apart from the importance of Debaryomyces hansenii as an organism representative of the halotolerant class, its HOG1 pathway has been poorly studied, due to the difficulty of applying conventional recombinant DNA technology. Here we describe for the first time the phenotypic characterisation of a null HOG1 mutant of D. hansenii. Dhhog1Δ strain was found moderately resistant to 1 M NaCl and sensitive to higher concentrations. Under hyperosmotic shock, DhHog1 fully upregulated transcription of DhSTL1 and partially upregulated that of DhGPD1. High osmotic stress lead to long-term inner glycerol accumulation that was partially dependent on DhHog1. These observations indicated that the HOG pathway is required for survival under high external osmolarity but dispensable under low and mid-osmotic conditions. It was also found that DhHog1 can regulate response to alkali stress during hyperosmotic conditions and that it plays a role in oxidative and endoplasmic reticulum stress. Taken together, these results provide new insight into the contribution of this MAPK in halotolerance of this yeast.
Collapse
|
12
|
Ramos-Moreno L, Ramos J, Michán C. Overlapping responses between salt and oxidative stress in Debaryomyces hansenii. World J Microbiol Biotechnol 2019; 35:170. [PMID: 31673816 DOI: 10.1007/s11274-019-2753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 11/26/2022]
Abstract
Debaryomyces hansenii is a halotolerant yeast of importance in basic and applied research. Previous reports hinted about possible links between saline and oxidative stress responses in this yeast. The aim of this work was to study that hypothesis at different molecular levels, investigating after oxidative and saline stress: (i) transcription of seven genes related to oxidative and/or saline responses, (ii) activity of two main anti-oxidative enzymes, (iii) existence of common metabolic intermediates, and (iv) generation of damages to biomolecules as lipids and proteins. Our results showed how expression of genes related to oxidative stress was induced by exposure to NaCl and KCl, and, vice versa, transcription of some genes related to osmotic/salt stress responses was regulated by H2O2. Moreover, and contrary to S. cerevisiae, in D. hansenii HOG1 and MSN2 genes were modulated by stress at their transcriptional level. At the enzymatic level, saline stress also induced antioxidative enzymatic defenses as catalase and glutathione reductase. Furthermore, we demonstrated that both stresses are connected by the generation of intracellular ROS, and that hydrogen peroxide can affect the accumulation of in-cell sodium. On the other hand, no significant alterations in lipid oxidation or total glutathione content were observed upon exposure to both stresses tested. The results described in this work could help to understand the responses to both stressors, and to improve the biotechnological potential of D. hansenni.
Collapse
Affiliation(s)
- Laura Ramos-Moreno
- Departamento de Microbiología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, 14071, Córdoba, España, Spain.
| |
Collapse
|
13
|
Tafer H, Poyntner C, Lopandic K, Sterflinger K, Piñar G. Back to the Salt Mines: Genome and Transcriptome Comparisons of the Halophilic Fungus Aspergillus salisburgensis and Its Halotolerant Relative Aspergillus sclerotialis. Genes (Basel) 2019; 10:E381. [PMID: 31137536 PMCID: PMC6563132 DOI: 10.3390/genes10050381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
Salt mines are among the most extreme environments as they combine darkness, low nutrient availability, and hypersaline conditions. Based on comparative genomics and transcriptomics, we describe in this work the adaptive strategies of the true halophilic fungus Aspergillus salisburgensis, found in a salt mine in Austria, and compare this strain to the ex-type halotolerant fungal strain Aspergillus sclerotialis. On a genomic level, A. salisburgensis exhibits a reduced genome size compared to A. sclerotialis, as well as a contraction of genes involved in transport processes. The proteome of A. sclerotialis exhibits an increased proportion of alanine, glycine, and proline compared to the proteome of non-halophilic species. Transcriptome analyses of both strains growing at 5% and 20% NaCl show that A. salisburgensis regulates three-times fewer genes than A. sclerotialis in order to adapt to the higher salt concentration. In A. sclerotialis, the increased osmotic stress impacted processes related to translation, transcription, transport, and energy. In contrast, membrane-related and lignolytic proteins were significantly affected in A. salisburgensis.
Collapse
Affiliation(s)
- Hakim Tafer
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Caroline Poyntner
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Ksenija Lopandic
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Katja Sterflinger
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Guadalupe Piñar
- VIBT EQ Extremophile Center, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
14
|
Capusoni C, Arioli S, Donzella S, Guidi B, Serra I, Compagno C. Hyper-Osmotic Stress Elicits Membrane Depolarization and Decreased Permeability in Halotolerant Marine Debaryomyces hansenii Strains and in Saccharomyces cerevisiae. Front Microbiol 2019; 10:64. [PMID: 30761110 PMCID: PMC6362939 DOI: 10.3389/fmicb.2019.00064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
The use of seawater and marine microorganisms can represent a sustainable alternative to avoid large consumption of freshwater performing industrial bioprocesses. Debaryomyces hansenii, which is a known halotolerant yeast, possess metabolic traits appealing for developing such processes. For this purpose, we studied salt stress exposure of two D. hansenii strains isolated from marine fauna. We found that the presence of sea salts during the cultivation results in a slight decrease of biomass yields. Nevertheless, higher concentration of NaCl (2 M) negatively affects other growth parameters, like growth rate and glucose consumption rate. To maintain an isosmotic condition, the cells accumulate glycerol as compatible solute. Flow cytometry analysis revealed that the osmotic adaptation causes a reduced cellular permeability to cell-permeant dye SYBR Green I. We demonstrate that this fast and reversible phenomenon is correlated to the induction of membrane depolarization, and occurred even in presence of high concentration of sorbitol. The decrease of membrane permeability induced by osmotic stress confers to D. hansenii resistance to cationic drugs like Hygromycin B. In addition, we describe that also in Saccharomyces cerevisiae the exposure to hyper-osmotic conditions induced membrane depolarization and reduced the membrane permeability. These aspects are very relevant for the optimization of industrial bioprocesses, as in the case of fermentations and bioconversions carried out by using media/buffers containing high nutrients/salts concentrations. Indeed, an efficient transport of molecules (nutrients, substrates, and products) is the prerequisite for an efficient cellular performance, and ultimately for the efficiency of the industrial process.
Collapse
Affiliation(s)
- Claudia Capusoni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Benedetta Guidi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Immacolata Serra
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 2018. [DOI: 10.1093/femsre/fuy009] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 1, SI-1000 Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
16
|
Venâncio C, Pereira R, Freitas AC, Rocha-Santos TAP, da Costa JP, Duarte AC, Lopes I. Salinity induced effects on the growth rates and mycelia composition of basidiomycete and zygomycete fungi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1633-1641. [PMID: 28964607 DOI: 10.1016/j.envpol.2017.09.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/08/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Soil salinization, as the combination of primary and secondary events, can adversely affect organisms inhabiting this compartment. In the present study, the effects of increased salinity were assessed in four species of terrestrial fungi: Lentinus sajor caju, Phanerochaete chrysosporium, Rhizopus oryzae and Trametes versicolor. The mycelial growth and biochemical composition of the four fungi were determined under three exposure scenarios: 1) exposure to serial dilutions of natural seawater (SW), 2) exposure to serial concentrations of NaCl (potential surrogate of SW); and 3) exposure to serial concentrations of NaCl after a period of pre-exposure to low levels of NaCl. The toxicity of NaCl was slightly higher than that of SW, for all fungi species: the conductivities causing 50% of growth inhibition (EC50) were within 14.9 and 22.0 mScm-1 for NaCl and within 20.2 and 34.1 mScm-1 for SW. Phanerochaete chrysosporium showed to be the less sensitive species, both for NaCl and SW. Exposure to NaCl caused changes in the biochemical composition of fungi, mainly increasing the production of polysaccharides. When fungi were exposed to SW this pattern of biochemical response was not observed. Fungi pre-exposed to low levels of salinity presented higher EC50 than fungi non-pre-exposed, though 95% confidence limits overlapped, with the exception of P. chrysosporium. Pre-exposure to low levels of NaCl also induced changes in the biochemical composition of the mycelia of L. sajor caju and R. oryzae, relatively to the respective control. These results suggest that some terrestrial fungi may acquire an increased tolerance to NaCl after being pre-exposed to low levels of this salt, thus, suggesting their capacity to persist in environments that will undergo salinization. Furthermore, NaCl could be used as a protective surrogate of SW to derive safe salinity levels for soils, since it induced toxicity similar or higher than that of SW.
Collapse
Affiliation(s)
- C Venâncio
- Department of Biology & CESAM, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - R Pereira
- Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - A C Freitas
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Rua Arquiteto Lobão Vital, Apartado 2511, 45202-401 Porto, Portugal
| | - T A P Rocha-Santos
- Department of Chemistry & CESAM, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J P da Costa
- Department of Chemistry & CESAM, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A C Duarte
- Department of Chemistry & CESAM, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - I Lopes
- Department of Biology & CESAM, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Draft Genome Sequence of the Heavy-Metal-Tolerant Marine Yeast Debaryomyces hansenii J6. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00983-16. [PMID: 27635004 PMCID: PMC5026444 DOI: 10.1128/genomea.00983-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Debaryomyces hansenii J6 is a heavy-metal-tolerant, flavinogenic yeast isolated from a Swedish estuary. We present here the 11.63-Mb genome of this organism containing 5,717 open reading frames. Comparison with available Debaryomyces genomes demonstrated that J6 is closer to D. hansenii MTCC234 than D. fabry CBS789 and D. hansenii CBS767.
Collapse
|
18
|
Draft Genome of Debaryomyces fabryi CBS 789T, Isolated from a Human Interdigital Mycotic Lesion. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01580-15. [PMID: 26847909 PMCID: PMC4742678 DOI: 10.1128/genomea.01580-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast genus Debaryomyces comprises species isolated from various natural habitats, man-made environments, and clinical materials. Here, the draft genome of D. fabryi CBS 789T, isolated from a human interdigital mycotic lesion, is presented.
Collapse
|
19
|
Gumá-Cintrón Y, Bandyopadhyay A, Rosado W, Shu-Hu W, Nadathur GS. Transcriptomic analysis of cobalt stress in the marine yeast Debaryomyces hansenii. FEMS Yeast Res 2015; 15:fov099. [PMID: 26546454 DOI: 10.1093/femsyr/fov099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2015] [Indexed: 12/11/2022] Open
Abstract
The yeast Debaryomyces hansenii overproduces riboflavin upon exposure to subtoxic levels of cobalt (Co(+2)). However, mechanisms for survival have yet to be studied and have been hindered by D. hansenii's high genetic heterogeneity among strains. In this study, we used transcriptomic analyses and RNA-seq in order to identify differentially expressed genes in D. hansenii in response to cobalt exposure. Highly upregulated genes under this condition were identified to primarily comprise DNA damage and repair genes, oxidative stress response genes, and genes for cell wall integrity and growth. The main response of D. hansenii to heavy metal stress is the activation of non-enzymatic oxidative stress response mechanisms and control of biological production of reactive oxygen species. Our results indicate that D. hansenii does not seem to be pre-adapted to survive high concentrations of heavy metals. These organisms appear to possess genetic survival and detoxification mechanisms that enable the cells to recover from heavy metal stress.
Collapse
Affiliation(s)
- Yariela Gumá-Cintrón
- Department of Marine Science, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, Puerto Rico
| | - Arpan Bandyopadhyay
- Department of Chemical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - William Rosado
- Department of Marine Science, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, Puerto Rico
| | - Wei Shu-Hu
- Department of Chemical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - G S Nadathur
- Department of Marine Science, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, Puerto Rico
| |
Collapse
|
20
|
Abu-Ghosh S, Droby S, Korine C. Seasonal and plant-dependent variations in diversity, abundance and stress tolerance of epiphytic yeasts in desert habitats. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:373-382. [PMID: 24992536 DOI: 10.1111/1758-2229.12161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
We studied the epiphytic yeast species of the plants of the Negev Desert and the Dead Sea region, Israel, which are considered one of the most extreme hyper-arid lands in the world. For this purpose, we developed isolation protocols; we performed morphological, cultural and molecular identification tests and compared yeast diversity between the locations and the plants. The composition of the yeast populations present in the study's plants underwent seasonal fluctuations, whereas differences in community compositions were significant within sites. The maximum number of species of yeast occurred in autumn and Cryptococcus spp. were predominant year round. The isolated yeast strains showed an unusual tolerance to extreme growth conditions, such as high temperatures (up to 72% viability at 50°C), lethal hydrogen peroxide and NaCl concentrations. These results suggest that epiphytic yeasts inhabit the plants of the Dead Sea region and the Negev Desert have a community structure that is unique to the plant species and have a high tolerance to the harsh conditions that enables them to adapt to an arid ecosystem.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- Department of Postharvest Science, The Volcani Center, Agricultural Research Organization (ARO), Bet Dagan, 50250, Israel
| | | | | |
Collapse
|
21
|
Bubnová M, Zemančíková J, Sychrová H. Osmotolerant yeast species differ in basic physiological parameters and in tolerance of non-osmotic stresses. Yeast 2014; 31:309-21. [PMID: 24962688 DOI: 10.1002/yea.3024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/12/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
Osmotolerance is the ability to grow in an environment with a high osmotic pressure. In this study we compared the physiological parameters and tolerance to osmotic and non-osmotic stresses of three osmotolerant yeast species, Debaryomyces hansenii, Pichia farinosa (sorbitophila) and Zygosaccharomyces rouxii, with those of wild-type Saccharomyces cerevisiae. Although the osmotolerant species did not differ significantly in their basic parameters, such as cell size or growth capacity, they had different abilities to survive anhydrobiosis, potassium limitation or the presence of toxic cationic drugs. When their osmotolerance was compared, the results revealed that some of the species isolated as sugar/polyol-tolerant (e.g. P. farinosa) are also highly tolerant to salts and, vice versa, some strains isolated from an environment with high concentration of salt (e.g. Z. rouxii ATCC 42981) tolerate high concentrations of sugars. None of the tested strains and species was osmophilic. Taken together, our results showed that P. farinosa (sorbitophila) is the most robust species when coping with various stresses, while Z. rouxii CBS 732, although osmotolerant in general, is not specifically salt-tolerant and is quite sensitive to most of the tested stress conditions.
Collapse
Affiliation(s)
- Michala Bubnová
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, Prague 4, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
22
|
Ferreira D, Nobre A, Silva ML, Faria-Oliveira F, Tulha J, Ferreira C, Lucas C. XYLHencodes a xylose/H+symporter from the highly related yeast speciesDebaryomyces fabryiandDebaryomyces hansenii. FEMS Yeast Res 2013; 13:585-96. [DOI: 10.1111/1567-1364.12061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Danielly Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Alexandra Nobre
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Marta Luisa Silva
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Fábio Faria-Oliveira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Joana Tulha
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Célia Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| |
Collapse
|