1
|
Gupta D, Chen K, Elliott SJ, Nayak DD. MmcA is an electron conduit that facilitates both intracellular and extracellular electron transport in Methanosarcina acetivorans. Nat Commun 2024; 15:3300. [PMID: 38632227 PMCID: PMC11024163 DOI: 10.1038/s41467-024-47564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Methanogens are a diverse group of Archaea that obligately couple energy conservation to the production of methane. Some methanogens encode alternate pathways for energy conservation, like anaerobic respiration, but the biochemical details of this process are unknown. We show that a multiheme c-type cytochrome called MmcA from Methanosarcina acetivorans is important for intracellular electron transport during methanogenesis and can also reduce extracellular electron acceptors like soluble Fe3+ and anthraquinone-2,6-disulfonate. Consistent with these observations, MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. Additionally, mutants lacking mmcA have significantly slower Fe3+ reduction rates. The mmcA locus is prevalent in members of the Order Methanosarcinales and is a part of a distinct clade of multiheme cytochromes that are closely related to octaheme tetrathionate reductases. Taken together, MmcA might act as an electron conduit that can potentially support a variety of energy conservation strategies that extend beyond methanogenesis.
Collapse
Affiliation(s)
- Dinesh Gupta
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Keying Chen
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Dipti D Nayak
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
2
|
Pikhtirova A, Pecka-Kiełb E, Króliczewska B, Zachwieja A, Króliczewski J, Kupczyński R. The Effect of Saponite Clay on Ruminal Fermentation Parameters during In Vitro Studies. Animals (Basel) 2024; 14:738. [PMID: 38473122 DOI: 10.3390/ani14050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Reducing the emission of global warming gases currently remains one of the strategic tasks. Therefore, the objective of our work was to determine the effect of saponite clay on fermentation in the rumen of cows. The pH, total gas production, CH4, and volatile fatty acid (VFA) production in ruminal fluid was determined in vitro. Saponite clay from the Tashkiv deposit (Ukraine) has a high content of silicon, iron, aluminum, and magnesium. The addition of 0.15 and 0.25 g of saponite clay to the incubated mixture did not change the pH but reduced the total production (19% and 31%, respectively) and CH4 (24% and 46%, respectively) in the ruminal fluid compared to the control group and had no significant effect on the total VFA levels, but propionic acid increased by 15% and 21% and butyric acid decreased by 39% and 32%, respectively. We observed a decrease in the fermentation rates, with a simultaneous increase in the P:B ratio and an increase in the fermentation efficiency (FE) in the groups fermented with saponite clay, probably a consequence of the high efficiency in the breakdown of starch in the rumen. Therefore, further in vivo studies to determine the effective dose and effect of saponite clay on cow productivity and the reduction of gas emissions are promising and important.
Collapse
Affiliation(s)
- Alina Pikhtirova
- Department of Public Health, SE Medical Institute, Sumy State University, Rymskogo-Korsakova 2, 40007 Sumy, Ukraine
| | - Ewa Pecka-Kiełb
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, Norwida Str. 31, 50-375 Wroclaw, Poland
| | - Bożena Króliczewska
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, Norwida Str. 31, 50-375 Wroclaw, Poland
| | - Andrzej Zachwieja
- Animal Breeding, Wroclaw University of Environmental and Life Sciences, ul. Chelmonskiego 38C, 51-631 Wroclaw, Poland
| | - Jarosław Króliczewski
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida St. 27B, 50-375 Wroclaw, Poland
| | - Robert Kupczyński
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, ul. Chelmonskiego 38C, 51-631 Wroclaw, Poland
| |
Collapse
|
3
|
Gupta D, Chen K, Elliott SJ, Nayak DD. MmcA is an electron conduit that facilitates both intracellular and extracellular electron transport in Methanosarcina acetivorans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537704. [PMID: 37131651 PMCID: PMC10153276 DOI: 10.1101/2023.04.20.537704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Methanogens are a diverse group of Archaea that couple energy conservation to the production of methane gas. While most methanogens have no alternate mode of energy conservation, strains like Methanosarcina acetivorans are known to also conserve energy by dissimilatory metal reduction (DSMR) in the presence of soluble ferric iron or iron-containing minerals. The ecological ramifications of energy conservation decoupled from methane production in methanogens are substantial, yet the molecular details are poorly understood. In this work, we conducted in vitro and in vivo studies with a multiheme c-type cytochrome (MHC), called MmcA, to establish its role during methanogenesis and DSMR in M. acetivorans. MmcA purified from M. acetivorans can donate electrons to methanophenazine, a membrane-bound electron carrier, to facilitate methanogenesis. In addition, MmcA can also reduce Fe(III) and the humic acid analog anthraquinone-2,6-disulfonate (AQDS) during DSMR. Furthermore, mutants lacking mmcA have slower Fe(III) reduction rates. The redox reactivities of MmcA are consistent with the electrochemical data where MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. MmcA is prevalent in members of the Order Methanosarcinales but does not belong to a known family of MHCs linked to extracellular electron transfer, bioinformatically, and instead forms a distinct clade that is closely related to octaheme tetrathionate reductases. Taken together, this study shows that MmcA is widespread in methanogens with cytochromes where it acts as an electron conduit to support a variety of energy conservation strategies that extend beyond methanogenesis.
Collapse
Affiliation(s)
- Dinesh Gupta
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Keying Chen
- Department of Chemistry, Boston University, Boston, MA, USA
| | | | - Dipti D. Nayak
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Fan Q, Wang L, Fu Y, Li Q, Liu Y, Wang Z, Zhu H. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:159003. [PMID: 36155041 DOI: 10.1016/j.scitotenv.2022.159003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A majority of clay minerals contain Fe, and the redox cycling of Fe(III)/Fe(II) in clay minerals has been extensively studied as it may fuel the biogeochemical cycles of nutrients and govern the mobility, toxicity and bioavailability of a number of environmental contaminants. There are three types of Fe in clay minerals, including structural Fe sandwiched in the lattice of clays, Fe species in interlayer space and adsorbed on the external surface of clays. They exhibit distinct reactivity towards contaminants due to their differences in redox properties and accessibility to contaminant species. In natural environments, microbially driven Fe(III)/Fe(II) redox cycling in clay minerals is thought to be important, whereas reductants (e.g., dithionite and Fe(II)) or oxidants (e.g., peroxygens) are capable of enhancing the rates and extents of redox dynamics in engineered systems. Fe(III)-containing clay minerals can directly react with oxidizable pollutants (e.g., phenols and polycyclic aromatic hydrocarbons (PAHs)), whereas structural Fe(II) is able to react with reducible pollutants, such as nitrate, nitroaromatic compounds, chlorinated aliphatic compounds. Also structural Fe(II) can transfer electrons to oxygen (O2), peroxymonosulfate (PMS), or hydrogen peroxide (H2O2), yielding reactive radicals that can promote the oxidative transformation of contaminants. This review summarizes the recent discoveries on redox reactivity of Fe in clay minerals and its links to fates of environmental contaminants. The biological and chemical reduction mechanisms of Fe(III)-clay minerals, as well as the interaction mechanism between Fe(III) or Fe(II)-containing clay minerals and contaminants are elaborated. Some knowledge gaps are identified for better understanding and modelling of clay-associated contaminant behavior and effective design of remediation solutions.
Collapse
Affiliation(s)
- Qingya Fan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yunjiao Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; State Key Laboratory of Mineral Processing, Beijing 102628, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Huaiyong Zhu
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
5
|
Yu L, He D, Yang L, Rensing C, Zeng RJ, Zhou S. Anaerobic methane oxidation coupled to ferrihydrite reduction by Methanosarcina barkeri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157235. [PMID: 35817105 DOI: 10.1016/j.scitotenv.2022.157235] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Fe(III) has been recognized as a potential electron sink for the anaerobic oxidation of methane (Fe-AOM) in diverse environments. However, most of previous Fe-AOM processes are limited to ANME archaea and the Fe-AOM mechanism remains unclear. Here we investigate, for the first time, the Fe-AOM performance and mechanisms by a single methanogen Methanosarcina barkeri. The results showed that M. barkeri was capable of oxidizing methane to CO2 and reducing ferrihydrite to siderite simultaneously. The presence of methane enhanced both the abundances of redox-active species (such as cytochromes) and electrochemical activity of M. barkeri. The proteomic analyses revealed that M. barkeri up-regulated the expressions of a number of methanogenic enzymes during Fe-AOM, and significantly enriched metabolic pathways of amino acid synthesis and nitrogen fixation. Metabolic inhibition experiments indicated that membrane-bound redox-active components (cytochromes, methanophenazine and F420H2:quinone oxidoreductase) were probably involved in extracellular electron transfer (EET) from cells to ferrihydrite. Overall, these results provide a deep insight into the single‑carbon metabolism and survival strategy for methanogens and suggest that methanogens may play an important role in linking methane and iron cycling in the substrate-limited environments.
Collapse
Affiliation(s)
- Linpeng Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan He
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raymond J Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Xing R, Chen Z, Sun H, Liao H, Qin S, Liu W, Zhang Y, Chen Z, Zhou S. Free radicals accelerate in situ ageing of microplastics during sludge composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128405. [PMID: 35236030 DOI: 10.1016/j.jhazmat.2022.128405] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Composting is the last "barrier" for microplastics (MPs) in the entry of organic solid wastes into the environment. The transformation of MPs is thought to be mainly driven by microorganisms during composting, whereas the contribution of abiotic processes that involve free radicals is often overlooked. Herein, we provide initial evidence for the generation of free radicals during sludge composting, including environmental persistent free radicals and reactive oxygen species, which accelerate the oxidative degradation of MPs. The ·OH yield of composting fluctuated greatly from 23.03 to 277.18 μmol/kg during composting, which was closely related to the dynamic changes in Fe(II) (R2 = 0.926). Analyses of the composted MPs physicochemical properties indicated that MPs were aged gradually with molecular weights decrease from 18% to 27% and carbonyl index value increase from 0.23 to 0.52. Further investigation suggested that the microbially-mediated redox transformation of iron oxides could occur on the MPs surface accompanied by the production of abundant free radicals, thereby leading to the damage of MPs during composting. These results reveal the critical role of free radicals in MPs ageing under oxic/anoxic alternation conditions of composting and provide new insights into the bio-chemical mechanism of contaminant removal or transformation during sludge composting.
Collapse
Affiliation(s)
- Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zewei Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Qin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Dong Y, Shan Y, Xia K, Shi L. The Proposed Molecular Mechanisms Used by Archaea for Fe(III) Reduction and Fe(II) Oxidation. Front Microbiol 2021; 12:690918. [PMID: 34276623 PMCID: PMC8280799 DOI: 10.3389/fmicb.2021.690918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Iron (Fe) is the fourth most abundant element in the Earth's crust where ferrous Fe [Fe(II)] and ferric Fe [Fe(III)] can be used by archaea for energy conservation. In these archaea-Fe interactions, Fe(III) serves as terminal electron acceptor for anaerobic respiration by a variety of archaea, while Fe(II) serves as electron donor and/or energy sources for archaeal growth. As no Fe is incorporated into the archaeal cells, these redox reactions are referred to as dissimilatory Fe(III) reduction and Fe(II) oxidation, respectively. Dissimilatory Fe(III)-reducing archaea (FeRA) and Fe(II)-oxidizing archaea (FeOA) are widespread on Earth where they play crucial roles in biogeochemical cycling of not only Fe, but also carbon and sulfur. To reduce extracellular Fe(III) (oxyhydr)oxides, some FeRA transfer electrons directly to the Fe(III) (oxyhydr)oxides most likely via multiheme c-type cytochromes (c-Cyts). These multiheme c-Cyts may form the pathways similar to those found in bacteria for transferring electrons from the quinone/quinol pool in the cytoplasmic membrane to the Fe(III) (oxyhydr)oxides external to the archaeal cells. Use of multiheme c-Cyts for extracellular Fe(III) reduction by both Domains of Archaea and Bacteria emphasizes an ancient mechanism of extracellular electron transfer, which is well conserved. Other FeRA, however, reduce Fe(III) (oxyhydr)oxides indirectly via electron shuttles. Similarly, it is proposed that FeOA use pathways to oxidize Fe(II) on the surface of the cytoplasmic membrane and then to transfer the released electrons across the cytoplasmic membrane inward to the O2 and NAD+ in the cytoplasm. In this review, we focus on the latest understandings of the molecular mechanisms used by FeRA and FeOA for Fe(III) reduction and Fe(II) oxidation, respectively.
Collapse
Affiliation(s)
- Yiran Dong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yawei Shan
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Kemin Xia
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
8
|
Tahir K, Miran W, Jang J, Maile N, Shahzad A, Moztahida M, Ghani AA, Kim B, Jeon H, Lim SR, Lee DS. Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance. CHEMOSPHERE 2021; 268:128784. [PMID: 33131741 DOI: 10.1016/j.chemosphere.2020.128784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
In recent years, the modification of electrode materials for enhancing the power generation of microbial fuel cells (MFCs) has attracted considerable attention. In this study, a conventional carbon felt (CF) electrode was modified by NiFe2O4 (NiFe2O4@CF), MXene (MXene@CF), and NiFe2O4-MXene (NiFe2O4-MXene@CF) using facile dip-and-dry and hydrothermal methods. In these modified CF electrodes, the electrochemical performance considerably improved, while the highest power density (1385 mW/m2), which was 5.6, 2.8, and 1.4 times higher than those of CF, NiFe2O4@CF, and MXene@CF anodes, respectively, was achieved using NiFe2O4-MXene@CF. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry results confirmed the superior bioelectrochemical activity of a NiFe2O4-MXene@CF anode in a MFC. The improved performance could be attributed to the low charge transfer resistance, high conductivity and number of catalytically active sites of the NiFe2O4-MXene@CF anode. Microbial community analysis demonstrated the relative abundance of electroactive bacteria on a NiFe2O4-MXene@CF anodic biofilm rather than CF, MXene@CF, and NiFe2O4@CF anodes. Therefore, these results suggest that combining the favorable properties of composite materials such as NiFe2O4-MXene@CF anodes can open up new directions for fabricating novel electrodes for renewable energy-related applications.
Collapse
Affiliation(s)
- Khurram Tahir
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea; Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 1.5 KM Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jiseon Jang
- R&D Institute of Radioactive Wastes, Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Nagesh Maile
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Asif Shahzad
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Mokrema Moztahida
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ahsan Adul Ghani
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Bolam Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Hyeji Jeon
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Seong-Rin Lim
- Department of Environmental Engineering, Kangwon National University, 1 Gangwondaehakgil, Chuncheon, 24341, Republic of Korea.
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Valenzuela EI, Cervantes FJ. The role of humic substances in mitigating greenhouse gases emissions: Current knowledge and research gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141677. [PMID: 33182214 DOI: 10.1016/j.scitotenv.2020.141677] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Humic substances (HS) constitute a highly transformed fraction of natural organic matter (NOM) with a heterogeneous structure, which is rich in electron-transferring functional moieties. Because of this feature, HS display a versatile reactivity with a diversity of environmentally relevant organic and inorganic compounds either by abiotic or microbial processes. Consequently, extensive research has been conducted related to the potential of HS to drive relevant processes in bio-engineered systems, as well as in the biogeochemical cycling of key elements in natural environments. Nevertheless, the increase in the number of reports examining the relationship between HS and the microorganisms related to the production and consumption of greenhouse gases (GHG), the main drivers of global warming, has just emerged in the last years. In this paper, we discuss the importance of HS, and their analogous redox-active organic molecules (RAOM), on controlling the emission of three of the most relevant GHG due to their tight relationship with microbial activity, their abundance on the Earth's atmosphere, and their important global warming potentials: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The current knowledge gaps concerning the microbial component, on-site occurrence, and environmental constraints affecting these HS-mediated processes are provided. Furthermore, strategies involving the metabolic traits that GHG-consuming/HS-reducing and -oxidizing microbes display for the development of environmental engineered processes are also discussed.
Collapse
Affiliation(s)
- Edgardo I Valenzuela
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico.
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico.
| |
Collapse
|
10
|
Yan W, Zhou Y. The presence of ferrihydrite enhances greenhouse gas-methane emission in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:462-469. [PMID: 31252246 DOI: 10.1016/j.scitotenv.2019.06.234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Aquatic system is the major source of atmospheric methane. This study explored the influences of ferrihydrite, which is widely existed in natural aquatic system, on methane emission. Results showed that the presence of ferrihydrite led to 26.4% more methane emission. By tracking the transformation of organic compounds, it is revealed that the enhanced methane emission was attributed to greater hydrolysis and degradation of refractory compounds. More specifically, the remaining humic-like substances (HS) in ferrihydrite group (46.4 mg/L-C) were only half of that in control group (80.1 g/L-C) after 30-day incubation. The X-ray photoelectron spectroscopy spectrum confirmed the more active oxidation of organics occurred in ferrihydrite group. It was also found that ferrihydrite aided in sustaining microbial activity at stationary and starvation phases. Further study on microbial communities found that ferrihydrite promoted the enrichment of both functional and electroactive genera. This study provides insights into the greenhouse gas emission in natural environment.
Collapse
Affiliation(s)
- Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore.
| |
Collapse
|
11
|
Prakash D, Chauhan SS, Ferry JG. Life on the thermodynamic edge: Respiratory growth of an acetotrophic methanogen. SCIENCE ADVANCES 2019; 5:eaaw9059. [PMID: 31457094 PMCID: PMC6703866 DOI: 10.1126/sciadv.aaw9059] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
Although two-thirds of the nearly 1 billion metric tons of methane produced annually in Earth's biosphere derives from acetate, the in situ process has escaped rigorous understanding. The unresolved question concerns the mechanism by which the exceptionally marginal amount of available energy supports acetotrophic growth of methanogenic archaea in the environment. Here, we show that Methanosarcina acetivorans conserves energy by Fe(III)-dependent respiratory metabolism of acetate, augmenting production of the greenhouse gas methane. An extensively revised, ecologically relevant, biochemical pathway for acetotrophic growth is presented, in which the conservation of respiratory energy is maximized by electron bifurcation, a previously unknown mechanism of biological energy coupling. The results transform the ecological and biochemical understanding of methanogenesis and the role of iron in the mineralization of organic matter in anaerobic environments.
Collapse
|
12
|
Tanaka K, Yokoe S, Igarashi K, Takashino M, Ishikawa M, Hori K, Nakanishi S, Kato S. Extracellular Electron Transfer via Outer Membrane Cytochromes in a Methanotrophic Bacterium Methylococcus capsulatus (Bath). Front Microbiol 2018; 9:2905. [PMID: 30555443 PMCID: PMC6281684 DOI: 10.3389/fmicb.2018.02905] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022] Open
Abstract
Electron exchange reactions between microbial cells and solid materials, referred to as extracellular electron transfer (EET), have attracted attention in the fields of microbial physiology, microbial ecology, and biotechnology. Studies of model species of iron-reducing, or equivalently, current-generating bacteria such as Geobacter spp. and Shewanella spp. have revealed that redox-active proteins, especially outer membrane c-type cytochromes (OMCs), play a pivotal role in the EET process. Recent (meta)genomic analyses have revealed that diverse microorganisms that have not been demonstrated to have EET ability also harbor OMC-like proteins, indicating that EET via OMCs could be more widely preserved in microorganisms than originally thought. A methanotrophic bacterium Methylococcus capsulatus (Bath) was reported to harbor multiple OMC genes whose expression is elevated by Cu starvation. However, the physiological role of these genes is unknown. Therefore, in this study, we explored whether M. capsulatus (Bath) displays EET abilities via OMCs. In electrochemical analysis, M. capsulatus (Bath) generated anodic current only when electron donors such as formate were available, and could reduce insoluble iron oxides in the presence of electron donor compounds. Furthermore, the current-generating and iron-reducing activities of M. capsulatus (Bath) cells that were cultured in a Cu-deficient medium, which promotes high levels of OMC expression, were higher than those cultured in a Cu-supplemented medium. Anodic current production by the Cu-deficient cells was significantly suppressed by disruption of MCA0421, a highly expressed OMC gene, and by treatment with carbon monoxide (CO) gas (an inhibitor of c-type cytochromes). Our results provide evidence of EET in M. capsulatus (Bath) and demonstrate the pivotal role of OMCs in this process. This study raises the possibility that EET to solid compounds is a novel survival strategy of methanotrophic bacteria.
Collapse
Affiliation(s)
- Kenya Tanaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Sho Yokoe
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Motoko Takashino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shuji Nakanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan.,Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| | - Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Japan
| |
Collapse
|
13
|
A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Nat Commun 2018; 9:1642. [PMID: 29691409 PMCID: PMC5915437 DOI: 10.1038/s41467-018-04097-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/04/2018] [Indexed: 12/02/2022] Open
Abstract
Consumption of methane by aerobic and anaerobic microbes governs the atmospheric level of this powerful greenhouse gas. Whereas a biochemical understanding of aerobic methanotrophy is well developed, a mechanistic understanding of anaerobic methanotrophy has been prevented by the unavailability of pure cultures. Here we report a biochemical investigation of Methanosarcina acetivorans, a methane-producing species capable of anaerobic methanotrophic growth dependent on reduction of Fe(III). Our findings support a pathway anchored by Fe(III)-dependent mechanisms for energy conservation driving endergonic reactions that are key to methanotrophic growth. The pathway is remarkably similar to pathways hypothesized for uncultured anaerobic methanotrophic archaea. The results contribute to an improved understanding of the methane cycle that is paramount to understanding human interventions influencing Earth’s climate. Finally, the pathway enables advanced development and optimization of biotechnologies converting methane to value-added products through metabolic engineering of M. acetivorans. The unavailability of pure cultures has prevented a mechanistic understanding of anaerobic methanotrophy. Here the authors report a biochemical investigation of Methanosarcina acetivorans that supports a pathway anchored by Fe(III)-dependent mechanisms for energy conservation and driving endergonic reactions.
Collapse
|
14
|
Bar-Or I, Elvert M, Eckert W, Kushmaro A, Vigderovich H, Zhu Q, Ben-Dov E, Sivan O. Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12293-12301. [PMID: 28965392 DOI: 10.1021/acs.est.7b03126] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.
Collapse
Affiliation(s)
- Itay Bar-Or
- Department of Geological and Environmental Sciences, Ben Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen , Leobener Strasse 8, 28359 Bremen, Germany
| | - Werner Eckert
- Israel Oceanographic and Limnological Research, The Yigal Allon Kinneret Limnological Laboratory , P.O. Box 447, 14950 Migdal, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences and The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - Hanni Vigderovich
- Department of Geological and Environmental Sciences, Ben Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Qingzeng Zhu
- MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen , Leobener Strasse 8, 28359 Bremen, Germany
| | - Eitan Ben-Dov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences and The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
- Department of Life Sciences, Achva Academic College , Achva, M.P. Shikmim 79800, Israel
| | - Orit Sivan
- Department of Geological and Environmental Sciences, Ben Gurion University of the Negev , Beer-Sheva 84105, Israel
| |
Collapse
|
15
|
Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J Biosci Bioeng 2015; 119:678-82. [DOI: 10.1016/j.jbiosc.2014.11.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
|
16
|
Abstract
Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed.
Collapse
Affiliation(s)
- Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
17
|
Oni O, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, Kulkarni A, Blumers M, Shylin SI, Ksenofontov V, Costa BFO, Klingelhöfer G, Friedrich MW. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol 2015; 6:365. [PMID: 25983723 PMCID: PMC4416451 DOI: 10.3389/fmicb.2015.00365] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/10/2015] [Indexed: 11/17/2022] Open
Abstract
Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250–350 cm). The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe2+ while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments.
Collapse
Affiliation(s)
- Oluwatobi Oni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany ; MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Tetsuro Miyatake
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - Sabine Kasten
- MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - David Fischer
- MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Laura Wagenknecht
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Ajinkya Kulkarni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - Mathias Blumers
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Germany
| | - Sergii I Shylin
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Germany ; Department of Chemistry, Taras Shevchenko National University of Kyiv Kyiv, Ukraine
| | - Vadim Ksenofontov
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Germany
| | - Benilde F O Costa
- CFisUC, Department of Physics, University of Coimbra, Coimbra Portugal
| | | | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany ; MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| |
Collapse
|
18
|
Lovley DR, Malvankar NS. Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function. Environ Microbiol 2015; 17:2209-15. [PMID: 25384844 DOI: 10.1111/1462-2920.12708] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 10/26/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
Abstract
Novel imaging approaches have recently helped to clarify the properties of 'microbial nanowires'. Geobacter sulfurreducens pili are actual wires. They possess metallic-like conductivity, which can be attributed to overlapping pi-pi orbitals of key aromatic amino acids. Electrostatic force microscopy recently confirmed charge propagation along the pili, in a manner similar to carbon nanotubes. The pili are essential for long-range electron transport to insoluble electron acceptors and interspecies electron transfer. Previous claims that Shewanella oneidensis also produce conductive pili have recently been recanted, based on novel live-imaging studies. The putative pili are, in fact, long extensions of the cytochrome-rich outer membrane and periplasm that, when dried, collapse to form filaments with dimensions similar to pili. It has yet to be demonstrated whether the cytochrome-to-cytochrome electron hopping documented in the dried membrane extensions takes place in intact hydrated membrane extensions or whether the membrane extensions enhance electron transport to insoluble electron acceptors such as Fe(III) oxides or electrodes. These findings demonstrate that G. sulfurreducens conductive pili and the outer membrane extensions of S. oneidensis are fundamentally different in composition, mechanism of electron transport and physiological role. New methods for evaluating filament conductivity will facilitate screening the microbial world for nanowires and elucidating their function.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Nikhil S Malvankar
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.,Department of Physics, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|