1
|
Ulrych A, Fabrik I, Kupčík R, Vajrychová M, Doubravová L, Branny P. Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol 2021; 433:167319. [PMID: 34688688 DOI: 10.1016/j.jmb.2021.167319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that encodes a single eukaryotic-type Ser/Thr protein kinase StkP and its functional counterpart, the protein phosphatase PhpP. These signaling enzymes play critical roles in coordinating cell division and growth in pneumococci. In this study, we determined the proteome and phosphoproteome profiles of relevant mutants. Comparison of those with the wild-type provided a representative dataset of novel phosphoacceptor sites and StkP-dependent substrates. StkP phosphorylates key proteins involved in cell division and cell wall biosynthesis in both the unencapsulated laboratory strain Rx1 and the encapsulated virulent strain D39. Furthermore, we show that StkP plays an important role in triggering an adaptive response induced by a cell wall-directed antibiotic. Phosphorylation of the sensor histidine kinase WalK and downregulation of proteins of the WalRK core regulon suggest crosstalk between StkP and the WalRK two-component system. Analysis of proteomic profiles led to the identification of gene clusters regulated by catabolite control mechanisms, indicating a tight coupling of carbon metabolism and cell wall homeostasis. The imbalance of steady-state protein phosphorylation in the mutants as well as after antibiotic treatment is accompanied by an accumulation of the global Spx regulator, indicating a Spx-mediated envelope stress response. In summary, StkP relays the perceived signal of cell wall status to key cell division and regulatory proteins, controlling the cell cycle and cell wall homeostasis.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Rudolf Kupčík
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Marie Vajrychová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Linda Doubravová
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavel Branny
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
2
|
Hu Q, Yao L, Liao X, Zhang LS, Li HT, Li TT, Jiang QG, Tan MF, Li L, Draheim RR, Huang Q, Zhou R. Comparative Phenotypic, Proteomic, and Phosphoproteomic Analysis Reveals Different Roles of Serine/Threonine Phosphatase and Kinase in the Growth, Cell Division, and Pathogenicity of Streptococcus suis. Microorganisms 2021; 9:microorganisms9122442. [PMID: 34946045 PMCID: PMC8707513 DOI: 10.3390/microorganisms9122442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Eukaryote-like serine/threonine kinases (STKs) and cognate phosphatases (STPs) comprise an important regulatory system in many bacterial pathogens. The complexity of this regulatory system has not been fully understood due to the presence of multiple STKs/STPs in many bacteria and their multiple substrates involved in many different physiological and pathogenetic processes. Streptococci are the best materials for the study due to a single copy of the gene encoding STK and its cognate STP. Although several studies have been done to investigate the roles of STK and STP in zoonotic Streptococcus suis, respectively, few studies were performed on the coordinated regulatory roles of this system. In this study, we carried out a systemic study on STK/STP in S. suis by using a comparative phenotypic, proteomic, and phosphoproteomic analysis. Mouse infection assays revealed that STK played a much more important role in S. suis pathogenesis than STP. The ∆stk and ∆stp∆stk strains, but not ∆stp, showed severe growth retardation. Moreover, both ∆stp and ∆stk strains displayed defects in cell division, but they were abnormal in different ways. The comparative proteomics and phosphoproteomics revealed that deletion of stk or stp had a significant influence on protein expression. Interestingly, more virulence factors were found to be downregulated in ∆stk than ∆stp. In ∆stk strain, a substantial number of the proteins with a reduced phosphorylation level were involved in cell division, energy metabolism, and protein translation. However, only a few proteins showed increased phosphorylation in ∆stp, which also included some proteins related to cell division. Collectively, our results show that both STP and STK are critical regulatory proteins for S. suis and that STK seems to play more important roles in growth, cell division, and pathogenesis.
Collapse
Affiliation(s)
- Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Lun Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Xia Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Liang-Sheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Hao-Tian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Ting-Ting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Qing-Gen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Mei-Fang Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| | - Roger R. Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| |
Collapse
|
3
|
EloR interacts with the lytic transglycosylase MltG at midcell in Streptococcus pneumoniae R6. J Bacteriol 2021; 203:JB.00691-20. [PMID: 33558392 PMCID: PMC8092159 DOI: 10.1128/jb.00691-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ellipsoid shape of Streptococcus pneumoniae is determined by the synchronized actions of the elongasome and the divisome, which have the task of creating a protective layer of peptidoglycan (PG) enveloping the cell membrane. The elongasome is necessary for expanding PG in the longitudinal direction whereas the divisome synthesizes the PG that divides one cell into two. Although there is still little knowledge about how these two modes of PG synthesis are coordinated, it was recently discovered that two RNA-binding proteins called EloR and KhpA are part of a novel regulatory pathway controlling elongation in S. pneumoniae EloR and KhpA form a complex that work closely with the Ser/Thr kinase StkP to regulate cell elongation. Here, we have further explored how this regulation occur. EloR/KhpA is found at midcell, a localization fully dependent on EloR. Using a bacterial two-hybrid assay we probed EloR against several elongasome proteins and found an interaction with the lytic transglycosylase homolog MltG. By using EloR as bait in immunoprecipitation assays, MltG was pulled down confirming that they are part of the same protein complex. Fluorescent microscopy demonstrated that the Jag domain of EloR is essential for EloR's midcell localization and its interaction with MltG. Since MltG is found at midcell independent of EloR, our results suggest that MltG is responsible for recruitment of the EloR/KhpA complex to the division zone to regulate cell elongation.Importance Bacterial cell division has been a successful target for antimicrobial agents for decades. How different pathogens regulate cell division is, however, poorly understood. To fully exploit the potential for future antibiotics targeting cell division, we need to understand the details of how the bacteria regulate and construct cell wall during this process. Here we have revealed that the newly identified EloR/KhpA complex, regulating cell elongation in S. pneumoniae, forms a complex with the essential peptidoglycan transglycosylase MltG at midcell. EloR, KhpA and MltG are conserved among many bacterial species and the EloR/KhpA/MltG regulatory pathway is most likely a common mechanism employed by many Gram-positive bacteria to coordinate cell elongation and septation.
Collapse
|
4
|
Berckx F, Wibberg D, Kalinowski J, Pawlowski K. The Peptidoglycan Biosynthesis Gene murC in Frankia: Actinorhizal vs. Plant Type. Genes (Basel) 2020; 11:genes11040432. [PMID: 32316316 PMCID: PMC7231273 DOI: 10.3390/genes11040432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
Nitrogen-fixing Actinobacteria of the genus Frankia can be subdivided into four phylogenetically distinct clades; members of clusters one to three engage in nitrogen-fixing root nodule symbioses with actinorhizal plants. Mur enzymes are responsible for the biosynthesis of the peptidoglycan layer of bacteria. The four Mur ligases,MurC, MurD, MurE, and MurF, catalyse the addition of a short polypeptide to UDP-N-acetylmuramic acid. Frankia strains of cluster-2 and cluster-3 contain two copies of murC, while the strains of cluster-1 and cluster-4 contain only one. Phylogenetically, the protein encoded by the murC gene shared only by cluster-2 and cluster-3, termed MurC1, groups with MurC proteins of other Actinobacteria. The protein encoded by the murC gene found in all Frankia strains, MurC2, shows a higher similarity to the MurC proteins of plants than of Actinobacteria. MurC2 could have been either acquired via horizontal gene transfer or via gene duplication and convergent evolution, while murC1 was subsequently lost in the cluster-1 and cluster-4 strains. In the nodules induced by the cluster-2 strains, the expression levels of murC2 were significantly higher than those of murC1. Thus, there is clear sequence divergence between both types of Frankia MurC, and Frankia murC1 is in the process of being replaced by murC2, indicating selection in favour of murC2. Nevertheless, protein modelling showed no major structural differences between the MurCs from any phylogenetic group examined.
Collapse
Affiliation(s)
- Fede Berckx
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden;
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; (D.W.); (J.K.)
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; (D.W.); (J.K.)
| | - Katharina Pawlowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; (D.W.); (J.K.)
- Correspondence: ; Tel.: +46-8-16-3772; Fax: +46-8-16-5525
| |
Collapse
|
5
|
Hentschker C, Maaß S, Junker S, Hecker M, Hammerschmidt S, Otto A, Becher D. Comprehensive Spectral Library from the Pathogenic Bacterium Streptococcus pneumoniae with Focus on Phosphoproteins. J Proteome Res 2020; 19:1435-1446. [DOI: 10.1021/acs.jproteome.9b00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christian Hentschker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sabryna Junker
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Andreas Otto
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology; University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| |
Collapse
|
6
|
Hirschfeld C, Gómez-Mejia A, Bartel J, Hentschker C, Rohde M, Maaß S, Hammerschmidt S, Becher D. Proteomic Investigation Uncovers Potential Targets and Target Sites of Pneumococcal Serine-Threonine Kinase StkP and Phosphatase PhpP. Front Microbiol 2020; 10:3101. [PMID: 32117081 PMCID: PMC7011611 DOI: 10.3389/fmicb.2019.03101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Like eukaryotes, different bacterial species express one or more Ser/Thr kinases and phosphatases that operate in various signaling networks by catalyzing phosphorylation and dephosphorylation of proteins that can immediately regulate biochemical pathways by altering protein function. The human pathogen Streptococcus pneumoniae encodes a single Ser/Thr kinase-phosphatase couple known as StkP-PhpP, which has shown to be crucial in the regulation of cell wall synthesis and cell division. In this study, we applied proteomics to further understand the physiological role of pneumococcal PhpP and StkP with an emphasis on phosphorylation events on Ser and Thr residues. Therefore, the proteome of the non-encapsulated D39 strain (WT), a kinase (ΔstkP), and phosphatase mutant (ΔphpP) were compared in a mass spectrometry based label-free quantification experiment. Results show that a loss of function of PhpP causes an increased abundance of proteins in the phosphate uptake system Pst. Quantitative proteomic data demonstrated an effect of StkP and PhpP on the two-component systems ComDE, LiaRS, CiaRH, and VicRK. To obtain further information on the function, targets and target sites of PhpP and StkP we combined the advantages of phosphopeptide enrichment using titanium dioxide and spectral library based data evaluation for sensitive detection of changes in the phosphoproteome of the wild type and the mutant strains. According to the role of StkP in cell division we identified several proteins involved in cell wall synthesis and cell division that are apparently phosphorylated by StkP. Unlike StkP, the physiological function of the co-expressed PhpP is poorly understood. For the first time we were able to provide a list of previously unknown putative targets of PhpP. Under these new putative targets of PhpP are, among others, five proteins with direct involvement in cell division (DivIVA, GpsB) and peptidoglycan biosynthesis (MltG, MreC, MacP).
Collapse
Affiliation(s)
- Claudia Hirschfeld
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Alejandro Gómez-Mejia
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Vollmer W, Massidda O, Tomasz A. The Cell Wall of Streptococcus pneumoniae. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0018-2018. [PMID: 31172911 PMCID: PMC11026078 DOI: 10.1128/microbiolspec.gpp3-0018-2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae has a complex cell wall that plays key roles in cell shape maintenance, growth and cell division, and interactions with components of the human host. The peptidoglycan has a heterogeneous composition with more than 50 subunits (muropeptides)-products of several peptidoglycan-modifying enzymes. The amidation of glutamate residues in the stem peptide is needed for efficient peptide cross-linking, and peptides with a dipeptide branch prevail in some beta-lactam-resistant strains. The glycan strands are modified by deacetylation of N-acetylglucosamine residues and O-acetylation of N-acetylmuramic acid residues, and both modifications contribute to pneumococcal resistance to lysozyme. The glycan strands carry covalently attached wall teichoic acid and capsular polysaccharide. Pneumococci are unique in that the wall teichoic acid and lipoteichoic acid contain the same unusually complex repeating units decorated with phosphoryl choline residues, which anchor the choline-binding proteins. The structures of lipoteichoic acid and the attachment site of wall teichoic acid to peptidoglycan have recently been revised. During growth, pneumococci assemble their cell walls at midcell in coordinated rounds of cell elongation and division, leading to the typical ovococcal cell shape. Cell wall growth depends on the cytoskeletal FtsA and FtsZ proteins and is regulated by several morphogenesis proteins that also show patterns of dynamic localization at midcell. Some of the key regulators are phosphorylated by StkP and dephosphorylated by PhpP to facilitate robust selection of the division site and plane and to maintain cell shape.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | |
Collapse
|
8
|
Janczarek M, Vinardell JM, Lipa P, Karaś M. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in Signaling and Adaptation to Various Environments. Int J Mol Sci 2018; 19:ijms19102872. [PMID: 30248937 PMCID: PMC6213207 DOI: 10.3390/ijms19102872] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Reversible phosphorylation is a key mechanism that regulates many cellular processes in prokaryotes and eukaryotes. In prokaryotes, signal transduction includes two-component signaling systems, which involve a membrane sensor histidine kinase and a cognate DNA-binding response regulator. Several recent studies indicate that alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) also play an essential role in regulation of many different processes in bacteria, such as growth and cell division, cell wall biosynthesis, sporulation, biofilm formation, stress response, metabolic and developmental processes, as well as interactions (either pathogenic or symbiotic) with higher host organisms. Since these enzymes are not DNA-binding proteins, they exert the regulatory role via post-translational modifications of their protein targets. In this review, we summarize the current knowledge of STKs and STPs, and discuss how these enzymes mediate gene expression in prokaryotes. Many studies indicate that regulatory systems based on Hanks-type STKs and STPs play an essential role in the regulation of various cellular processes, by reversibly phosphorylating many protein targets, among them several regulatory proteins of other signaling cascades. These data show high complexity of bacterial regulatory network, in which the crosstalk between STK/STP signaling enzymes, components of TCSs, and the translational machinery occurs. In this regulation, the STK/STP systems have been proved to play important roles.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
9
|
The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus. Sci Rep 2018; 8:13693. [PMID: 30209409 PMCID: PMC6135852 DOI: 10.1038/s41598-018-32109-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/07/2018] [Indexed: 11/10/2022] Open
Abstract
The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.
Collapse
|
10
|
Stamsås GA, Straume D, Ruud Winther A, Kjos M, Frantzen CA, Håvarstein LS. Identification of EloR (Spr1851) as a regulator of cell elongation in Streptococcus pneumoniae. Mol Microbiol 2017; 105:954-967. [PMID: 28710862 DOI: 10.1111/mmi.13748] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/28/2023]
Abstract
In a screen for mutations suppressing the lethal loss of PBP2b in Streptococcus pneumoniae we identified Spr1851 (named EloR), a cytoplasmic protein of unknown function whose inactivation removed the requirement for PBP2b as well as RodA. It follows from this that EloR and the two elongasome proteins must be part of the same functional network. This network also includes StkP, as this serine/threonine kinase phosphorylates EloR on threonine 89 (T89). We found that ΔeloR cells, and cells expressing the phosphoablative form of EloR (EloRT89A ), are significantly shorter than wild-type cells. Furthermore, the phosphomimetic form of EloR (EloRT89E ) is not tolerated unless the cell in addition acquires a truncated MreC or non-functional RodZ protein. By itself, truncation of MreC as well as inactivation of RodZ gives rise to less elongated cells, demonstrating that the stress exerted by the phosphomimetic form of EloR is relieved by suppressor mutations that reduce or abolish the activity of the elongasome. Of note, it was also found that loss of elongasome activity caused by truncation of MreC elicits increased StkP-mediated phosphorylation of EloR. Together, the results support a model in which phosphorylation of EloR stimulates cell elongation, while dephosphorylation has an inhibitory effect.
Collapse
Affiliation(s)
- Gro Anita Stamsås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Cyril Alexander Frantzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| |
Collapse
|
11
|
Stamsås GA, Straume D, Salehian Z, Håvarstein LS. Evidence that pneumococcal WalK is regulated by StkP through protein-protein interaction. MICROBIOLOGY-SGM 2017; 163:383-399. [PMID: 27902439 DOI: 10.1099/mic.0.000404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
WalRK is the only two-component regulatory system essential for viability in Streptococcus pneumoniae. Despite its importance, the biological role of this system is not well understood. However, previous studies have shown that it has a crucial role in controlling pneumococcal cell division. Considerable efforts have been made to understand how the WalRK system is regulated, but no signal(s) sensed by the WalK histidine kinase has been identified so far. Here, we provide evidence that the serine/threonine protein kinase StkP modulates the activity of WalK through direct protein-protein interaction, suggesting that this interaction is one of the signals sensed by WalK. In most low-G+C content Gram-positive bacteria, WalK orthologues are attached to the cytoplasmic membrane via two transmembrane segments separated by a large extracellular loop believed to function as a sensor domain. In contrast, members of the genus Streptococcus have WalK histidine kinases that are anchored to the cytoplasmic membrane by a single transmembrane segment. It has been a long-standing question whether this segment only serves as a membrane anchor or if it also functions as a signal-sensing domain. Our data strongly support the latter, i.e. that the transmembrane segment senses signals that regulate the activity of WalK.
Collapse
Affiliation(s)
- Gro Anita Stamsås
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Daniel Straume
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Zhian Salehian
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Leiv Sigve Håvarstein
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
12
|
Egan AJF, Cleverley RM, Peters K, Lewis RJ, Vollmer W. Regulation of bacterial cell wall growth. FEBS J 2017; 284:851-867. [PMID: 27862967 DOI: 10.1111/febs.13959] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/28/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
During growth and propagation, a bacterial cell enlarges and subsequently divides its peptidoglycan (PG) sacculus, a continuous mesh-like layer that encases the cell membrane to confer mechanical strength and morphological robustness. The mechanism of sacculus growth, how it is regulated and how it is coordinated with other cellular processes is poorly understood. In this article, we will discuss briefly the current knowledge of how cell wall synthesis is regulated, on multiple levels, from both sides of the cytoplasmic membrane. According to the current knowledge, cytosolic scaffolding proteins connect PG synthases with cytoskeletal elements, and protein phosphorylation regulates cell wall growth in Gram-positive species. PG-active enzymes engage in multiple protein-protein interactions within PG synthesis multienzyme complexes, and some of the interactions modulate activities. PG synthesis is also regulated by central metabolism, and by PG maturation through the action of PG hydrolytic enzymes. Only now are we beginning to appreciate how these multiple levels of regulating PG synthesis enable the cell to propagate robustly with a defined cell shape under different and variable growth conditions.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Robert M Cleverley
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Richard J Lewis
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Ulrych A, Holečková N, Goldová J, Doubravová L, Benada O, Kofroňová O, Halada P, Branny P. Characterization of pneumococcal Ser/Thr protein phosphatase phpP mutant and identification of a novel PhpP substrate, putative RNA binding protein Jag. BMC Microbiol 2016; 16:247. [PMID: 27776484 PMCID: PMC5078927 DOI: 10.1186/s12866-016-0865-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reversible protein phosphorylation catalyzed by protein kinases and phosphatases is the primary mechanism for signal transduction in all living organisms. Streptococcus pneumoniae encodes a single Ser/Thr protein kinase, StkP, which plays a role in virulence, stress resistance and the regulation of cell wall synthesis and cell division. However, the role of its cognate phosphatase, PhpP, is not well defined. RESULTS Here, we report the successful construction of a ΔphpP mutant in the unencapsulated S. pneumoniae Rx1 strain and the characterization of its phenotype. We demonstrate that PhpP negatively controls the level of protein phosphorylation in S. pneumoniae both by direct dephosphorylation of target proteins and by dephosphorylation of its cognate kinase, StkP. Catalytic inactivation or absence of PhpP resulted in the hyperphosphorylation of StkP substrates and specific phenotypic changes, including sensitivity to environmental stresses and competence deficiency. The morphology of the ΔphpP cells resembled the StkP overexpression phenotype and conversely, overexpression of PhpP resulted in cell elongation mimicking the stkP null phenotype. Proteomic analysis of the phpP knock-out strain permitted identification of a novel StkP/PhpP substrate, Spr1851, a putative RNA-binding protein homologous to Jag. Here, we show that pneumococcal Jag is phosphorylated on Thr89. Inactivation of jag confers a phenotype similar to the phpP mutant strain. CONCLUSIONS Our results suggest that PhpP and StkP cooperatively regulate cell division of S. pneumoniae and phosphorylate putative RNA binding protein Jag.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Nela Holečková
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jana Goldová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Linda Doubravová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Oldřich Benada
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Petr Halada
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Pavel Branny
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
14
|
Grangeasse C. Rewiring the Pneumococcal Cell Cycle with Serine/Threonine- and Tyrosine-kinases. Trends Microbiol 2016; 24:713-724. [DOI: 10.1016/j.tim.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022]
|
15
|
Fisher JF, Mobashery S. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025221. [PMID: 27091943 DOI: 10.1101/cshperspect.a025221] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The value of the β-lactam antibiotics for the control of bacterial infection has eroded with time. Three Gram-positive human pathogens that were once routinely susceptible to β-lactam chemotherapy-Streptococcus pneumoniae, Enterococcus faecium, and Staphylococcus aureus-now are not. Although a fourth bacterium, the acid-fast (but not Gram-positive-staining) Mycobacterium tuberculosis, has intrinsic resistance to earlier β-lactams, the emergence of strains of this bacterium resistant to virtually all other antibiotics has compelled the evaluation of newer β-lactam combinations as possible contributors to the multidrug chemotherapy required to control tubercular infection. The emerging molecular-level understanding of these resistance mechanisms used by these four bacteria provides the conceptual framework for bringing forward new β-lactams, and new β-lactam strategies, for the future control of their infections.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| |
Collapse
|
16
|
Guo Z, Han J, Yang XY, Cao K, He K, Du G, Zeng G, Zhang L, Yu G, Sun Z, He QY, Sun X. Proteomic analysis of the copper resistance of Streptococcus pneumoniae. Metallomics 2015; 7:448-54. [PMID: 25608595 DOI: 10.1039/c4mt00276h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive bacterial pathogen causing a variety of diseases, including otitis media, bacteraemia and meningitis. Although copper is an essential trace metal for bacterial growth, high intracellular levels of free-copper are toxic. Copper resistance has emerged as an important virulence determinant of microbial pathogens. In this study, we determined the minimum inhibition concentration of copper for the growth inhibition of S. pneumoniae. Two-dimensional-electrophoresis coupled with mass spectrometry was applied to identify proteins involved in copper resistance of S. pneumoniae. In total, forty-four proteins with more than 1.5-fold alteration in expression (p < 0.05) were identified. Quantitative reverse transcription PCR was used to confirm the proteomic results. Bioinformatics analysis showed that the differentially expressed proteins were mainly involved in the cell wall biosynthesis, protein biosynthesis, purine biosynthesis, pyrimidine biosynthesis, primary metabolic process, and the nitrogen compound metabolic process. Many up-regulated proteins in response to the copper treatment directly or indirectly participated in the cell wall biosynthesis, indicating that the cell wall is a critical determinant in copper resistance of S. pneumoniae.
Collapse
Affiliation(s)
- Zhong Guo
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sajid A, Arora G, Singhal A, Kalia VC, Singh Y. Protein Phosphatases of Pathogenic Bacteria: Role in Physiology and Virulence. Annu Rev Microbiol 2015; 69:527-47. [DOI: 10.1146/annurev-micro-020415-111342] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andaleeb Sajid
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Gunjan Arora
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Anshika Singhal
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Vipin C. Kalia
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Yogendra Singh
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| |
Collapse
|
18
|
Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol 2015; 24:47-52. [PMID: 25625314 DOI: 10.1016/j.mib.2015.01.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/31/2014] [Accepted: 01/10/2015] [Indexed: 11/30/2022]
Abstract
This review will discuss some recent work describing the role of Ser/Thr phosphorylation as a post-translational mechanism of regulation in bacteria. I will discuss the interaction between bacterial eukaryotic-like Ser/Thr kinases (eSTKs) and two-component systems as well as hints as to physiological function of eSTKs and their cognate eukaryotic-like phosphatases (eSTPs). In particular, I will highlight the role of eSTKs and eSTPs in the regulation of peptidoglycan metabolism and protein synthesis. In addition, I will discuss how data from phosphoproteomic surveys suggest that Ser/Thr phosphorylation plays a much more significant physiological role than would be predicted simply based on in vivo and in vitro analyses of individual kinases.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
19
|
Kouidmi I, Levesque RC, Paradis-Bleau C. The biology of Mur ligases as an antibacterial target. Mol Microbiol 2014; 94:242-53. [DOI: 10.1111/mmi.12758] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Imène Kouidmi
- Department of Microbiology, Infectiology and Immunology; Université de Montreal; Montreal Quebec Canada
| | - Roger C. Levesque
- Institut de biologie intégrative et des systèmes; Université Laval; Montreal Quebec Canada
| | - Catherine Paradis-Bleau
- Department of Microbiology, Infectiology and Immunology; Université de Montreal; Montreal Quebec Canada
| |
Collapse
|
20
|
Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C, Lavergne JP, Freton C, Combet C, Guiral S, Soufi B, Macek B, Kuru E, VanNieuwenhze MS, Brun YV, Di Guilmi AM, Claverys JP, Galinier A, Grangeasse C. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLoS Genet 2014; 10:e1004275. [PMID: 24722178 PMCID: PMC3983041 DOI: 10.1371/journal.pgen.1004275] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/16/2014] [Indexed: 01/17/2023] Open
Abstract
Despite years of intensive research, much remains to be discovered to understand the regulatory networks coordinating bacterial cell growth and division. The mechanisms by which Streptococcus pneumoniae achieves its characteristic ellipsoid-cell shape remain largely unknown. In this study, we analyzed the interplay of the cell division paralogs DivIVA and GpsB with the ser/thr kinase StkP. We observed that the deletion of divIVA hindered cell elongation and resulted in cell shortening and rounding. By contrast, the absence of GpsB resulted in hampered cell division and triggered cell elongation. Remarkably, ΔgpsB elongated cells exhibited a helical FtsZ pattern instead of a Z-ring, accompanied by helical patterns for DivIVA and peptidoglycan synthesis. Strikingly, divIVA deletion suppressed the elongated phenotype of ΔgpsB cells. These data suggest that DivIVA promotes cell elongation and that GpsB counteracts it. Analysis of protein-protein interactions revealed that GpsB and DivIVA do not interact with FtsZ but with the cell division protein EzrA, which itself interacts with FtsZ. In addition, GpsB interacts directly with DivIVA. These results are consistent with DivIVA and GpsB acting as a molecular switch to orchestrate peripheral and septal PG synthesis and connecting them with the Z-ring via EzrA. The cellular co-localization of the transpeptidases PBP2x and PBP2b as well as the lipid-flippases FtsW and RodA in ΔgpsB cells further suggest the existence of a single large PG assembly complex. Finally, we show that GpsB is required for septal localization and kinase activity of StkP, and therefore for StkP-dependent phosphorylation of DivIVA. Altogether, we propose that the StkP/DivIVA/GpsB triad finely tunes the two modes of peptidoglycan (peripheral and septal) synthesis responsible for the pneumococcal ellipsoid cell shape.
Collapse
Affiliation(s)
- Aurore Fleurie
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Sylvie Manuse
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Chao Zhao
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
- Key laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nathalie Campo
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, IBCP, Université Lyon 1, CNRS, UMR5305, Lyon, France
| | - Jean-Pierre Lavergne
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Céline Freton
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Christophe Combet
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Sébastien Guiral
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Boumediene Soufi
- Proteome Center Tuebingen, Interdepartmental Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interdepartmental Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Erkin Kuru
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Michael S. VanNieuwenhze
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Yves V. Brun
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Anne-Marie Di Guilmi
- Institut de Biologie Structurale, UMR 5075, Université Joseph Fourier, CNRS, CEA, Grenoble, France
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Christophe Grangeasse
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| |
Collapse
|
21
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|