1
|
Grimard-Conea M, Bédard E, Prévost M. Can free chlorine residuals entering building plumbing systems really be maintained to prevent microbial growth? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173651. [PMID: 38821274 DOI: 10.1016/j.scitotenv.2024.173651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Secondary disinfection aims to prevent microbial regrowth during distribution by maintaining disinfectant residuals in water systems. However, multi-factorial interactions contribute to free chlorine decay in distribution systems, and even more so in building plumbing. Assembling 1737 samples from nine large institutional buildings, a meta-analysis was conducted to determine whether building managers can actively rely on incoming free chlorine residuals to prevent in-building microbial amplification. Findings showed that free chlorine concentrations in first draws met the 0.2 mg/L common guide level in respectively 26 %, 6 % and 2 % of cold, tepid and hot water samples, whereas flushing for 2-60 min only significantly increased this ratio in cold water (83 %), without reaching background levels found in service lines. Free chlorine was significantly but weakly (R≤ 0.2) correlated to adenosine triphosphate, heterotrophic plate count and total and intact cell counts, thus evidencing that residuals contributed to decreased culturable and viable biomass. Detection of culturable Legionella pneumophila spanning over a 4-log distribution solely occurred when free chlorine levels were below 0.2 mg/L, but no such trend could be distinguished clearly for culturable Pseudomonas aeruginosa. Water temperatures below 20 °C and >60 °C also completely prevented L. pneumophila detection. Overall, the majority of elevated microbial counts were measured in distal sites and in tepid and hot water, where free chlorine is less likely to be present due to stagnation and increased temperature. Therefore, building managers cannot solely rely on this chemical barrier to mitigate bacterial growth in bulk water.
Collapse
Affiliation(s)
| | - Emilie Bédard
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
2
|
Blanford WJ, O'Mullan GD. Evaluation of a novel porous antimicrobial media for industrial and HVAC water biocontrol. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2457-2473. [PMID: 37257103 PMCID: wst_2023_076 DOI: 10.2166/wst.2023.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel treatment method, consisting of pea-gravel with a marine coating supplemented with alkyldimethylbenzylammonium chloride (ADBAC or benzalkonium chloride), has been examined for its antimicrobial performance and coating stability in aqueous environments. Initial column studies examining the porous media's ability to reduce bacterial loads in heating, ventilation, and air conditioning (HVAC) water found average reductions of 94% from pre-flush levels (106 colony forming unit (CFU)/mL) when assessed with R2A spread plates and 83% reductions with SimPlates. There was no observed statistical difference between the average of pre- and post-flush waters from four tests of the media without ADBAC. Taxonomic identification, by 16S rRNA gene sequencing, of colonies drawn from pre- and post-ABDAC R2A plates showed similarities with taxa observed in high frequency from prior cultivation-independent surveys of other cooling tower systems. With this proof of concept, two versions of the media were evaluated for potential coating components released during aqueous exposure. Neither released measurable volatile organic compounds (VOC) components, but one did release bisphenol A and ABDAC compounds. Subsequent column tests of the more durable coating were conducted using cultures of interest in industrial water and demonstrated significant reductions in neutralized post-column Enterococcus faecalis samples and near complete loss of Legionella pneumophila in non-neutralized fluids, but lower reductions in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- William James Blanford
- School of Earth and Environmental Science, Queens College, CUNY, 6530 Kissena Boulevard, D202 SB, Flushing, NY 11367, USA E-mail: ;
| | - Gregory D O'Mullan
- School of Earth and Environmental Science, Queens College, CUNY, 6530 Kissena Boulevard, D202 SB, Flushing, NY 11367, USA E-mail: ;
| |
Collapse
|
3
|
Qi Z, Huang Z, Liu C. Metabolism differences of biofilm and planktonic Pseudomonas aeruginosa in viable but nonculturable state induced by chlorine stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153374. [PMID: 35093368 DOI: 10.1016/j.scitotenv.2022.153374] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
More than 95% of the bacteria in environment are viable but nonculturable (VBNC). However, it is difficult to elucidate directly the metabolic characteristics of these VBNC bacteria and the differences between biofilm-VBNC bacteria and planktonic-VBNC bacteria. In this study, VBNC P. aeruginosa induced by chlorine was used to clarify the metabolism characteristics and mechanism of differential metabolism between biofilm-VBNC bacteria and planktonic-VBNC bacteria. Results showed that P. aeruginosa in biofilm state was more likely to enter VBNC state. The mechanisms of differential metabolism were involved in the difference of reactive oxygen species production owing to the protection of extracellular polymers. 15N and 2H labeled single-cell Raman spectra directly proved that VBNC state bacteria still maintained low material and energy metabolism, and the metabolic activity of biofilm-VBNC P. aeruginosa was lower than that of planktonic-VBNC P. aeruginosa. GC-MS/MS analysis showed 51 metabolites with significant differences. KEGG analysis showed that the types and contents of extracellular metabolites from P. aeruginosa in VBNC states were significantly lower than those in the culturable state (p < 0.05), mainly involving in citrate cycle, glutathione metabolism, phenylalanine metabolism, tyrosine metabolism and fatty acid degradation. Also, the contents of most extracellular metabolites from P. aeruginosa in biofilm-VBNC state were lower than those in VBNC planktonic state. The significant differences (p < 0.05) were mainly involved in alanine, aspartate and glutamate metabolism, glycolysis/gluconeogenesis, D-Alanine metabolism and glycerophospholipid metabolism. The result of this research was favorable to the accurate identification of VBNC bacteria, the health risk assessment and scientific control of harmful VBNC bacteria.
Collapse
Affiliation(s)
- Zheng Qi
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zaihui Huang
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chunguang Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, PR China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, PR China.
| |
Collapse
|
4
|
Proctor C, Garner E, Hamilton KA, Ashbolt NJ, Caverly LJ, Falkinham JO, Haas CN, Prevost M, Prevots DR, Pruden A, Raskin L, Stout J, Haig SJ. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. WATER RESEARCH 2022; 211:117997. [PMID: 34999316 PMCID: PMC8821414 DOI: 10.1016/j.watres.2021.117997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/10/2023]
Abstract
In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.g., energy costs and conservation). For example, the ecological and epidemiological issues characteristic of Legionella pneumophila diverge from those relevant for Mycobacterium avium and other nontuberculous mycobacteria. Recent advances in understanding DWPI as part of a complex microbial ecosystem inhabiting drinking water systems continues to reveal additional challenges: namely, how can all microorganisms of concern be managed simultaneously? In order to protect public health, we must take a more holistic approach in all aspects of the field, including basic research, monitoring methods, risk-based mitigation techniques, and policy. A holistic approach will (i) target multiple microorganisms simultaneously, (ii) involve experts across several disciplines, and (iii) communicate results across disciplines and more broadly, proactively addressing source water-to-customer system management.
Collapse
Affiliation(s)
- Caitlin Proctor
- Department of Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Centre for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicholas J Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Gold Coast. Queensland, Australia
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Charles N Haas
- Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michele Prevost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janet Stout
- Department of Civil & Environmental Engineering, University of Pittsburgh, and Special Pathogens Laboratory, Pittsburgh, PA, USA
| | - Sarah-Jane Haig
- Department of Civil & Environmental Engineering, and Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Virieux-Petit M, Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Romano-Bertrand S. From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes (Basel) 2022; 13:genes13020301. [PMID: 35205346 PMCID: PMC8872213 DOI: 10.3390/genes13020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The hospital environment constitutes a reservoir of opportunistic pathogens responsible for healthcare-associated infections (HCAI) such as Pseudomonas aeruginosa (Pa). Pa persistence within technological niches, the increasing emergence of epidemic high-risk clones in HCAI, the epidemiological link between plumbing strains and clinical strains, make it a major nosocomial pathogen. Therefore, understanding the mechanisms of Pa adaptation to hospital water systems would be useful in preventing HCAI. This review deciphers how copper resistance contributes to Pa adaptation and persistence in a hospital environment, especially within copper water systems, and ultimately to its success as a causative agent of HCAI. Numerous factors are involved in copper homeostasis in Pa, among which active efflux conferring copper tolerance, and copper-binding proteins regulating the copper compartmentalization between periplasm and cytoplasm. The functional harmony of copper homeostasis is regulated by several transcriptional regulators. The genomic island GI-7 appeared as especially responsible for the copper resistance in Pa. Mechanisms of copper and antibiotic cross-resistance and co-resistance are also identified, with potential co-regulation processes between them. Finally, copper resistance of Pa confers selective advantages in colonizing and persisting in hospital environments but also appears as an asset at the host/pathogen interface that helps in HCAI occurrence.
Collapse
Affiliation(s)
- Maxine Virieux-Petit
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Florence Hammer-Dedet
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Fabien Aujoulat
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
| | - Sara Romano-Bertrand
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
- UMR 5151 HSM, Equipe Pathogènes Hydriques Santé et Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université Montpellier, 15, Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France
- Correspondence: ; Tel.: +33-4-11-75-94-30
| |
Collapse
|
6
|
Putri RE, Kim LH, Farhat N, Felemban M, Saikaly PE, Vrouwenvelder JS. Evaluation of DNA extraction yield from a chlorinated drinking water distribution system. PLoS One 2021; 16:e0253799. [PMID: 34166448 PMCID: PMC8224906 DOI: 10.1371/journal.pone.0253799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
Desalination technology based on Reverse Osmosis (RO) membrane filtration has been resorted to provide high-quality drinking water. RO produced drinking water is characterized by a low bacterial cell concentration. Monitoring microbial quality and ensuring membrane-treated water safety has taken advantage of the rapid development of DNA-based techniques. However, the DNA extraction process from RO-based drinking water samples needs to be evaluated regarding the biomass amount (filtration volume) and residual disinfectant such as chlorine, as it can affect the DNA yield. We assessed the DNA recovery applied in drinking water microbiome studies as a function of (i) different filtration volumes, (ii) presence and absence of residual chlorine, and (iii) the addition of a known Escherichia coli concentration into the (sterile and non-sterile, chlorinated and dechlorinated) tap water prior filtration, and directly onto the (0.2 μm pore size, 47 mm diameter) mixed ester cellulose membrane filters without and after tap water filtration. Our findings demonstrated that the co-occurrence of residual chlorine and low biomass/cell density water samples (RO-treated water with a total cell concentration ranging between 2.47 × 102-1.5 × 103 cells/mL) failed to provide sufficient DNA quantity (below the threshold concentration required for sequencing-based procedures) irrespective of filtration volumes used (4, 20, 40, 60 L) and even after performing dechlorination. After exposure to tap water containing residual chlorine (0.2 mg/L), we observed a significant reduction of E. coli cell concentration and the degradation of its DNA (DNA yield was below detection limit) at a lower disinfectant level compared to what was previously reported, indicating that free-living bacteria and their DNA present in the drinking water are subject to the same conditions. The membrane spiking experiment confirmed no significant impact from any potential inhibitors (e.g. organic/inorganic components) present in the drinking water matrix on DNA extraction yield. We found that very low DNA content is likely to be the norm in chlorinated drinking water that gives hindsight to its limitation in providing robust results for any downstream molecular analyses for microbiome surveys. We advise that measurement of DNA yield is a necessary first step in chlorinated drinking water distribution systems (DWDSs) before conducting any downstream omics analyses such as amplicon sequencing to avoid inaccurate interpretations of results based on very low DNA content. This study expands a substantial source of bias in using DNA-based methods for low biomass samples typical in chlorinated DWDSs. Suggestions are provided for DNA-based research in drinking water with residual disinfectant.
Collapse
Affiliation(s)
- Ratna E. Putri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lan Hee Kim
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nadia Farhat
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mashael Felemban
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E. Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Johannes S. Vrouwenvelder
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
7
|
Craig K, Johnson BR, Grunden A. Leveraging Pseudomonas Stress Response Mechanisms for Industrial Applications. Front Microbiol 2021; 12:660134. [PMID: 34040596 PMCID: PMC8141521 DOI: 10.3389/fmicb.2021.660134] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the genus Pseudomonas are metabolically versatile and capable of adapting to a wide variety of environments. Stress physiology of Pseudomonas strains has been extensively studied because of their biotechnological potential in agriculture as well as their medical importance with regards to pathogenicity and antibiotic resistance. This versatility and scientific relevance led to a substantial amount of information regarding the stress response of a diverse set of species such as Pseudomonas chlororaphis, P. fluorescens, P. putida, P. aeruginosa, and P. syringae. In this review, environmental and industrial stressors including desiccation, heat, and cold stress, are cataloged along with their corresponding mechanisms of survival in Pseudomonas. Mechanisms of survival are grouped by the type of inducing stress with a focus on adaptations such as synthesis of protective substances, biofilm formation, entering a non-culturable state, enlisting chaperones, transcription and translation regulation, and altering membrane composition. The strategies Pseudomonas strains utilize for survival can be leveraged during the development of beneficial strains to increase viability and product efficacy.
Collapse
Affiliation(s)
- Kelly Craig
- AgBiome Inc., Research Triangle Park, NC, United States
| | | | - Amy Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
8
|
Halstead FD, Quick J, Niebel M, Garvey M, Cumley N, Smith R, Neal T, Roberts P, Hardy K, Shabir S, Walker JT, Hawkey P, Loman NJ. Pseudomonas aeruginosa infection in augmented care: the molecular ecology and transmission dynamics in four large UK hospitals. J Hosp Infect 2021; 111:162-168. [PMID: 33539934 DOI: 10.1016/j.jhin.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is a common opportunistic pathogen and molecular typing in outbreaks has linked patient acquisition to contaminated hospital water systems. AIM To elucidate the role of P. aeruginosa transmission rates in non-outbreak augmented care settings in the UK. METHODS Over a 16-week period, all water outlets in augmented care units of four hospitals were sampled for P. aeruginosa and clinical isolates were collected. Outlet and clinical P. aeruginosa isolates underwent whole-genome sequencing (WGS), which with epidemiological data identified acquisition from water as definite (level 1), probable (level 2), possible (level 3), and no evidence (level 4). FINDINGS Outlets were positive in each hospital on all three occasions: W (16%), X (2.5%), Y (0.9%) and Z (2%); and there were 51 persistently positive outlets in total. WGS identified likely transmission (at levels 1, 2 and 3) from outlets to patients in three hospitals for P. aeruginosa positive patients: W (63%), X (54.5%) and Z (26%). According to the criteria (intimate epidemiological link and no phylogenetic distance), approximately 5% of patients in the study 'definitely' acquired their P. aeruginosa from their water outlets in the intensive care unit. This study found extensive evidence of transmission from the outlet to the patients particularly in the newest hospital (W), which had the highest rate of positive outlets. CONCLUSIONS The overall findings suggest that water outlets are the most likely source of P. aeruginosa nosocomial infections in some settings, and that widespread introduction of control measures would have a substantial impact on infections.
Collapse
Affiliation(s)
- F D Halstead
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - J Quick
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - M Niebel
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - M Garvey
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - N Cumley
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - R Smith
- Royal Free London NHS Foundation Trust, Hampstead, London, UK
| | - T Neal
- Royal Liverpool University Hospital, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - P Roberts
- Royal Liverpool University Hospital, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - K Hardy
- Public Health England, Heartlands Hospital, University Hospitals Birmingham, Birmingham, UK
| | - S Shabir
- Public Health England, Heartlands Hospital, University Hospitals Birmingham, Birmingham, UK
| | | | - P Hawkey
- Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.
| | - N J Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Maertens L, Matroule JY, Van Houdt R. Characteristics of the copper-induced viable-but-non-culturable state in bacteria. World J Microbiol Biotechnol 2021; 37:37. [PMID: 33544256 PMCID: PMC7864824 DOI: 10.1007/s11274-021-03006-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
The antimicrobial applications of copper (Cu) are exploited in several industries, such as agriculture and healthcare settings. While Cu is capable of efficiently killing microorganisms, sub-lethal doses can induce a viable-but-non-culturable (VBNC) state in bacteria of many distinct clades. VBNC cells cannot be detected by standard culture-based detection methods, and can become a threat to plants and animals as they often retain virulent traits upon resuscitation. Here we discuss the putative mechanisms of the Cu-induced VBNC state. Common observations in Cu-induced VBNC cells include a cellular response to reactive oxygen species, the exhaustion of energy reserves, and a reconfiguration of the proteome. While showing partial overlap with other VBNC state-inducing stressors, these changes seem to be part of an adaptive response to Cu toxicity. Furthermore, we argue that Cu resistance mechanisms such as P-type ATPases and multicopper oxidases may ward off entry into the VBNC state to some extent. The spread of these mechanisms across multi-species populations could increase population-level resistance to Cu antimicrobials. As Cu resistance mechanisms are often co-selected with antibiotic resistance mechanisms, this threat is exacerbated.
Collapse
Affiliation(s)
- Laurens Maertens
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Jean-Yves Matroule
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, Namur, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.
| |
Collapse
|
10
|
Vatansever C, Turetgen I. Investigation of the effects of various stress factors on biofilms and planktonic bacteria in cooling tower model system. Arch Microbiol 2021; 203:1411-1425. [PMID: 33388788 DOI: 10.1007/s00203-020-02116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 11/27/2022]
Abstract
Biofilm is a microbial population which live in a self-produced extracellular polymeric matrix by attaching to surfaces. Biofilms consist of different different types of organisms such as bacteria, fungi, protozoa, etc. Many biofilms that develop in nature consist of more than one type of organism. Biofilms protect bacteria from adverse conditions such as temperature fluctuation and disinfectants. The aim of this study was to determine the effective elimination strategies for combating biofilm and planktonic bacteria in cooling tower model system using different decontamination / disinfection techniques. In this study, 14 week-old biofilms were treated with temperatures of 4 °C, 65 °C; pH of 3, 11; 2 and 10 mg/l chlorine, 2 and 10 mg/l monochloramine; hypotonic salt (0.01% NaCl) and hypertonic salt (3% NaCl) solution. For enumeration, number of aerobic heterotrophic bacteria was determined by conventional culture method, number of live bacteria was determined by LIVE/DEAD viability kit, CTC-DAPI and Alamar blue staining methods. Temperature of 65 °C, pH of 3, 10 mg/l monochloramine and hypertonic salt solution were the most effective parameters for decontamination of biofilm and planktonic bacteria. Biofilm bacteria in the circulating water system were significantly more resistant than planktonic bacteria against stress factors. When the numbers of epifluorescence microscopy and conventional culture technique were compared, significantly higher number of live bacteria were detected using epifluorescence microscopy. Bacteria enter the viable but non-culturable phase by loosing their culturability under stress conditions. For this reason, the conventional culture method should be supported by different techniques to get more realistic numbers.
Collapse
Affiliation(s)
- Cansu Vatansever
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Altinbas University, Istanbul, Turkey.
| | - Irfan Turetgen
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
11
|
Cullom AC, Martin RL, Song Y, Williams K, Williams A, Pruden A, Edwards MA. Critical Review: Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish Growth of Legionella and Other Opportunistic Pathogens. Pathogens 2020; 9:E957. [PMID: 33212943 PMCID: PMC7698398 DOI: 10.3390/pathogens9110957] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper's interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.
Collapse
Affiliation(s)
- Abraham C. Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Rebekah L. Martin
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
- Civil and Environmental Engineering, Virginia Military Institute, Lexington, VA 24450, USA
| | - Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | | | - Amanda Williams
- c/o Marc Edwards, Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| |
Collapse
|
12
|
Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa. PLoS One 2020; 15:e0241304. [PMID: 33156838 PMCID: PMC7647105 DOI: 10.1371/journal.pone.0241304] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Development of drug resistance in opportunistic pathogens is one of the major healthcare challenges associated with infection management. Combination therapy has many advantages due to the simultaneous action of two drugs on two separate cellular targets. However, selection of the drugs should offer safety and synergistic interaction against most of the strains. Here, the efficacy of antibiotics in combination with quercetin, a natural flavonoid capable of targeting quorum sensing was tested against biofilm-forming Pseudomonas aeruginosa strains previously isolated from catheter associated urinary tract infection. Based on the antibiotic susceptibility pattern, synergistic effect of quercetin with selected antibiotics (levofloxacin, ceftriaxone, gentamycin, tobramycin and amikacin) was tested at the fractional concentrations of MIC by the checkerboard method and the fractional inhibitory concentration index (FICi) was calculated to estimate the synergistic effect. Effect of the synergistic combinations were further tested using time-kill assay, and against biofilm formation and biofilm cell viability. Cytotoxicity assays were performed using Human Embryonic Kidney 293T cells (HEK-293T) using the effective drug combinations with respective controls. The biofilm formation and biofilm cell viability were drastically affected with quercetin and selected antibiotics combinations with ≥80% inhibition. In vitro infection studies showed that all the strains could exert significant cell killing (68 to 85%) and the drug combinations decreased the infection rate significantly by reducing the cell killing effect of P. aeruginosa (p<0.05). The synergistic effect of quercetin is attributed to its quorum sensing inhibitory properties. These findings indicate that quercetin along with existing antibiotics can potentiate the treatment against P. aeruginosa infection and may reduce the selection pressure due to antibiotic overuse.
Collapse
|
13
|
Macroporous epoxy-based monoliths for rapid quantification of Pseudomonas aeruginosa by adsorption elution method optimized for qPCR. Anal Bioanal Chem 2020; 412:8185-8195. [PMID: 33011838 PMCID: PMC7584540 DOI: 10.1007/s00216-020-02956-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Pseudomonas aeruginosa contaminations in tap water systems have caused severe health problems in both hospital and household settings. To ensure fast and reliable detection, culture-independent methods are recommendable. However, the typically low cell number in water samples requires sample enrichment prior to analysis. Therefore, we developed and optimized an adsorption elution method using monolithic adsorption filtration and subsequent centrifugal ultrafiltration that can be combined with culture-independent detection methods. The principle of adsorption of Pseudomonas aeruginosa by hydrophobic and ionic interactions was studied in modified epoxy-based monoliths. Optimized conditions (5-L initial sample volume at pH 3 filtered for 30 min through hydrolyzed monoliths (MAF-OH) and eluted with beef extract glycine buffer at pH 9.5) achieved a recovery of 67.1 ± 1.2% and a concentration factor of 103. For the first time, we therefore present a culture-independent approach for rapid enrichment and subsequent molecular biological quantification of P. aeruginosa by qPCR from tap water samples by monolithic adsorption filtration. The total enrichment and quantification process takes 4 h. This work further stresses the versatility of the monolithic adsorption filtration and its possibilities as a concentration tool for culture-independent analytics of pathogenic bacteria in the environment. Graphical abstract![]()
Collapse
|
14
|
López-Lara LI, Pazos-Rojas LA, López-Cruz LE, Morales-García YE, Quintero-Hernández V, de la Torre J, van Dillewijn P, Muñoz-Rojas J, Baez A. Influence of rehydration on transcriptome during resuscitation of desiccated Pseudomonas putida KT2440. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01596-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Purpose
Pseudomonas putida KT2440 is a desiccation-sensitive bacterium that loses culturability after 15 days of air desiccation. We have previously shown that P. putida KT2440 can develop a viable but nonculturable (VBNC) state after being exposed to desiccation stress and eventually recover when desiccated cells are rehydrated for at least 24 h.
Methods
To determine which genes of transport, oxidation-reduction, and transcription processes could be involved in the return of P. putida KT2440 to the culturable state, a transcriptome analysis was carried out comparing the gene expression of non-desiccated samples with samples subjected to desiccation followed by 20 min of rehydration or desiccation followed by 24 h of rehydration.
Results
Desiccation stress triggered a VBNC state of P. putida. The major response was detected after 24 h of rehydration with 148 upregulated and 42 downregulated genes. During the VBNC state, P. putida activated transmembrane transport processes like that of siderophores through a TonB-dependent transporter and putative polyhydric alcohol transport systems. Prolonged rehydration with distilled water resuscitated P. putida KT2440 cells activating the catabolism of phenylalanine/tyrosine to provide energy and carbon for ubiquinone biosynthesis while maintaining a reduced protein synthesis. On the other hand, the interruption of the TonB-dependent receptor gene (PP_1446) increased desiccation survival of the mutant strain.
Conclusion
The activation of the iron transport system (TonB-dependent siderophore receptor) and alcohol transport can be helping the VBNC state of P. putida. Activation of catabolism of phenylalanine/tyrosine and reduced protein synthesis was needed for resuscitation from the VBNC state.
Collapse
|
15
|
Moreira Martins PM, Gong T, de Souza AA, Wood TK. Copper Kills Escherichia coli Persister Cells. Antibiotics (Basel) 2020; 9:antibiotics9080506. [PMID: 32806704 PMCID: PMC7459663 DOI: 10.3390/antibiotics9080506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/04/2023] Open
Abstract
Due to their reduced metabolism, persister cells can survive most antimicrobial treatments, which usually rely on corrupting active biochemical pathways. Therefore, molecules that kill bacterial persisters should function in a metabolism-independent manner. Some anti-persister compounds have been found previously, such as the DNA-crosslinkers mitomycin C and cisplatin, but more effective and lower cost alternatives are needed. Copper alloys have been used since ancient times due to their antimicrobial properties, and they are still used in agriculture to control plant bacterial diseases. By stopping transcription with rifampicin and by treating with ampicillin to remove non-persister cells, we created a population that consists solely of Escherichia coli persister cells. Using this population of persister cells, we demonstrate that cupric compounds kill E. coli persister cells. Hence, copper ions may be used in controlling the spread of important bacterial strains that withstand treatment with conventional antimicrobials by forming persister cells.
Collapse
Affiliation(s)
- Paula Maria Moreira Martins
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA; (P.M.M.M.); (T.G.)
- Biotechnology Lab, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis-SP 13490-970, Brazil;
| | - Ting Gong
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA; (P.M.M.M.); (T.G.)
| | - Alessandra A. de Souza
- Biotechnology Lab, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis-SP 13490-970, Brazil;
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA; (P.M.M.M.); (T.G.)
- Correspondence:
| |
Collapse
|
16
|
Paranjape K, Bédard É, Whyte LG, Ronholm J, Prévost M, Faucher SP. Presence of Legionella spp. in cooling towers: the role of microbial diversity, Pseudomonas, and continuous chlorine application. WATER RESEARCH 2020; 169:115252. [PMID: 31726393 DOI: 10.1016/j.watres.2019.115252] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 05/25/2023]
Abstract
Legionnaires' disease (LD) is a severe pneumonia caused by several species of the genus Legionella, most frequently by Legionella pneumophila. Cooling towers are the most common source for large community-associated outbreaks. Colonization, survival, and proliferation of L. pneumophila in cooling towers are necessary for outbreaks to occur. These steps are affected by the chemical and physical parameters of the cooling tower environment. We hypothesize that the bacterial community residing in the cooling tower could also affect the presence of L. pneumophila. A 16S rRNA gene targeted amplicon sequencing approach was used to study the bacterial community of cooling towers and its relationship with the Legionella spp. and L. pneumophila communities. The results indicated that the water source shaped the bacterial community of cooling towers. Several taxa were enriched and positively correlated with Legionella spp. and L. pneumophila. In contrast, Pseudomonas showed a strong negative correlation with Legionella spp. and several other genera. Most importantly, continuous chlorine application reduced microbial diversity and promoted the presence of Pseudomonas creating a non-permissive environment for Legionella spp. This suggests that disinfection strategies as well as the resident microbial population influences the ability of Legionella spp. to colonize cooling towers.
Collapse
Affiliation(s)
- Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada; Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
17
|
Guo L, Ye C, Cui L, Wan K, Chen S, Zhang S, Yu X. Population and single cell metabolic activity of UV-induced VBNC bacteria determined by CTC-FCM and D 2O-labeled Raman spectroscopy. ENVIRONMENT INTERNATIONAL 2019; 130:104883. [PMID: 31229870 DOI: 10.1016/j.envint.2019.05.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of viable but non-culturable (VBNC) bacteria will result in significant underestimation of viable bacterial counts in drinking water. Whereas, much is unknown in characterizing their viability. In this study, two environmental isolates (Aeromonas sp. and Pseudomonas sp.) and two model strains (E. coli and S. aureus) were induced into VBNC state by UV irradiation. Then, their metabolic activity was determined by 5-cyano-2,3-ditolyl tetrazolium chloride combination flow cytometry (CTC-FCM) and D2O-labeled Raman spectroscopy, respectively, at both population and single cell levels. The results showed that almost all strains could enter VBNC state irradiated by ≥ 5 mJ/cm2 UV. When determined by CTC-FCM, the population metabolic activity for each strain did not vary significantly (p > 0.05) unless the UV dose reached 200 mJ/cm2. Their single cell activity spectrum narrowed slightly, as indicated by changes in the standard deviation of the logarithmic normal distribution (σ) of 0.015-0.033. This minute difference suggested the CTC-FCM method was suitable for assessing the essential viability of VBNC bacteria. With respect to Raman method, an obvious dose-response effect was recorded. With the UV dosages increased from 10 to 200 mJ/cm2, the CD/(CD + CH) for the four strains were reduced to between 95.7% and 47.9% of unirradiated controls, depending on strain and UV dose. Meanwhile, the single cellular Raman spectrum showed much more heterogeneously metabolic activity distribution, with some cells even entering metabolic "silence". Considering the ubiquitous participation of water in biochemical processes, the Raman method was more appropriate in assessing the overall metabolic activity. The above findings can not only be a reference for VBNC mechanism studies, but also have the potential in optimizing disinfection and other bacterial removal processes.
Collapse
Affiliation(s)
- Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sheng Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
18
|
Jeanvoine A, Meunier A, Puja H, Bertrand X, Valot B, Hocquet D. Contamination of a hospital plumbing system by persister cells of a copper-tolerant high-risk clone of Pseudomonas aeruginosa. WATER RESEARCH 2019; 157:579-586. [PMID: 30999256 DOI: 10.1016/j.watres.2019.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is an important opportunistic pathogen that thrives best in the distal elements of plumbing and waste-water systems. Although nosocomial outbreaks of PA have been associated with water sources, the role of the plumbing system of healthcare premises as a reservoir for this pathogen is still unclear. MATERIALS AND METHODS We collected water samples from 12 technical areas, distant from any medical activity, in a teaching hospital in France once a week for 11 weeks. We used a method that resuscitates persister cells because of the nutrient-poor conditions and the presence of inhibitors (e.g. chlorine and copper ions). Briefly, water was sampled in sterile bottles containing 100 μM of the copper-ion chelating agent diethyldithiocarbamate (DDTC). A portion of the samples was immediately filtered through 0.45-μm membranes, deposited on R2A agar plates, and incubated seven days at 22 °C (following European recommendations). The remaining water was incubated 14 days at 22 °C and then filtered and cultured on R2A, blood-, or cetrimide-containing agar plates. PA isolates were identified by MS MALDI-TOF, genotyped by PFGE and WGS, and tested for survival in a 150 μg/L copper (II) sulphate solution. RESULTS Although the 12 water sampling points always tested negative with the recommended method, 67% were positive at least once for PA with the adapted method (i.e. with DDTC). The 14 PA persister isolates found throughout the plumbing system were clonal and belong to the high-risk clone ST308. Their genome harbours a 37-kb genomic island (GI-7) containing 13 genes linked to copper resistance. ST308 survived better in the copper solution than comparators that did not harbour GI-7 (P. aeruginosa strains PAO1, PA14, and ST235). The deletion of GI-7 in ST308 abrogated its tolerance to copper. The GI-7 nucleotide sequence shares 98% and 72% identity with sequences from the environmental species Pseudomonas putida and the phytopathogenic species Pseudomonas syringae, respectively. CONCLUSION We report the contamination of the plumbing system of a healthcare premises by persister cells of the high-risk clone P. aeruginosa ST308. New recommendations for the monitoring of water contamination should consider persister cells. The genomic island GI-7, which confers tolerance to copper, probably originates from Pseudomonas species found in copper-contaminated soils and plants. Agricultural practices may have an unexpected consequence, allowing copper-tolerant pathogens to survive in the hospital environment and contaminate fragile patients.
Collapse
Affiliation(s)
- Audrey Jeanvoine
- Laboratoire d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Alexandre Meunier
- Laboratoire d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Hélène Puja
- UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Xavier Bertrand
- Laboratoire d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Benoît Valot
- UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Didier Hocquet
- Laboratoire d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France; UMR CNRS 6249, Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Régional Universitaire, Besançon, France.
| |
Collapse
|
19
|
Golpayegani A, Douraghi M, Rezaei F, Alimohammadi M, Nodehi RN. Propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:407-416. [PMID: 31297217 PMCID: PMC6582174 DOI: 10.1007/s40201-019-00359-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/21/2019] [Indexed: 05/17/2023]
Abstract
Lack of culturability in the viable but non-culturable (VBNC) bacteria and the ability to regain infectivity in favourable conditions is one of the new challenges of public health providers for Pseudomonas aeruginosa monitoring in environmental samples. Propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) is one of the promising methods for timely detection of VBNC pathogens in environmental samples. We developed and used a method for the first time to detection of VBNC P. aeruginosa in swimming pool water samples using a membrane filter (MF). Moreover, the dominant model of the distribution of colonies on the MF and the effect of the culture medium and MF type on colony recovery by MF were evaluated. Swimming pool samples were subjected to conventional culture-based, qPCR and PMA-qPCR methods and the results were compared for the presence of VBNC P. aeruginosa in the samples. The positivity rate was 21% and 75% for P. aeruginosa in water samples as confirmed by standard culture-based and qPCR methods, respectively. Furthermore, of 24 samples, 9 (37.5%) were positive for VBNC P. aeruginosa. The developed qPCR/PMA-qPCR assay can detect the VBNC bacteria directly from aquatic samples and may result in better monitoring of recreational waters.
Collapse
Affiliation(s)
- Abdolali Golpayegani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Vice-Chancellor for Health, Bam University of Medical Sciences, Bam, Iran
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, PO Box 14155-6446, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, PO Box 14155-6446, Tehran, Iran
| |
Collapse
|
20
|
Perrin Y, Bouchon D, Héchard Y, Moulin L. Spatio-temporal survey of opportunistic premise plumbing pathogens in the Paris drinking water distribution system. Int J Hyg Environ Health 2019; 222:687-694. [PMID: 31085113 DOI: 10.1016/j.ijheh.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/07/2019] [Accepted: 04/19/2019] [Indexed: 11/26/2022]
Abstract
Opportunistic premise plumbing pathogens present in drinking water are linked to a significant number of infections for health compromised patients. However, their monitoring is not required in current water potability standards and they have been poorly studied in a full-scale network. In this study, we quantified, by qPCR, three opportunistic pathogens, Mycobacterium spp., Legionella pneumophila, Pseudomonas aeruginosa throughout the Paris drinking water network over a one-year sampling campaign. While Mycobacteria spp. seemed ubiquitous whatever the distribution system and the time of the year, the occurrence of L. pneumophila and P. aeruginosa showed seasonal variations. Unlike L. pneumophila and P. aeruginosa, the concentration (copies number/L) of Mycobacterium spp. varied between sampling sites. The variation in microbial numbers did not demonstrate any correlations with temperature, pH, chlorine, conductivity, orthophosphate or nitrate levels. In conclusion, Mycobacterium spp. are common inhabitants of the Paris network while L. pneumophila and P. aeruginosa presence fluctuate over space and time. Such qPCR approach would help to better understand the behaviour of opportunistic premise plumbing pathogens.
Collapse
Affiliation(s)
- Yoann Perrin
- Laboratoire Ecologie et Biologie des Interactions, Equipes « Microbiologie de l'Eau » et « Ecologie, Evolution, Symbiose », Université de Poitiers, UMR CNRS 7267, F8 86073, Poitiers, France; Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l'Eau, R&D Biologie, 33, Avenue Jean Jaurès, F-94200, Ivry sur Seine, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions, Equipes « Microbiologie de l'Eau » et « Ecologie, Evolution, Symbiose », Université de Poitiers, UMR CNRS 7267, F8 86073, Poitiers, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions, Equipes « Microbiologie de l'Eau » et « Ecologie, Evolution, Symbiose », Université de Poitiers, UMR CNRS 7267, F8 86073, Poitiers, France.
| | - Laurent Moulin
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l'Eau, R&D Biologie, 33, Avenue Jean Jaurès, F-94200, Ivry sur Seine, France.
| |
Collapse
|
21
|
Zhong Q, Wang B, Wang J, Liu Y, Fang X, Liao Z. Global Proteomic Analysis of the Resuscitation State of Vibrio parahaemolyticus Compared With the Normal and Viable but Non-culturable State. Front Microbiol 2019; 10:1045. [PMID: 31134040 PMCID: PMC6517545 DOI: 10.3389/fmicb.2019.01045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Vibrio parahaemolyticus is a common pathogen which has become a major concern of seafood products. The bacteria in the viable but non-culturable (VBNC) state are unable to form colonies on growth media, but under appropriate conditions they can regain culturability. In this study, V. parahaemolyticus was induced into VBNC state at low temperature and oligotrophic condition, and was resuscitated to culturable state. The aim of this study is to explore the comparative proteomic profiles of the resuscitation state compared with the VBNC state and the exponential phase of V. parahaemolyticus using isobaric tags for relative and absolute quantitation (iTRAQ) technique. The differentially expressed proteins (DEPs) were subjected to GO functional annotations and KEGG pathway analysis. The results indicated that a total of 429 proteins were identified as the significant DEPs in the resuscitation cells compared with the VBNC cells, including 330 up-regulated and 99 down-regulated DEPs. Meanwhile, the resuscitation cells displayed 25 up-regulated and 36 down-regulated DEPs (total of 61 DEPs) in comparison with the exponential phase cells. The remarkable DEPs including ribosomal proteins, ABC transporters, outer membrane proteins and flagellar proteins. GO annotation showed that the 429 DEPs were classified into 37 GO terms, of which 17 biological process (BP) terms, 9 cellular component (CC) terms and 11 molecular function (MF) terms. The up-regulated proteins presented in all GO terms except two terms of developmental process and reproduction. The 61 DEPs were assigned to 23 GO terms, the up- and down-regulated DEPs were both mainly involved in cellular process, establishment of localization, metabolic process and so on. KEGG pathway analysis revealed that the 429 DEPs were assigned to 35 KEGG pathways, and the pathways of ribosome, glyoxylate and dicarboxylate metabolism were significantly enriched. Moreover, the 61 DEPs located in 26 KEGG pathways, including the significantly enriched KEGG pathways of ABC transporters and two-component system. This study would contribute to a better understanding of the molecular mechanism underlying the resuscitation of the VBNC state of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, China
| | - Bin Wang
- Guangdong Scau Assets Management Co., Ltd., South China Agricultural University, Guangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yufei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Dey R, Rieger AM, Stephens C, Ashbolt NJ. Interactions of Pseudomonas aeruginosa with Acanthamoeba polyphaga Observed by Imaging Flow Cytometry. Cytometry A 2019; 95:555-564. [PMID: 30985067 DOI: 10.1002/cyto.a.23768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/05/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is abundant in the environment and water systems, with strains that cause serious infections, especially in patients with compromised immune systems. In times of stress or as part of its natural life cycle, P. aeruginosa can adopt a viable but not culturable (VBNC) state, which renders it undetectable by current conventional food and water testing methods and makes it highly resistant to antibiotic treatment. Specific conditions can resuscitate these coccoid VBNC P. aeruginosa cells, which returns them to their active, virulent rod-shaped form. Underreporting the VBNC cells of P. aeruginosa by standard culture-based methods in water distribution systems may therefore pose serious risks to public health. As such, being able to accurately detect and quantify the presence of VBNC P. aeruginosa, especially in a hospital setting, is of critical importance. Herein, we describe a method to analyze VBNC P. aeruginosa using imaging flow cytometry. With this technique, we can accurately distinguish between active and VBNC forms. We also show here that association of VBNC P. aeruginosa with Acanthamoeba polyphaga results in resuscitation of P. aeruginosa to an active form within 2 h. Our approach could provide an alternative, reliable detection method of VBNC P. aeruginosa when coupled with species-specific staining. Most importantly, our experiments demonstrate that the coculture with amoebae can lead to a resuscitation of P. aeruginosa of culturable morphology after only 2 h, indicating that VBNC P. aeruginosa could potentially resuscitate in piped water (healthcare) environments colonized with amoebae. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Rafik Dey
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Aja M Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Stephens
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health (ProvLab), Alberta Health Services, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Gomes IB, Simões LC, Simões M. The role of surface copper content on biofilm formation by drinking water bacteria. RSC Adv 2019; 9:32184-32196. [PMID: 35530774 PMCID: PMC9072912 DOI: 10.1039/c9ra05880j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022] Open
Abstract
Copper alloys demonstrated comparable or higher performance than elemental copper in biofilm control. The alloy containing 96% copper was the most promising surface in biofilm control and regrowth prevention.
Collapse
Affiliation(s)
- I. B. Gomes
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - L. C. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - M. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| |
Collapse
|
24
|
Hakimzadeh A, Okshevsky M, Maisuria V, Déziel E, Tufenkji N. Exposure to Freeze-Thaw Conditions Increases Virulence of Pseudomonas aeruginosa to Drosophila melanogaster. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14180-14186. [PMID: 30444353 DOI: 10.1021/acs.est.8b04900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Groundwater contamination by pathogenic bacteria present in land-applied manure poses a threat to public health. In cold climate regions, surface soil layers experience repeated temperature fluctuations around the freezing point known as freeze-thaw (FT) cycles. With global climate change, annual soil FT cycles have increased, and this trend is expected to continue. It is therefore of interest to understand how FT cycles impact soil microbial communities. This study investigates the influence of FT cycles on the growth, culturability, biofilm formation, and virulence of the bacterial opportunistic pathogen Pseudomonas aeruginosa, a ubiquitous bacterium found in soil and water, responsible for infections in immunocompromised hosts. Our findings demonstrate that exposure to FT had no significant effect on growth or culturability of the bacteria. However, FT treatment significantly increased biofilm formation and delayed the onset of swimming motility, factors that are important for the pathogenicity of P. aeruginosa. An in vivo study using a chronic infection model revealed an increase in the virulence of P. aeruginosa after FT exposure. These results suggest that the impact of climate change on natural FT cycles may be affecting the ecology of soil-borne pathogens and host-pathogen interactions in unexpected ways.
Collapse
Affiliation(s)
- Arsham Hakimzadeh
- Department of Chemical Engineering , McGill University , 3610 University Street , Montréal , Québec H3A 0C5 , Canada
- INRS-Institut Armand-Frappier , 531 boulevard des Prairies , Laval , Québec H7V 1B7 , Canada
| | - Mira Okshevsky
- Department of Chemical Engineering , McGill University , 3610 University Street , Montréal , Québec H3A 0C5 , Canada
| | - Vimal Maisuria
- Department of Chemical Engineering , McGill University , 3610 University Street , Montréal , Québec H3A 0C5 , Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier , 531 boulevard des Prairies , Laval , Québec H7V 1B7 , Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering , McGill University , 3610 University Street , Montréal , Québec H3A 0C5 , Canada
| |
Collapse
|
25
|
Liu Y, Zhong Q, Wang J, Lei S. Enumeration of Vibrio parahaemolyticus in VBNC state by PMA-combined real-time quantitative PCR coupled with confirmation of respiratory activity. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Bédard E, Laferrière C, Déziel E, Prévost M. Impact of stagnation and sampling volume on water microbial quality monitoring in large buildings. PLoS One 2018; 13:e0199429. [PMID: 29928013 PMCID: PMC6013212 DOI: 10.1371/journal.pone.0199429] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/07/2018] [Indexed: 01/22/2023] Open
Abstract
Microbial drinking water quality can be altered in large buildings, especially after stagnation. In this study, bacterial profiles were generated according to the stagnation time and the volume of water collected at the tap. Successive volumes of cold and hot water were sampled after controlled stagnation periods. Bacterial profiles revealed an important decline (> 2 log) in culturable cells in the first 500 mL sampled from the hot and cold water systems, with a steep decline in the first 15 mL. The strong exponential correlation (R2 ≥ 0.97) between the culturable cell counts in water and the pipe surface-to-volume ratio suggests the biofilm as the main contributor to the rapid increase in suspended culturable cells measured after a short stagnation of one-hour. Results evidence the contribution of the high surface-to-volume ratio at the point of use and the impact of short stagnation times on the increased bacterial load observed. Simple faucets with minimal internal surface area should be preferred to minimize surface area. Sampling protocol, including sampling volume and prior stagnation, was also shown to impact the resulting culturable cell concentration by more than 1000-fold. Sampling a smaller volume on first draw after stagnation will help maximize recovery of bacteria.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- * E-mail:
| | - Céline Laferrière
- Department of Microbiology and Immunology (Infection control), CHU Ste-Justine, Université de Montréal, Montréal, QC, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| |
Collapse
|
27
|
Dopp E, Richard J, Dwidjosiswojo Z, Simon A, Wingender J. Influence of the copper-induced viable but non-culturable state on the toxicity of Pseudomonas aeruginosa towards human bronchial epithelial cells in vitro. Int J Hyg Environ Health 2017; 220:1363-1369. [PMID: 28941772 DOI: 10.1016/j.ijheh.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
The viable but non-culturable (VBNC) state of the opportunistic bacterium Pseudomonas aeruginosa was previously shown to be induced by copper ions in concentrations relevant to those in drinking water plumbing systems. This decrease of bacterial culturability without loss of viability might have an influence on human health due to an underestimation of the actual contamination in drinking water systems. The aim of this study was to investigate the influence of culturable P. aeruginosa, viable but not culturable as well as culturable again after resuscitation from the VBNC state on human bronchial epithelial cells (BEAS-2B) in vitro. Cyto- and genotoxic effects of P. aeruginosa at different states were studied using trypan blue, MTT, xCELLigence as well as the micronucleus assay. While P. aeruginosa in the VBNC state did not have any cytotoxic or genotoxic effect on BEAS-2B cells, untreated (culturable) and resuscitated P. aeruginosa did show cell damage, including disruption of cell membranes, inhibition of mitochondrial activity and cell proliferation as well as DNA-damaging effects. We conclude from our study that P. aeruginosa after resuscitation from the VBNC state regains its viability and cyto-/genotoxicity and therefore might influence human health.
Collapse
Affiliation(s)
- Elke Dopp
- IWW Water Center, Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Jessica Richard
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Anne Simon
- IWW Water Center, Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Jost Wingender
- IWW Water Center, Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany; Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Lalancette C, Charron D, Laferrière C, Dolcé P, Déziel E, Prévost M, Bédard E. Hospital Drains as Reservoirs of Pseudomonas aeruginosa: Multiple-Locus Variable-Number of Tandem Repeats Analysis Genotypes Recovered from Faucets, Sink Surfaces and Patients. Pathogens 2017; 6:pathogens6030036. [PMID: 28792484 PMCID: PMC5617993 DOI: 10.3390/pathogens6030036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Identifying environmental sources of Pseudomonas aeruginosa (Pa) related to hospital-acquired infections represents a key challenge for public health. Biofilms in water systems offer protection and favorable growth conditions, and are prime reservoirs of microorganisms. A comparative genotyping survey assessing the relationship between Pa strains recovered in hospital sink biofilm and isolated in clinical specimens was conducted. Environmental strains from drain, faucet and sink-surface biofilm were recovered by a culture method after an incubation time ranging from 48 to 240 h. The genotyping of 38 environmental and 32 clinical isolates was performed using a multiple-locus variable-number of tandem repeats analysis (MLVA). More than one-third of Pa isolates were only cultivable following ≥48 h of incubation, and were predominantly from faucet and sink-surface biofilms. In total, 41/70 strains were grouped within eight genotypes (A to H). Genotype B grouped a clinical and an environmental strain isolated in the same ward, 5 months apart, suggesting this genotype could thrive in both contexts. Genotype E grouped environmental isolates that were highly prevalent throughout the hospital and that required a longer incubation time. The results from the multi-hospital follow-up study support the drain as an important reservoir of Pa dissemination to faucets, sink surfaces and patients. Optimizing the recovery of environmental strains will strengthen epidemiological investigations, facilitate pathway identification, and assist in identifying and controlling the reservoirs potentially associated to hospital-acquired infections.
Collapse
Affiliation(s)
| | - Dominique Charron
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| | - Céline Laferrière
- Department of microbiology, infectious diseases and immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Patrick Dolcé
- Department of Medical Microbiology and Infectious Diseases, Centre Hospitalier Régional de Rimouski, Rimouski, QC G5L 5T1, Canada.
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada.
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| | - Emilie Bédard
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada.
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
29
|
An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel. Sci Rep 2016; 6:29244. [PMID: 27385507 PMCID: PMC4935851 DOI: 10.1038/srep29244] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 11/08/2022] Open
Abstract
In order to solve the challenging problem of microbial infections caused by microorganisms on medical implants, it is imperative to develop novel antimicrobial biomaterials. This work demonstrated that 317L-Cu stainless steel (SS), created by adding copper through a solution and aging heat treatment process, exhibited good antibacterial properties against staphylococcus aureus, achieving 2 log reduction of planktonic cells after 5 days of incubation. In this study, the antibacterial test was performed using the plate count method, the fluorescence cell staining method and the quantitative polymerase chain reaction (qPCR) method. It is well known that a high concentration of copper ion can lead to cytotoxicity. This work explored the cytotoxicity of 317L-Cu SS through real-time cell analysis (RTCA). Experimental results demonstrated that the 317L-Cu SS possessed a satisfactory antibacterial ability against S. aureus, and the antibacterial rate based on the reduction of sessile cell count reached 98.3% after 24-hour treatment. The bacterial adhesion and the biofilm thickness were considerably reduced by the 317L-Cu SS. The results of RTCA suggested that 317L-Cu SS did not introduce cytotoxicity to mouse cells, indicating its suitability as a medical implant material.
Collapse
|
30
|
Bédard E, Prévost M, Déziel E. Pseudomonas aeruginosa in premise plumbing of large buildings. Microbiologyopen 2016; 5:937-956. [PMID: 27353357 PMCID: PMC5221438 DOI: 10.1002/mbo3.391] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is widely occurring in the environment and is recognized for its capacity to form or join biofilms. The present review consolidates current knowledge on P. aeruginosa ecology and its implication in healthcare facilities premise plumbing. The adaptability of P. aeruginosa and its capacity to integrate the biofilm from the faucet and the drain highlight the role premise plumbing devices can play in promoting growth and persistence. A meta‐analysis of P. aeruginosa prevalence in faucets (manual and electronic) and drains reveals the large variation in device positivity reported and suggest the high variability in the sampling approach and context as the main reason for this variation. The effects of the operating conditions that prevail within water distribution systems (disinfection, temperature, and hydraulic regime) on the persistence of P. aeruginosa are summarized. As a result from the review, recommendations for proactive control measures of water contamination by P. aeruginosa are presented. A better understanding of the ecology of P. aeruginosa and key influencing factors in premise plumbing are essential to identify culprit areas and implement effective control measures.
Collapse
Affiliation(s)
- Emilie Bédard
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada.,INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
31
|
Impact of electronic faucets and water quality on the occurrence of Pseudomonas aeruginosa in water: a multi-hospital study. Infect Control Hosp Epidemiol 2015; 36:311-9. [PMID: 25695173 DOI: 10.1017/ice.2014.46] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To compare Pseudomonas aeruginosa prevalence in electronic and manual faucets and assess the influence of connecting pipes and water quality. SETTING Faucets in 4 healthcare centers in Quebec, Canada. METHODS Water samples from 105 electronic, 90 manual, and 14 foot-operated faucets were analyzed for P. aeruginosa by culture and enzymatic detection, and swab samples from drains and aerators were analyzed by culture. Copper and residual chlorine concentrations, temperature, and flow rate were measured. P. aeruginosa concentrations were analyzed in 4 consecutive volumes of cold water and a laboratory study was conducted on copper pipes and flexible hoses. RESULTS P. aeruginosa contamination was found in drains more frequently (51%) than in aerators (1%) or water (culture: 4%, enzyme detection: 16%). Prevalence in water samples was comparable between manual (14%) and 2 types of electronic faucets (16%) while higher for foot-operated faucets (29%). However, type 2 electronic faucets were more often contaminated (31%) than type 1 (14%), suggesting that faucet architecture and mitigated volume (30 mL vs 10 mL) influence P. aeruginosa growth. Concentrations were 100 times higher in the first 250 mL than after flushing. Flexible hoses were more favorable to P. aeruginosa growth than copper and a temperature of 40°C led to higher counts. CONCLUSIONS The types of faucets and connecting pipes, flow rate, and water quality are important parameters influencing the prevalence and the concentrations of P. aeruginosa in faucets. High concentrations of P. aeruginosa in the first 250 mL suggest increased risk of exposure when using the first flush.
Collapse
|
32
|
Mulyukin AL, Kozlova AN, Sorokin VV, Suzina NE, Cherdyntseva TA, Kotova IB, Gaponov AM, Tutel’yan AV, El’-Registan GI. Surviving forms in antibiotic-treated Pseudomonas aeruginosa. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Falkinham JO, Pruden A, Edwards M. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water. Pathogens 2015; 4:373-86. [PMID: 26066311 PMCID: PMC4493479 DOI: 10.3390/pathogens4020373] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/03/2015] [Indexed: 01/20/2023] Open
Abstract
Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators.
Collapse
Affiliation(s)
- Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, 5008 Derring Hall, Blacksburg, VA 24060, USA.
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, 401 Durham Hall, Blacksburg, VA 24060, USA.
| | - Marc Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, 401 Durham Hall, Blacksburg, VA 24060, USA.
| |
Collapse
|
34
|
Moore G, Stevenson D, Thompson KA, Parks S, Ngabo D, Bennett AM, Walker JT. Biofilm formation in an experimental water distribution system: the contamination of non-touch sensor taps and the implication for healthcare. BIOFOULING 2015; 31:677-687. [PMID: 26652665 DOI: 10.1080/08927014.2015.1089986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hospital tap water is a recognised source of Pseudomonas aeruginosa. U.K. guidance documents recommend measures to control/minimise the risk of P. aeruginosa in augmented care units but these are based on limited scientific evidence. An experimental water distribution system was designed to investigate colonisation of hospital tap components. P. aeruginosa was injected into 27 individual tap 'assemblies'. Taps were subsequently flushed twice daily and contamination levels monitored over two years. Tap assemblies were systematically dismantled and assessed microbiologically and the effect of removing potentially contaminated components was determined. P. aeruginosa was repeatedly recovered from the tap water at levels above the augmented care alert level. The organism was recovered from all dismantled solenoid valves with colonisation of the ethylene propylene diene monomer (EPDM) diaphragm confirmed by microscopy. Removing the solenoid valves reduced P. aeruginosa counts in the water to below detectable levels. This effect was immediate and sustained, implicating the solenoid diaphragm as the primary contamination source.
Collapse
Affiliation(s)
- Ginny Moore
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | - David Stevenson
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | | | - Simon Parks
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | - Didier Ngabo
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | - Allan M Bennett
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | - Jimmy T Walker
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| |
Collapse
|